JPS63169386A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS63169386A
JPS63169386A JP62000298A JP29887A JPS63169386A JP S63169386 A JPS63169386 A JP S63169386A JP 62000298 A JP62000298 A JP 62000298A JP 29887 A JP29887 A JP 29887A JP S63169386 A JPS63169386 A JP S63169386A
Authority
JP
Japan
Prior art keywords
thin film
forming
space
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62000298A
Other languages
Japanese (ja)
Other versions
JPH0676665B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62000298A priority Critical patent/JPH0676665B2/en
Priority to EP87116091A priority patent/EP0267513B1/en
Priority to DE3752208T priority patent/DE3752208T2/en
Priority to KR1019870012471A priority patent/KR930005010B1/en
Priority to CN87107779A priority patent/CN1017726B/en
Publication of JPS63169386A publication Critical patent/JPS63169386A/en
Priority to US07/966,562 priority patent/US5266363A/en
Publication of JPH0676665B2 publication Critical patent/JPH0676665B2/en
Priority to US11/102,651 priority patent/US20050196549A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform thin film on the surfaces of various parts by arranging a cylindrical column housing a body to be coated in a hybrid resonance space wherein the electric field strength of a microwave is maximized and having the interaction of an electric field and a magnetic field. CONSTITUTION:The cylindrical column 10' housing the bodies 10 to be coated with a thin film is arranged in a plasma producing space 1, and the column 10' is rotated and provided with microvibration. The space 1 is then evacuated to <=about 1X10<-6>Torr, Ar, etc., are then introduced into the space 1 to increase the pressure to about 1X10<-4>Torr, a microwave is impressed from a microwave oscillator 4, and magnetic fields are impressed by magnets 5 and 5' to produce high-density plasma in the space 1. The surface of the body 10 in the column 10' is cleaned in this way. C2H2, etc., are further introduced while introducing Ar, the pressure in the space 1 is increased to about 0.1X10<-1>-3X10<2>Torr, and the concn. of the productive gas is increased while keeping the produced plasma state. By this method, the carbon atom excited by high energy is formed, carbon is deposited on many bodies 10 in the column 10', and a diamond film is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波電界を加えるとともに、外部磁場を
加え、それらの相互作用を用い、かつその電界の最も大
きい空間またはその近傍に反応性気体が筒内を透過せし
める構成の筒状カラムの被膜形成手段を設け、このカラ
ムを回転または微振動させて薄膜形成用物体の全表面に
被膜を形成せしめるとともに、この物体の凹部にも良好
に被膜形成がされるべく、混成共鳴を利用して被膜形成
を行うための薄膜形成方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention applies a microwave electric field and an external magnetic field, uses their interaction, and generates a reactive gas in a space where the electric field is greatest or in the vicinity thereof. A coating forming means is provided in a cylindrical column configured to allow transmission through the cylinder, and this column is rotated or slightly vibrated to form a coating on the entire surface of the object for forming a thin film, and also to form a coating well even in the recesses of the object. The present invention relates to a thin film forming method for forming a film using hybrid resonance.

〔従来の技術〕[Conventional technology]

従来、薄膜の形成手段としてECR(電子サイクロトロ
ン共!!:S)条件即ちI Xl0−3〜I Xl0−
5torrの条件下で、少なくとも電子が1周するに十
分な低い圧力で活性種を作り、その発散磁場を利用して
この共鳴空間より「離れた位置」に基板を配設して、そ
こで被膜特にアモルファス構造を有する被膜を形成する
電子ザイクロトロン共鳴(ECRともいう)を用いる方
法が知られている。
Conventionally, as a means for forming thin films, ECR (electron cyclotron!!: S) conditions, i.e., I Xl0-3 to I Xl0-
Under the condition of 5 torr, active species are created at a pressure low enough for at least one electron to make one round, and by utilizing the divergent magnetic field, a substrate is placed at a position "away" from this resonant space, where the coating, especially A method using electron cyclotron resonance (also referred to as ECR) to form a film having an amorphous structure is known.

このECRCVD法は活性種を磁場によりピンチジグし
高エネルギ化することにより、電子エネルギを太き(し
、効率よ(気体をプラズマ化させている。そのため、高
エネルギ条件下でのプラズマをイオンシャワー化(一方
向のみガス流を有する)した反応性気体を到達させるこ
とにより被膜形成または異方性エツチングを行っていた
In this ECRCVD method, active species are pinch-jigged using a magnetic field to increase their energy, thereby increasing the electron energy and increasing efficiency. Film formation or anisotropic etching was performed by delivering a reactive gas (with gas flow in only one direction).

