JPH09265991A - 金属多孔体とその製造法および電池 - Google Patents

金属多孔体とその製造法および電池

Info

Publication number
JPH09265991A
JPH09265991A JP8073528A JP7352896A JPH09265991A JP H09265991 A JPH09265991 A JP H09265991A JP 8073528 A JP8073528 A JP 8073528A JP 7352896 A JP7352896 A JP 7352896A JP H09265991 A JPH09265991 A JP H09265991A
Authority
JP
Japan
Prior art keywords
metal
porous body
flat plate
substance
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073528A
Other languages
English (en)
Inventor
Yoriko Takai
より子 高井
Junjiro Awano
順二郎 粟野
Masaki Hirosachi
正樹 廣幸
Tsumoru Ohata
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8073528A priority Critical patent/JPH09265991A/ja
Publication of JPH09265991A publication Critical patent/JPH09265991A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(57)【要約】 【課題】 金属多孔体とその製造法及びそれを用いた電
池に対して製造コストが安く、電極用芯材として電池に
使用した場合、活物質の利用率を向上させ、放電性能の
優れた特性を持つ金属多孔体を提供する。 【解決手段】 導電性を有する金属平板1上に、磁性を
有する金属物質2を磁界を用いてその外形状最も長い軸
を金属平板に対して垂直に配した金属多孔体を構成す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、金属多孔体とその
製造法及びそれを電極用芯材として用いた電池に関する
ものである。
【0002】
【従来の技術】金属多孔体は機械部品や、さまざまな産
業分野で用いられており、様々な方法で製造されてき
た。古くは金属粉末を原料粉末充填焼結法、粉末圧縮焼
結法などにより成形、焼結する方法があり、三次元網目
形状のスポンジ状発泡体(材質としてはウレタンを使
用)の骨格表面に無電解メッキ、電解メッキ、気相メッ
キ等のメッキ法により金属を付着させる方法や、金属粉
末を分散したスラリーに発泡体を浸漬する方法が一般的
となっている。また、特開昭56−88266号公報に
記載されているように金属繊維が不規則に絡み合いフェ
ルト状不織布体を形成する方法や、最近では特開平4−
165006号公報に記載されているようにステンレス
鋼の細線集合体を焼結・圧延する方法等の検討もされて
いる。
【0003】特に化学反応が生ずる電池の電極材、主に
ニッケル−カドミウム電池やニッケル−水素電池等の二
次電池の芯材として用いられている金属多孔体は、スポ
ンジ状発泡体に電気メッキを施したものが主流である。
これは特公昭57−39317号公報に記載されている
ように、無電解メッキまたはカーボン被覆により導電性
を付与した非導電性多孔体への電気メッキにより製造さ
れるものである。このスポンジ状発泡体を用いた金属発
泡多孔体は古くからの金属多孔体と比較すると、骨格が
海綿状3次元網目構造をしているため、多孔率が最大9
8%にも達し、高比表面積で通気抵抗が少なく圧力損失
が微少であり、形状が自由であるというように優れた特
性を有したものから構成されている。
【0004】
【発明が解決しようとする課題】しかしながら上記の従
来構成では、金属多孔体を製造するに際してメッキ法で
はメッキ条件の制御が困難であり、メッキ厚が不均一に
なったりメッキ速度が遅いため生産性が上がらないこと