〔従来の問題点〕[Conventional problems]

しかしかかるシャワー化した反応性気体を用いた被膜形
成方法では、凹凸表面を有する凹部または凸部の側面へ
の被膜形成はまったく不可能であった。また、多数の部
品、例えばプラスチック、金属またはセラミックスでで
きた歯車、ジグ等の被膜形成用物体の影の部分に被膜形
成を行うこともまったく不可能であった。
However, in this method of forming a film using showered reactive gas, it is completely impossible to form a film on the side surfaces of recesses or projections having uneven surfaces. Furthermore, it has been completely impossible to form a coating on the shadow areas of many parts, such as gears, jigs, and other coating objects made of plastic, metal, or ceramics.

また、これまではかかるECRの存在領域でないいわゆ
る0、1〜300torr特に3 torr以上の高い
圧力での被膜形成をさせんとしても、プラズマが発生せ
ず、高密度プラズマを利用することは不可能とされてい
た。特にかかる高い圧力で結晶性を有する被膜を形成す
ることはこれまで不可能と考えられていた。しかし本発
明人は0.1〜300 torr好ましくは3〜30 
torrの高い圧力でも高密度プラズマを作り得ること
、そしてかかるプラズマはECRではなく「混成共鳴」
という新しいモードであることを見出した。また、かか
る混成共鳴領域では被膜形成用物体の凹凸部の側面にも
被膜形成を行い得ることをも合わせて発見した。
In addition, even if we try to form a film at a high pressure of 0, 1 to 300 torr, especially 3 torr or more, which is not the area where such ECR exists, plasma is not generated and it is impossible to use high-density plasma. It was said that It was previously considered impossible to form a crystalline film under such high pressure. However, the inventor of the present invention
It is possible to create high-density plasma even at high pressures of torr, and such plasma is not ECR but "hybrid resonance".
We discovered that this is a new mode. We have also discovered that in such a hybrid resonance region, it is possible to form a film on the side surface of the uneven portion of the film-forming object.

〔問題を解決すべき手段〕[Means to solve the problem]

本発明は、0.1〜300 torr好ましくは3〜3
0torrの高い圧力で「混成共鳴」を用いた高密度プ
ラズマを利用して被膜形成を行うものである。
The present invention uses 0.1 to 300 torr, preferably 3 to 3 torr.
The coating is formed using high-density plasma using "hybrid resonance" at a high pressure of 0 torr.

さらにこの被膜形成用部品、例えばプラスチックス、セ
ラミックスまたは金属の部品(歯車、ネジ、装飾用ジグ
または研廖用微粒子)の全表面にコーティングせんとす
るものである。
Furthermore, the entire surface of the coating-forming parts, such as plastic, ceramic, or metal parts (gears, screws, decorative jigs, or abrasive particles), is to be coated.

これらの被膜形成用物体を筒状カラムの内に保持し、こ
の内にプラズマ化した気体を流し、その反応生成物を物
体の表面にコーティングさせる。
These film-forming objects are held in a cylindrical column, and plasma-formed gas is passed through the column to coat the surfaces of the objects with the reaction products.

この目的のため、マイクロ波電力の電界強度が最も大き
くなる領域またはその近傍に被形成面を有する物体を配
設する。さらにこの物体の全表面に均一にコーティング
するため、このカラムを回転または振動せしめ、気体に
とって常に物体の新しい表面が出るように工夫している
。また、高密度プラズマを0.1〜300torrの高
い圧力で発生、持続させるため、カラムを有する空間に
まずlXl0−”〜I Xl0−5torrの低真空下
でECR(電子サイクロトロン共鳴)を生せしめる。さ
らに気体を導入し、l X 10− ’ 〜3 X 1
02torr好ましくは3〜30torrと高い空間圧
力にプラズマ状態を持続しつつ変化せしめ、この空間の
生成物気体の単位空間あたりの濃度をこれまでのECR
CVD法に比パテ102〜105倍程度の高濃度にする
。するとかかる高い圧力においてのみ初めて分解または
反応をさせることができる材料の被膜形成が可能となる
。例えば、ダイヤモンド、i−カーボン(ダイヤモンド
または微結晶粒を有する炭素被膜)、高融点の金属また
は絶縁性セラミック被膜である。
For this purpose, an object having a surface to be formed is disposed in or near a region where the electric field strength of microwave power is maximum. Furthermore, in order to uniformly coat the entire surface of the object, the column is rotated or vibrated so that new surfaces of the object are always exposed to the gas. Furthermore, in order to generate and sustain high-density plasma at a high pressure of 0.1 to 300 torr, ECR (electron cyclotron resonance) is first generated in the space containing the column under a low vacuum of 1X10-'' to IX10-5 torr. Furthermore, gas is introduced and l X 10-' ~ 3 X 1
The plasma state is changed to a high space pressure of 02 torr, preferably 3 to 30 torr, and the concentration of product gas per unit space in this space is lower than that of the previous ECR.
The concentration is about 102 to 105 times higher than that of CVD method. This makes it possible to form a film of a material that can only decompose or react under such high pressure. Examples are diamond, i-carbon (diamond or carbon coatings with microcrystalline grains), high melting point metals or insulating ceramic coatings.

このダイヤモンドを含む炭素膜の成膜機構は、被膜形成
過程において、形成されつつある被膜の密の部分の構成
物(例えば結晶部分)を残し、粗の部分の構成(例えば
アモルファス部分)を除去して、即ちエツチングをさせ
つつ行わんとするものである。そして形成された被膜の
少なくとも一部に結晶性を有する被膜を形成せんとする
ものである。
The formation mechanism of this diamond-containing carbon film is such that during the film formation process, components of the dense parts of the film being formed (e.g., crystalline parts) are left behind, and coarse parts of the film (e.g., amorphous parts) are removed. In other words, it is intended to be carried out while etching is being carried out. The purpose is to form a film having crystallinity on at least a portion of the formed film.

すなわち本発明は従来より知られたマイクロ波を用いた
プラズマCVD法に磁場の力を加え、マイクロ波の電場
と磁場との相互作用を用いている。
That is, the present invention adds the force of a magnetic field to the conventionally known plasma CVD method using microwaves, and uses the interaction between the electric field and the magnetic field of the microwaves.

しかし、1 xto−”〜I Xl0−’torrで有
効なECR(、エレクトロンサイクロトロン共鳴)条件
を用いていない。本発明はかかるECR条件を利用して
プラズマを発生せしめ、このプラズマ状態を0.1〜3
00torrの高い圧力の「混成共鳴」の発生する領域
に移し、この混成共鳴の起きるlXl0−’〜3X10
2torrの高い圧力で高密度高エネルギのプラズマを
利用した被膜形成を行わしめたものである。その混成共
鳴空間での高エネルギ状態を利用して、例えば活性炭素
を多量に発生させ、再現性に優れ、均一な膜厚、均質な
特性の被膜、例えばダイヤモンド、i−カーボン膜等の
被膜の形成を可能としたものである。また加える磁場の
強さを任意に変更可能な為、電子のみではな(特定のイ
オンの共鳴条件を設定することができる特徴がある。
However, it does not use ECR (electron cyclotron resonance) conditions that are effective at 1 xto-" to I ~3
Transferred to a region where "hybrid resonance" occurs at a high pressure of 00 torr, and
The coating is formed using high-density, high-energy plasma at a high pressure of 2 torr. Utilizing the high energy state in the hybrid resonance space, for example, a large amount of activated carbon can be generated to produce films with excellent reproducibility, uniform thickness, and homogeneous properties, such as diamond and i-carbon films. This enabled the formation of In addition, since the strength of the applied magnetic field can be changed arbitrarily, it is possible to set resonance conditions not only for electrons but also for specific ions.

また本発明の構成に付加して、マイクロ波と磁場との相
互作用により高密度プラズマを発生させた後、物体面上
まで至るまでの間でも高エネルギ状態をより保持するた
め、光(例えば紫外光)を同時に照射し、活性種にエネ
ルギを与えつづけると、マイクロ波電界の最大となる領
域即ち高密度プラズマ発生領域より10〜50cmも離
れた位置(反応性気体の活性状態を保持できる位置)に
おいても高エネルギ状態に励起された炭素原子が存在し
て、より大きな空間でダイヤモンド、i−カーボン膜を
形成することが可能である。本発明はかかる空間に筒状
のカラムを配設し、このカラム内に被膜形成用物体を配
設し、その表面に被膜形成を行った。
Additionally, in addition to the structure of the present invention, after generating high-density plasma through the interaction of microwaves and a magnetic field, in order to maintain a high-energy state even before reaching the object surface, light (e.g. ultraviolet If the active species are continuously irradiated with light (light) and energy is continuously given to the active species, a position 10 to 50 cm away from the region where the microwave electric field is maximum, that is, the high-density plasma generation region (a position where the active state of the reactive gas can be maintained) Also, carbon atoms excited to a high energy state exist, and it is possible to form a diamond or i-carbon film in a larger space. In the present invention, a cylindrical column is disposed in such a space, a film-forming object is disposed within the column, and a film is formed on the surface of the column.