や、メッキ設備のためにコスト高になるという問題点を
有していた。またスラリー浸漬法では、基材への金属付
着量の均一性の制御が容易ではなく、強度の低下を招き
剥離するという問題点も有していた。これらは、本来な
らば空孔部に活物質を充填保持させることにより電池の
高性能化が期待できるが、メッキ厚が不均一のために電
流密度のバラツキという課題が生じることになる。
【0005】最近では二次電池用電極の芯材としてはほ
とんどが前記海綿状3次元網目構造をしている金属発泡
多孔体を用いており、この金属発泡多孔体を用いない大
容量の電極板はほとんど見られない状態である。この発
泡多孔体は、優れた空孔特性のために、より多くの活物
質を充填することができ、電池容量が増加し内部抵抗が
小さいため集電効率が高いという利点がある。しかし、
充填した活物質の利用度がおよそ90%程度であり、こ
の点でさらに改善の余地があった。
【0006】そのために、特公昭56−37664号公
報に記載されている充填方法の改良、特公昭56−40
465号公報に記載されている金属発泡多孔体に活物質
を充填した後表面を研磨する方法、特公昭57−501
5号公報に記載されている充填活物質に導電剤を添加す
る方法や特公昭57−12264号公報に記載されてい
る空孔率の異なった金属発泡多孔体を張り合わせる方法
等の手段が用いられてきた。しかし、これらすべて、芯
材そのものの改善策ではないため、活物質の利用率の改
善、コスト高の課題は解決されていない。今後の二次電
池の普及、発展を促進させるためには、これらの芯材に
関わる課題を改善する必要がある。
【0007】上記問題点を解決するために本発明の金属
多孔体は、低コストで簡単に製造でき、活物質の利用度
を、より高くする事が可能である金属多孔体及び高性能
な電池を提供することを目的とする。
【0008】
【課題を解決するための手段】この目的を達成するため
に本発明は、金属平板上に金属物質をその外形状最も長
い軸を金属平板に対しておよそ垂直方向に立たせた金属
多孔体を用いて作製する。その金属物質と金属平板のい
づれかもしくは両方が磁性を有している。また、この金
属物質は金属以外の物質を0〜80wt%含有してい
る。さらに金属物質の形状は針状、楔状、円柱状、円筒
状、短冊状、輪状、V字状、U字状であり、好ましくは
針状であることを特徴とする。さらに金属平板としては
多数の穴の開いたパンチ板を用いることもできる。
【0009】本発明の金属多孔体の製造法としては、金
属平板上に磁界を用いて、これらの金属物質をおよそ垂
直に立たせる。また、金属物質にバインダーとしての高
分子樹脂あるいは高分子樹脂と金属微粉の混合物を加え
てスラリー化したものを使用する事で、垂直に立たせた
後固定し、これを焼結結合させることで固着させる。
【0010】これにより、金属多孔体は、低コストで簡
単に製造でき、さらに電池の電極用芯材として使用した
場合活物質の利用度を、より高くする事が可能となるも
のである。
【0011】
【発明の実施の形態】以下本発明の実施の形態について
図1を用いて説明する。図1は本発明の金属多孔体の断
面図を示し、1は金属平板、2は金属平板1の上に垂直
に配された金属物質である。金属平板の厚さは数μmか
ら数mmであり、使用の用途によって厚み、材質が選ば
れる。2の金属物質は導電性を有する金属がもちいら
れ、特に本発明の場合、磁性を有するNi、Feまたは
Coの単体または合金または鍍金物を主体とする材料を
用いる。その形状は針状、楔状、円柱状、円筒状、短冊
状、輪状、V字状、U字状等の使用が可能である。最も
作成しやすく、好ましい形状としては針状、円柱状であ
る。
【0012】この金属物質はカーボンや樹脂、繊維等の
非磁性物質を80%までは含有していてもよいが、それ
以上では製造時に印加する磁界に対して反応しづらくな
り、金属平板1に垂直方向に立ちにくくなる。金属物質
は例えばカーボン繊維に金属をメッキし、それを所定の
長さに切断したり、溶融した金属を引き延ばしたりノズ
ルから押し出す事で得ることができる。
【0013】本発明の製造方法としては、溶媒に金属物
質2と樹脂を主体とするバインダーとを混合撹拌してス
ラリーを作製し、そのスラリーを金属平板1に塗布し、