以下に実施例を示し、さらに本発明を説明する。Examples will be shown below to further explain the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマCVD装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1)、物体に被膜形成する空間(3)、補
助空間(2)、磁場を発生する電磁石(5)、(5’)
およびその電源(25) 、マイクロ波発振器(4)、
排気系を構成するターボ分子ポンプ(8)、ロータリー
ポンプ(14)、圧力調整バルブ(11)、筒状カラム
(10’)。
In the figure, this device includes a plasma generation space (1) that can be maintained in a reduced pressure state, a space for forming a film on an object (3), an auxiliary space (2), and electromagnets (5) and (5') that generate a magnetic field.
and its power source (25), microwave oscillator (4),
A turbo molecular pump (8), a rotary pump (14), a pressure adjustment valve (11), and a cylindrical column (10') constitute the exhaust system.

被膜形成用物体(IOCマイクロ波導入窓(15L ガ
ス系(6) 、 (7) 、水冷系(18) 、 (1
8″)より構成されている。
Film forming object (IOC microwave introduction window (15L gas system (6), (7), water cooling system (18), (1
8″).

まず薄膜形成用物体(10)を筒状カラム(10’)内
に設置し、ゲート弁(20)よりプラズマ発生空間(1
)に配設する。このカラムはマイクロ波および磁場をで
きるだけ乱させないためステンレスまたは石英製の筒状
カラムを用いた。
First, a thin film forming object (10) is installed in a cylindrical column (10'), and a gate valve (20) is inserted into a plasma generation space (10').
). A cylindrical column made of stainless steel or quartz was used for this column in order to minimize disturbance of microwave and magnetic fields.

このカラムは歯車を開始回転手段(16)により回転(
17)させている。この回転は1分間に0.1〜10回
のスピードとした。さらに図面では省略したが同時に1
00〜LOKHzの微振動を与え、それぞれの物体を分
散しやすくさせた。
This column rotates (
17) I let them. This rotation was performed at a speed of 0.1 to 10 times per minute. Furthermore, although omitted in the drawing, at the same time 1
A slight vibration of 00 to LOKHz was applied to make each object easier to disperse.

作製工程として、まずこれら全体をターボ分子ポンプ(
8)、ロータリーポンプによりI X 10−6tor
r以下に真空排気する。次に非生成物気体(分解反応酸
固体を構成しない気体)例えばアルゴン、ヘリュームま
たは水素(6)を305CCMガス系(7)を通してプ
ラズマ発生領域(1)に導入し、この圧力をI Xl0
−’torrとする。外部より2.45GHzの周波数
のマイクロ波を500Wの強さで加える。磁場約2にガ
ウスを磁石(5) 、 (5’ )より印加し、ECR
条件を満たした高密度プラズマをプラズマ発生空間(1
)にて発生させる。
As part of the fabrication process, the entire structure was first assembled using a turbo molecular pump (
8), I x 10-6tor by rotary pump
Evacuate to below r. A non-product gas (a gas that does not constitute the decomposition reaction acid solid), such as argon, helium or hydrogen (6), is then introduced into the plasma generation region (1) through the 305 CCM gas system (7), and this pressure is increased to
−'torr. Microwaves with a frequency of 2.45 GHz and a strength of 500 W are applied from the outside. Apply a magnetic field of about 2 Gauss from magnets (5) and (5'), and perform ECR
The high-density plasma that meets the conditions is transferred to the plasma generation space (1
).