金属平板1に垂直方向に磁界を印加し、金属物質を金属
平板上1に剣山状にたたせ、固定した後、焼結する。バ
インダーは水素、有機溶剤系のどちらでもよく、ポリエ
チレン、ポリスチレン、ポリウレタン等に代表される一
般の高分子有機物を使用する事ができるが、焼結した
後、不純物が残らない様に金属塩、環状結合等を含まな
いものがよい。バインダーには焼結後に金属物質と金属
平板の接着性や導電性を向上させるために、金属微粉や
その他の添加物を加える事もできる。
【0014】金属物質とバインダーは出来上がりの多孔
体の空孔率に合わせ、金属物質の割合が数%から95%
までの比率で混合する。95%以上ではバインダーが金
属物質とうまく混合されず、金属平板に塗布しにくくな
る。
【0015】配向磁界は直流、交流のどちらの磁界も使
える。しかし、交流磁界の場合、あまり周波数が高すぎ
ると、金属物質の動きが磁界の変化に追従できずに、う
まく配向できなくなる。数Hzから数百Hz以下、好ま
しくは数Hzから60Hz以下がよい。印加磁界の強度
は少なくとも100ガウス以上がよいが、バインダーの
含有量が少なければより少ない磁界強度でも配向は可能
である。
【0016】具体的な磁界印加方法を図2に示す。3は
金属平板上1に金属物質2をバインダーと混ぜた物に磁
界を印加する磁石である。磁石3は永久磁石でもコイル
等を利用した電磁石でもよい。磁石3は上下から挟み込
んだり、上または下のみに配してもよい。また、永久磁
石と電磁石を組み合わせて用いてもかまわない。磁界を
印加する時、4に示す厚み制御板を用いる事で出来上が
りの金属多孔体の厚みを均一にする事が可能である。配
向後は乾燥風をあてたり温度をかけたりしてバインダー
を乾燥させ、固定する。
【0017】焼結は使用する金属の材質によって変わる
が、およそ400℃から1500℃までの温度を用い
る。焼結中は酸素を遮断するのがよく、窒素雰囲気にし
たり、同時に水素を流して還元雰囲気をつくり、酸化を
防ぐ。
【0018】このようにして作成した金属多孔体に活物
質を充填し、電池用電極にする。本発明の金属多孔体は
剣山状になっているので活物質は充填しやすい。電極と
しては正極としても負極としても用いる事ができる。二
次電池の場合は正極にニッケルを用いるものが多く、そ
の場合活物質は水酸化ニッケルが主体となる。
【0019】
【実施例】次に実施例により本発明をさらに詳細に図3
を用いて説明する。
【0020】図3において(a)塗料混合(b)塗装
(c)整列(d)乾燥・硬化(e)酸化・焼結(f)還
元の各工程を示し、その工程を経て本発明の金属多孔体
を作製した。各工程を順次説明する。
【0021】まず塗料混合工程(a)において、混合槽
5中に溶媒としての水6を入れ、その中にバインダーと
しての例えばポリビニルアセタール(PVA)樹脂7
(積水化学工業株式会社製エスレック)に金属の微粉と
しての例えば平均粒径約3μmのニッケル粉8(INC
O社製)を重量比で10:100の割合で混ぜ水中に分
散させ、PVA7とニッケル粉8が20wt%の混合物
塗料を作製した。
【0022】この混合物塗料に、金属物質として例えば
直径20〜50μm、長さ1.0〜2.0mmの針状を
したニッケルを主体とするニッケル繊維を混合物塗料に
対して80wt%の割合で混合撹拌してスラリー10と
した。ここでニッケル繊維の形状は上記の範囲のうち直
径30μm、長さ1.5mmが最も良い状態となった。
【0023】次に塗装工程(b)においてエクストルー
ダー9内に前記ニッケル繊維2を混合したスラリー10
を充填し、その中に金属平板としての例えば厚さ60μ
mのニッケル鍍金有孔鋼板1を挿入通過させ、ニッケル
鍍金有孔鋼板1の両面にスラリー10を処定厚みになる
よう押出塗布する。
【0024】次に整列工程(c)において、スラリー1
0を押出塗布された塗工面に対して垂直方向に表面磁界
400ガウスの板状のフェライト磁石11を設置し磁界
をかけ、スラリー10中のニッケル繊維2をニッケル鍍
金有孔鋼板1に対して垂直に配向させた。
【0025】この時、磁界の強度、スラリーの粘度、泡
立ち、配向処方状態により、ニッケル繊維2の配向状
態、密度は大きく影響される。
【0026】例えば磁界の強度が弱い場合は垂直に配向