、二の高密度プラズマ領域より高エネルギを持つ非生成
物気体または電子がカラム(10’)内を透過(22)
シ、カラム内の物体(10)の表面上に到り、表面を清
浄にする。次にこの非生成物気体を導入しつつ、ガス系
(7)より気体特に例えば生成物気体(分解・反応後置
体を構成する気体)例えば炭化物気体(アセチレン (
C2)12)、エチレン(CJ4)またはメタン(CH
4)等)を2005CCHの流量で導入する。すると空
間の圧力をすでに発生しているプラズマ状態を保持しつ
つ0.1 XIF′〜3 X10”torr好ましくは
0.3〜30 torr例えば10torrの圧力に変
更させる。この空間の圧力を高くすることにより単位空
間あたりの生成物気体の濃度を大きくでき被膜成長速度
を太き(できる。また同時に気体の廻りごみを大きくす
ることができる。かくの如(一度低い圧力でプラズマを
発生させ、そのプラズマ状態を保持しつつ生成物気体の
活性濃度を太きくできる。そして高エネルギに励起され
た炭素原子が生成され、カラム(10’)内の多数の物
体(10)ヒにこの炭素が堆積し、ダイヤモンド又はi
−カーボン膜が形成される。
, non-product gas or electrons with higher energy than the second high-density plasma region pass through the column (10') (22)
Then, reach the surface of the object (10) in the column and clean the surface. Next, while introducing this non-product gas, a gas is added from the gas system (7), especially a product gas (a gas constituting the post-decomposition/reaction gas), such as a carbide gas (acetylene (
C2)12), ethylene (CJ4) or methane (CH
4) etc.) at a flow rate of 2005 CCH. Then, while maintaining the already generated plasma state, the pressure in the space is changed to a pressure of 0.1 XIF' to 3 X10'' torr, preferably 0.3 to 30 torr, for example 10 torr. As a result, the concentration of product gas per unit space can be increased and the film growth rate can be increased. At the same time, the amount of gas surrounding the gas can also be increased. The active concentration of the product gas can be increased while maintaining the state. Carbon atoms excited with high energy are generated, and this carbon is deposited on a large number of objects (10) in the column (10'). diamond or i
- A carbon film is formed.

第1図において、磁場は2つのリング状の磁石(5) 
、 (5’)ヲ用いたヘルムホルツコイル方式を採用し
た。さらに、4分割し、た空間(30)に対し電場・磁
場の強度を調べた結果を第2図に示す。
In Figure 1, the magnetic field is connected to two ring-shaped magnets (5).
A Helmholtz coil method using (5') was adopted. Furthermore, FIG. 2 shows the results of examining the electric and magnetic field intensities for the space (30) divided into four parts.

第2図(A)において、横軸(X軸)は空間(30)の
横方向(反応性気体の流出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
磁位面を示す。そしてその線上に示されている数字は磁
石(5)が約2000ガウスの時に得られる磁場の強さ
を示す。磁石(5)の強度を調整すると、電極・磁場の
相互作用を有する空間(875ガウス±185ガウス以
内)で、特に線(26)が875ガウスとなる混成共鳴
条件を生ずる等磁場面である。
In FIG. 2 (A), the horizontal axis (X-axis) is the horizontal direction of the space (30) (outflow direction of reactive gas), and the vertical axis (R-axis)
indicates the diameter direction of the magnet. The curves in the drawings indicate equipotential surfaces of the magnetic field. The number shown on the line indicates the strength of the magnetic field obtained when the magnet (5) is about 2000 Gauss. When the strength of the magnet (5) is adjusted, in a space (within 875 Gauss ± 185 Gauss) having an interaction between the electrodes and the magnetic field, the line (26) is an isomagnetic scene that produces a hybrid resonance condition of 875 Gauss.

この共鳴条件を生ずる空間(100)は第2図(B)に
示す如く、電場が最大となる領域となるようにしている
。第2図(B)の横軸は第2図(A)と同じく反応性気
体の流れる方向を示し、縦軸は電場(電界強度)の強さ
を示す。
The space (100) that produces this resonance condition is designed to be a region where the electric field is maximum, as shown in FIG. 2(B). The horizontal axis in FIG. 2(B) indicates the direction in which the reactive gas flows, as in FIG. 2(A), and the vertical axis indicates the strength of the electric field (electric field strength).

第3図は第2図における基板(10)の位置での円形空
間の磁場(1))および電場(B)の等磁場、等電場の
図面である。第3図(B)より明らかなごとく′電場は
最大25KV/mにまで達せしめ得ることがわかる。
FIG. 3 is a drawing of equal magnetic fields and equal electric fields of the magnetic field (1)) and electric field (B) in the circular space at the position of the substrate (10) in FIG. As is clear from FIG. 3(B), the electric field can reach a maximum of 25 KV/m.

また比較のために同条件下で磁場を印加せずに薄膜形成
を行った。その時基板上に形成された薄膜はグラファイ
ト膜であり、混成共鳴を発生させることがきわめて重要
であった。
For comparison, a thin film was formed under the same conditions without applying a magnetic field. The thin film formed on the substrate at that time was a graphite film, and it was extremely important to generate hybrid resonance.

本実施例にて形成された薄膜の電子線回折像をとったと
ころ、アモルファス特有のハローパターンとともにダイ
ヤモンド(単結晶粒)のスポットがみられ、i−カーボ
ン膜となっていた。さらにマイクロ波電力を上げて形成
してゆくに従い、ハローパターンが少しづつ消えてゆき
700讐またはそれ以上でダイヤモンド構造がより多く
混入した被膜となった。
When an electron beam diffraction image of the thin film formed in this example was taken, diamond (single crystal grain) spots were observed along with a halo pattern peculiar to amorphous, indicating that the film was an i-carbon film. As the microwave power was further increased and the formation progressed, the halo pattern gradually disappeared, and at 700 nm or more, the film became a film in which more diamond structures were mixed.

本発明方式において、基板上に炭化珪化物気体(メチル
シラン)を用い炭化珪素の多結晶膜を作ることができる
。ホウ素化物と窒素化物とを同時に流し、例えばジボラ
ンと窒素との反応により窒化ホウ素被膜を作ることもで
きる。窒化アルミニューム、酸化アルミニューム、ジル
コニア、リン化ホウ素も同様に作製可能である。タング
ステン、チタン、モリブデンまたはそれらの珪化物の高
融点導体の膜の物体上での形成もこれら金属のハロゲン
化物または水素化物それ自体の分解反応によりまたはこ
れらとシランとの反応により作ることもできる。
In the method of the present invention, a polycrystalline film of silicon carbide can be formed on a substrate using a silicon carbide gas (methylsilane). It is also possible to flow the boride and the nitride simultaneously to form a boron nitride film, for example, by reacting diborane with nitrogen. Aluminum nitride, aluminum oxide, zirconia, and boron phosphide can also be produced in the same way. The formation of films of high melting point conductors of tungsten, titanium, molybdenum or their silicides on objects can also be produced by decomposition reactions of halides or hydrides of these metals themselves or by reaction of these with silane.

〔効果〕〔effect〕

本発明における圧力は、ECR条件を満たず圧力で補助
プラズマ放電を発生せしめ、この放電を持続しつつ混成
共鳴が発生する反応性気体の平均自由工程が0.05〜
数mm特に1mm以下であってかつプラズマ状態を持続
できるlXl0−’〜3 Xl02torrに空間を変
化させ、「混成共鳴」条件が発生している空間で被膜形
成をさせることを基本としている。かくすることにより
形成された被膜の成長速度が大きくなり、反応性気体が
互いに衝突し、四方六方に発散するため、凹凸面を有す
る物体の側面に対しても被膜形成が可能となった。
In the present invention, the pressure does not satisfy the ECR conditions and generates an auxiliary plasma discharge, and the mean free path of the reactive gas that generates hybrid resonance while sustaining this discharge is 0.05~
The basic idea is to change the space to lXl0-' to 3 Xl02 torr, which is several mm, particularly 1 mm or less, and which can sustain a plasma state, and to form a film in a space where "hybrid resonance" conditions are occurring. As a result, the growth rate of the film formed increases, and the reactive gases collide with each other and diverge in all directions, making it possible to form a film even on the side surfaces of objects with uneven surfaces.

本発明が実験的に見出した方法を取ることにより、従来
作製されていた結晶性を少なくとも一部に有する被膜の
作製条件より幅広い条件下にて作製可能にあった。また
従来法に比べて、多数の部品の表面に均一な薄膜を形成
させることが可能となった。特にこの被膜形成用物体が
球、直方体等種々の形状の物体、例えば微小歯車、ネジ
、装飾用ジグ等の上に形成することが可能となった。
By employing the method experimentally discovered by the present invention, it has become possible to produce a film under a wider range of conditions than conventionally produced films having at least a portion of crystallinity. Furthermore, compared to conventional methods, it has become possible to form a uniform thin film on the surfaces of a large number of parts. In particular, it has become possible to form this film-forming object on objects of various shapes such as spheres and rectangular parallelepipeds, such as minute gears, screws, decorative jigs, and the like.