しないと共にニッケル鍍金有孔鋼板1にも充分な密着が
得られなく、逆に磁界の強度が強過ぎる場合は密着が強
過ぎ、垂直に配向しない等の不具合となる。同様に粘
度、スラリー中の泡立ち状態も配向状態と密接な関係に
あり、磁界の強度と相関して最適条件を設定することが
必要である。また配合処方すなわちニッケル繊維2の濃
度により金属多孔体の気孔率が調整できる。
【0027】さらにニッケル鍍金有孔鋼板1を中心とし
て片側約2.0mmのギャップ間隔でガラス板等よりな
る厚み制御板4により押さえ、配向後のニッケル繊維
2、スラリー10等のせり上り、厚みを規制した。
【0028】磁界配向に用いる磁界は交流磁界を使用す
ることも可能であり、本実施例の場合、上記の直流磁界
の代わりに5Hz、200ガウスの交流磁界でも同様の
効果を得る事ができた。
【0029】次に乾燥・硬化工程(d)において、ヒー
ター12にて加熱し溶媒である水を蒸発乾燥し、バイン
ダーであるPVA樹脂7で垂直状態に配向されたニッケ
ル繊維2とニッケル鍍金有孔鋼板1とニッケル粉8とを
接着硬化せしめる。
【0030】次に酸化・焼結工程(e)において、焼成
炉内にて空気雰囲気下で400〜600℃加熱酸化し、
バインダーであるPVA樹脂7を分解すると共に一部ニ
ッケルの焼結が始まる。
【0031】最後に還元工程(f)において、還元炉内
にて還元性ガス、例えば水素、窒素ガス中で800〜1
200℃加熱還元焼結し、ニッケル鍍金有孔鋼板1とニ
ッケル繊維2、ニッケル粉8が金属状態で融着し強固に
接着して気孔率90%の剣山状の安定な金属多孔体が作
製される。
【0032】ここで金属微粉である例えばニッケル粉8
を使用することにより、ニッケル鍍金有孔鋼板1とニッ
ケル繊維2との接着がさらに良好強固となり、ニッケル
繊維2のニッケル鍍金有孔鋼板1からの剥離が防止され
ると共に、導電性も良好となる。
【0033】この金属多孔体に、水酸化ニッケル90w
t%、Co粉末7wt%、水酸化カドミウム3wt%の
ペースト状活物質を充填し、乾燥した。その後加圧成形
を行って厚さ約1mmとなるように圧縮し、電極リード
線を取り付け、37mm×80mmの正極板電極を得
た。負極には水素吸蔵合金としてMm−Ni−Mn−A
l−Co系(Mmは希土類元素の混合物)の合金をスチ
レンブタジエンゴムを主体としたバインダーと共に混練
したものを穿孔鋼板(パンチングメタル)に塗り付けた
物を使用した。これらの正極と負極をナイロン製のセパ
レーターを介して捲回し、ケースに収納し、電解液を注
入した後密封して、単3形ニッケル−水素電池を作成し
た。この電池の形成プロセスで針状のニッケル繊維が欠
落したり、金属板であるニッケル鍍金有孔鋼板から剥離
したりするような事はなかった。
【0034】(比較例)この電池との比較として、通常
の金属発泡多孔体を用いた正極を作製し、実施例と同様
の負極とセパレーターを用いて単3形ニッケル−水素電
池を作製した。
【0035】
【表1】
【0036】実施例及び比較例ともそれぞれ20個作製
した。また、正極の活物質の充填前後の重量測定から実
施例及び比較例ともほぼ同様の活物質が充填されてお
り、公称1800mAhの容量である。
【0037】これらの電池に180mAで15hr充電
を行った後、20℃の環境中で360mAの放電を行
い、1Vまで電圧が低下する迄の時間より容量を測定し
たところ、(表1)から明らかなように実施例および比
較例とも20個の平均で1800mAhであった。しか
し、1800mAで放電させると本発明の実施例が平均
で1740mAh(約97%)、比較例の場合が平均で
1620mAh(約90%)であった。また、さらに5
400mAで放電させた時、本発明の実施例は平均16
50mAh(約92%)で、比較例は平均1440mA
h(約80%)であった。括弧内は公称値に対する割合
であり、本発明の実施例の方が放電容量比が高くなって
いるのがわかる。これは発泡金属多孔体に比べて金属繊
維を用いた場合の方が活物質の利用率が高くなったため
である。
【0038】なお、製造法でスラリーを構成する溶媒と
して本実施例では水溶液を使用したが、アルコール、ケ
トン類等の有機溶媒でもバインダーを適宜選択すること
により水溶液と同様に製造可能である。
【0039】また、電池として本実施例ではニッケル・
水素電池を使用して検討したが、金属多孔体を使用する
リチウム一次電池、リチウム二次電池、ニッケル−カド
ミウム電池においても同様の効果が得られる。
【0040】
【発明の効果】以上のように本発明の金属多孔体はメッ
キ工程を経る事無く作製でき、従来より安い金属多孔体
を提供する事ができる。また、針状金属体が多孔体の厚
み方向に立っている状態なので活物質を充填しやすく、
活物質の利用率が高くなる。従って本発明の金属多孔体
を電極用芯材に用いる事で、高放電特性に優れた電池を
得る事ができるという顕著な効果が得られる。
【図面の簡単な説明】
【図1】本発明の金属多孔体の断面図
【図2】本発明の金属多孔体の製造工程中の磁界印加方
法を示す図
【図3】金属多孔体の製造工程図
【符号の説明】
1 ニッケル鍍金有孔鋼板(金属平板) 2 ニッケル繊維(金属物質) 3 磁石 4 厚み制御板 5 混合槽 6 水(溶媒) 7 PVA樹脂(バインダー) 8 ニッケル粉(金属微粉) 9 エクストルーダー 10 スラリー 11 磁石 12 ヒーター
フロントページの続き (72)発明者 大畠 積 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】金属平板上に金属物質をその外形状最も長
    い軸を金属平板に対しておよそ垂直方向に立たせた金属
    多孔体。
  2. 【請求項2】金属平板と金属物質のいづれか、もしくは
    両方が磁性を有する請求項1記載の金属多孔体。
  3. 【請求項3】金属物質は金属以外の物質を0〜80wt
    %含有する請求項1または請求項2記載の金属多孔体。
  4. 【請求項4】金属物質は針状、楔状、円柱状、円筒状、
    短冊状、輪状、V字状、U字状である請求項1、2また
    は3記載の金属多孔体。
  5. 【請求項5】金属平板が多数の穴を有する板である請求
    項1、2または3記載の金属多孔体。
  6. 【請求項6】金属平板上に板面に対して垂直方向に磁界
    を印加し、金属物質を前記金属板上におよそ垂直になる
    ように配向させ固定する金属多孔体の製造法。
  7. 【請求項7】金属平板に金属物質を焼結して金属多孔体
    を作製する製造法において、溶媒に金属物質、バインダ
    ーを混合撹拌してスラリーを作製する工程、金属平板に
    上記スラリーを塗装する工程、塗装されたスラリーに金
    属平板に対して垂直方向に磁界を印加して金属物質をそ
    の外形状最も長い軸を金属平板上におよそ垂直になるよ
    うに配向整列する工程、その後、焼成結合してなる金属
    多孔体の製造法。
  8. 【請求項8】溶媒が水溶液である請求項7記載の金属多
    孔体の製造法。
  9. 【請求項9】金属物質がニッケル繊維である請求項7記
    載の金属多孔体の製造法。
  10. 【請求項10】金属平板がニッケルあるいは鉄にニッケ
    ル鍍金された板である請求項7記載の金属多孔体の製造
    法。
  11. 【請求項11】金属平板が多数の穴を有する板である請
    求項7、10記載の金属多孔体の製造法。
  12. 【請求項12】スラリー中に金属微粉を混合してなる請
    求項7記載の金属多孔体の製造法。
  13. 【請求項13】金属微粉がニッケル粉である請求項12
    記載の金属多孔体の製造法。
  14. 【請求項14】請求項1〜13記載よりなる金属多孔体
    を電極用芯材として用いてなる電池。
JP8073528A 1996-03-28 1996-03-28 金属多孔体とその製造法および電池 Pending JPH09265991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073528A JPH09265991A (ja) 1996-03-28 1996-03-28 金属多孔体とその製造法および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073528A JPH09265991A (ja) 1996-03-28 1996-03-28 金属多孔体とその製造法および電池