第1図においては加熱手段は図面の簡略化のため省略し
た。しかし形成すべき被膜の種類により外部より赤外線
ヒータにより最適温度に熱すればよいことはいうまでも
ない。また、図面において気体は側より左方向に流れる
ようにした。しかし左側より右側方向であっても、上よ
り下方向であっても、また下より上方向であってもよい
。これらは被膜形成がなされれば、物体の大きさ、形状
およびその星により決められるべきである。
In FIG. 1, the heating means are omitted for the sake of simplification of the drawing. However, it goes without saying that depending on the type of film to be formed, the film may be heated to an optimum temperature from outside using an infrared heater. Also, in the drawings, the gas was made to flow from the side to the left. However, it may be from the left side to the right side, from the top to the bottom, or from the bottom to the top. These should be determined by the size and shape of the object and its star if coating is to be done.

本発明において、筒状カラムは円筒形としても角状(六
角または六角)としてもよい。角状にすると、回転に伴
い物体を裏返すことができ、物体の全表面にコーティン
グがしやすい。
In the present invention, the cylindrical column may be cylindrical or square (hexagonal or hexagonal). A square shape allows the object to turn over as it rotates, making it easier to coat the entire surface of the object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は電場・磁場相互作用をさせた位置での磁場およ
び電場の特性を示す。 1・・・・プラズマ発生空間 4・・・・マイクロ波発振器 5.5゛・・・外部磁場発生器 10・・・・被膜形成用物体 10” ・・・筒状カラム 22・・・・ガス流
FIG. 1 schematically shows a microwave CVD apparatus using magnetic field/electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. Figure 3 shows the characteristics of the magnetic field and electric field at a position where the electric field and magnetic field interact. 1... Plasma generation space 4... Microwave oscillator 5.5''... External magnetic field generator 10... Film forming object 10''... Cylindrical column 22... Gas style

Claims (6)

【特許請求の範囲】[Claims] 1.磁場および電場の相互作用を利用して薄膜を形成す
る装置を用いた薄膜形成方法であって、減圧状態に保持
されたプラズマ発生室、該発生室を囲んで設けられた磁
場発生手段、前記プラズマ発生室にマイクロ波を供給す
る手段および前記マイクロ波の電界強度が最大となりか
つ電場・磁場相互作用を有する混成共鳴空間またはここ
より離間した反応性気体の活性状態を保持している空間
に、前記反応性気体が導入されるべく筒状カラムを配設
し、該カラム内に被膜形成用物体を配設せしめ、薄膜形
成を行うことを特徴とする薄膜形成方法。
1. A method for forming a thin film using an apparatus for forming a thin film using interaction between a magnetic field and an electric field, the method comprising: a plasma generation chamber maintained in a reduced pressure state; a magnetic field generation means provided surrounding the generation chamber; and the plasma. A means for supplying microwaves to the generation chamber, and a hybrid resonance space where the electric field strength of the microwave is maximum and has electric field/magnetic field interaction, or a space spaced apart from this where the active state of the reactive gas is maintained. A method for forming a thin film, comprising: disposing a cylindrical column to introduce a reactive gas; disposing a film-forming object within the column; and forming a thin film.
2.減圧状態に保持されたプラズマ発生室、該発生室を
囲んで設けられた磁場発生手段、前記プラズマ発生室に
マイクロ波電力を供給する手段とを有する薄膜形成装置
を用いた薄膜形成方法において、前記マイクロ波電界が
最大となり、かつ電場・磁場相互作用を有する空間また
はここより離間した反応性気体の活性状態を保持してい
る空間に、前記反応性気体が導入されるべく筒状カラム
を配設し、該カラム内に被膜形成用物体を配設せしめる
工程と、前記プラズマ発生室を電子サイクロトロン共鳴
が生ずる圧力にせしめるとともに、前記磁場およびマイ
クロ波を供給してプラズマを発生する工程と、気体の導
入により混成共鳴を用いてプラズマを持続せしめる工程
とを有せしめることにより、分解または反応せしめた反
応生成物を前記被形成面上に形成せしめることを特徴と
する薄膜形成方法。
2. In a thin film forming method using a thin film forming apparatus having a plasma generation chamber maintained in a reduced pressure state, a magnetic field generation means provided surrounding the generation chamber, and means for supplying microwave power to the plasma generation chamber, A cylindrical column is arranged so that the reactive gas is introduced into a space where the microwave electric field is maximum and where there is interaction between electric and magnetic fields, or a space where the reactive gas is maintained in an active state separated from this space. a step of arranging a film-forming object in the column; a step of raising the pressure in the plasma generation chamber to generate electron cyclotron resonance; and a step of generating plasma by supplying the magnetic field and microwaves; A method for forming a thin film, comprising the step of sustaining plasma using hybrid resonance through introduction of the plasma, thereby forming a decomposed or reacted reaction product on the surface to be formed.
3.特許請求の範囲第1項において、筒状カラムは外周
方向に回転せしめ、または回転せしめるとともに振動を
与えることにより被膜形成用物体の全表面に被膜を形成
せしめることを特徴とする薄膜形成方法。
3. A thin film forming method according to claim 1, characterized in that the cylindrical column is rotated in the outer circumferential direction or is rotated and vibrated to form a film on the entire surface of the film forming object.
4.特許請求の範囲第1項において、マイクロ波の周波
数は概略2.45GHzを有し、被膜形成面は概略87
5ガウスを有する空間であって、かつマイクロエネルギ
を供給する手段の反対側に設けられたことを特徴とする
薄膜形成方法。
4. In claim 1, the frequency of the microwave is approximately 2.45 GHz, and the coating surface is approximately 87 GHz.
A method for forming a thin film, characterized in that the space has a pressure of 5 Gauss and is provided on the opposite side of a means for supplying micro-energy.
5.特許請求の範囲第1項において、混成共鳴を生ぜし
めるための圧力は0.1〜300torrであることを
特徴とする薄膜形成方法。
5. The method of forming a thin film according to claim 1, wherein the pressure for producing hybrid resonance is 0.1 to 300 torr.
6.特許請求の範囲第2項において、混成共鳴を生ぜし
めるための圧力は0.1〜300torrであることを
特徴とする薄膜形成方法。
6. The thin film forming method according to claim 2, wherein the pressure for producing hybrid resonance is 0.1 to 300 torr.
JP62000298A 1986-11-10 1987-01-05 Thin film formation method Expired - Lifetime JPH0676665B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62000298A JPH0676665B2 (en) 1987-01-05 1987-01-05 Thin film formation method
EP87116091A EP0267513B1 (en) 1986-11-10 1987-11-02 Microwave enhanced CVD method and apparatus
DE3752208T DE3752208T2 (en) 1986-11-10 1987-11-02 CVD process and device enhanced by microwaves
KR1019870012471A KR930005010B1 (en) 1986-11-10 1987-11-06 Microwave enhanced cvd method and apparatus
CN87107779A CN1017726B (en) 1986-11-10 1987-11-09 Microwave plasma cvd method enhanced magnetic field
US07/966,562 US5266363A (en) 1986-11-10 1992-10-26 Plasma processing method utilizing a microwave and a magnetic field at high pressure
US11/102,651 US20050196549A1 (en) 1986-11-10 2005-04-11 Microwave enhanced CVD method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000298A JPH0676665B2 (en) 1987-01-05 1987-01-05 Thin film formation method