Publications (1)

Publication Number Publication Date
JPH09265991A true JPH09265991A (ja) 1997-10-07

Family

ID=13520836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073528A Pending JPH09265991A (ja) 1996-03-28 1996-03-28 金属多孔体とその製造法および電池

Country Status (1)

Country Link
JP (1) JPH09265991A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004374A1 (fr) * 1996-07-29 1998-02-05 Matsushita Electric Industrial Co., Ltd. Corps metallique poreux et son procede de production
WO1999056332A1 (fr) * 1998-04-24 1999-11-04 Hitachi, Ltd. Pile secondaire au lithium
US6994902B2 (en) 2002-12-17 2006-02-07 Hitachi Maxell, Ltd. Metallic porous body
US7332245B2 (en) 2002-06-21 2008-02-19 Hitachi Maxell Ltd. Electrode for electrochemical devices and battery using the same
JP2009295331A (ja) * 2008-06-03 2009-12-17 Sony Corp 負極集電体およびその形成方法、ならびに負極および二次電池
KR101041932B1 (ko) * 2008-10-15 2011-06-16 한국과학기술연구원 이차전지용 전극 및 그 제조 방법과, 이를 이용한 이차전지

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004374A1 (fr) * 1996-07-29 1998-02-05 Matsushita Electric Industrial Co., Ltd. Corps metallique poreux et son procede de production
US6197251B1 (en) 1996-07-29 2001-03-06 Matsushita Electric Industrial Co., Ltd. Porous metal material, and method for manufacturing same
WO1999056332A1 (fr) * 1998-04-24 1999-11-04 Hitachi, Ltd. Pile secondaire au lithium
KR100360359B1 (ko) * 1998-04-24 2002-11-13 가부시끼가이샤 히다치 세이사꾸쇼 리튬 2차전지
US7332245B2 (en) 2002-06-21 2008-02-19 Hitachi Maxell Ltd. Electrode for electrochemical devices and battery using the same
US6994902B2 (en) 2002-12-17 2006-02-07 Hitachi Maxell, Ltd. Metallic porous body
JP2009295331A (ja) * 2008-06-03 2009-12-17 Sony Corp 負極集電体およびその形成方法、ならびに負極および二次電池
KR101041932B1 (ko) * 2008-10-15 2011-06-16 한국과학기술연구원 이차전지용 전극 및 그 제조 방법과, 이를 이용한 이차전지

Similar Documents

Publication Publication Date Title
US3926671A (en) Method of manufacturing positive nickel hydroxide electrodes
US5374491A (en) High density, high capacity battery electrode
US6103319A (en) Battery electrode substrate and process for producing the same
US5064735A (en) Cadium electrode and process for its production
JPH05325977A (ja) アルカリ二次電池用のペースト式電極
JP4292436B2 (ja) 金属多孔質体とその製造方法およびそれを用いた電池用集電体
JPS6110855A (ja) 電池用電極及びその製造方法
JPH09265991A (ja) 金属多孔体とその製造法および電池
EP0750360B1 (en) Electrode substrate for battery and process for preparing the same
EP0723307B1 (en) Paste type electrode for alkaline storage battery and process for producing the same
JP3468493B2 (ja) 電池用電極基板及びその製造方法
JP3553816B2 (ja) ニッケル電極およびその製造方法
JPH04359864A (ja) 非焼結式ニッケル正極及びその製造方法
Johnson et al. High surface area, low-weight composite nickel fiber electrodes
JP3276730B2 (ja) アルカリ蓄電池の製造方法
JP3015455B2 (ja) 電池用電極板
JPH0917433A (ja) 電池用電極基板及びその製造方法
JPH10302802A (ja) 蓄電池用電極およびその製造方法
JPH0132633B2 (ja)
JPH06168719A (ja) ニッケル・水素電池用負極板、その製造法並びにニッケル・水素電池
JPH1167194A (ja) 水素吸蔵合金電極およびその製造方法
JP2019175616A (ja) ニッケル水素二次電池用の負極及びニッケル水素二次電池
JPH0982334A (ja) 電池用電極基板
JP2003073703A (ja) 電極用水素吸蔵合金、電極用水素吸蔵合金の製造方法、水素吸蔵合金電極及びアルカリ蓄電池
JPH11102698A (ja) アルカリ蓄電池とその電極の製造法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207