Publications (2)

Publication Number Publication Date
JPS63169386A true JPS63169386A (en) 1988-07-13
JPH0676665B2 JPH0676665B2 (en) 1994-09-28

Family

ID=11469992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000298A Expired - Lifetime JPH0676665B2 (en) 1986-11-10 1987-01-05 Thin film formation method

Country Status (1)

Country Link
JP (1) JPH0676665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169387A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121667A (en) * 1986-11-10 1988-05-25 Semiconductor Energy Lab Co Ltd Device and method for forming thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121667A (en) * 1986-11-10 1988-05-25 Semiconductor Energy Lab Co Ltd Device and method for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169387A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film

Also Published As

Publication number Publication date
JPH0676665B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
US5902563A (en) RF/VHF plasma diamond growth method and apparatus and materials produced therein
JPS63195266A (en) Timepiece coated with carbon film
JPH0676666B2 (en) Carbon film production method
US20050196549A1 (en) Microwave enhanced CVD method and apparatus
JPS63121667A (en) Device and method for forming thin film
JPS63169386A (en) Formation of thin film
US20050147765A1 (en) Method for producing particles with diamond structure
US6677001B1 (en) Microwave enhanced CVD method and apparatus
JPH0420985B2 (en)
JP2691399B2 (en) Plasma processing method
JPH0471034B2 (en)
JPS63169387A (en) Formation of thin film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JP3028121B2 (en) How to make diamond thin film
RU2792526C1 (en) Diamond coating device
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JP3291274B2 (en) Carbon coating method
JPH01246357A (en) Production of cubic boron nitride film
JP2995339B2 (en) How to make a thin film
JP2739286B2 (en) Plasma processing method
JP3291273B2 (en) Carbon coating method
JPS6265997A (en) Method and apparatus for synthesizing diamond