JPH09249582A - Decomposition of halogen-containing organic compound - Google Patents

Decomposition of halogen-containing organic compound

Info

Publication number
JPH09249582A
JPH09249582A JP5648296A JP5648296A JPH09249582A JP H09249582 A JPH09249582 A JP H09249582A JP 5648296 A JP5648296 A JP 5648296A JP 5648296 A JP5648296 A JP 5648296A JP H09249582 A JPH09249582 A JP H09249582A
Authority
JP
Japan
Prior art keywords
halogen
containing organic
organic compound
reaction vessel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5648296A
Other languages
Japanese (ja)
Inventor
Takehiko Muramatsu
武彦 村松
Yumiko Kita
由美子 喜多
Terunobu Hayata
輝信 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5648296A priority Critical patent/JPH09249582A/en
Publication of JPH09249582A publication Critical patent/JPH09249582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing a halogen-containing organic compound by which the halogen-containing organic compound can efficiently and safely be decomposed and detoxified. SOLUTION: A halogen-containing organic compound is heated in the coexistence of a metal belonging to the platinum group or the iron family or a compound of the metal, an aliphatic hydrocarbon solvent and an alkaline substance and thereby dehalogenated. The halogen-containing organic compound is heated at 150-400 deg.C temperature in a pressurized atmosphere under 1-11atm pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、含ハロゲン有機化
合物を無害な物質に分解する方法に関し、特に、含ハロ
ゲン有機化合物の脱ハロゲン・水素化によって含ハロゲ
ン有機化合物を分解する分解方法に関する。
The present invention relates to a method for decomposing a halogen-containing organic compound into harmless substances, and more particularly to a decomposition method for decomposing a halogen-containing organic compound by dehalogenating and hydrogenating the organic compound.

【0002】[0002]

【従来の技術】トリクレン、ポリクロロビフェニル(P
CB)、フロン等の含ハロゲン有機化合物は、従来から
様々な目的で大量に使用されてきた。例えば、PCBは
優れた絶縁性及び難燃性を有するため、電気絶縁油、熱
媒体、難燃化剤として、フロンはその化学的安定性や低
沸点により冷媒や洗浄用液材等として、電子部品工業、
化学工業等の各種分野で広く使われている。
2. Description of the Related Art Trichlorene, polychlorobiphenyl (P
Halogen-containing organic compounds such as CB) and chlorofluorocarbon have been used in large amounts for various purposes. For example, since PCB has excellent insulating properties and flame retardancy, it can be used as an electric insulating oil, a heat carrier, and a flame retardant, and CFCs can be used as a refrigerant or a cleaning liquid material due to its chemical stability and low boiling point. Parts industry,
Widely used in various fields such as chemical industry.

【0003】しかし、トリクレン、PCB等の塩素化合
物については人体に対する毒性が明らかになり、生体蓄
積性も高い。フロン等のフッ素化合物はオゾン層の破壊
に見られるように地球環境破壊の面で問題点が近年明ら
かにされている。このような状況から、含ハロゲン有機
化合物を分解して無害化する方法が求められ、様々な方
法が検討されている。
However, chlorine compounds such as trichlene and PCB have been shown to be toxic to the human body and have high bioaccumulation potential. Fluorine compounds such as CFCs have recently been found to have problems in terms of global environmental destruction as seen in ozone layer depletion. Under such circumstances, a method for decomposing the halogen-containing organic compound to render it harmless is required, and various methods have been studied.

【0004】含ハロゲン有機化合物の処理は、焼却によ
る分解と、化学的な処理による分解の2種類に大別さ
れ、焼却による分解では、800℃以上の高温で含ハロ
ゲン有機化合物を燃焼して分解し、化学的な処理による
分解では、化学反応を利用してハロゲン原子を含ハロゲ
ン有機化合物から脱離させて分解する。
The treatment of halogen-containing organic compounds is roughly divided into two types: decomposition by incineration and decomposition by chemical treatment. In decomposition by incineration, the halogen-containing organic compounds are burned at a high temperature of 800 ° C. or higher and decomposed. In the decomposition by chemical treatment, however, a halogen atom is desorbed from the halogen-containing organic compound by utilizing a chemical reaction and decomposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、焼却による分
解では、熱による作用で含ハロゲン有機化合物がより有
毒な物質に転化する危険性を有し、これを防ぐには、焼
却処理温度を適温に調節する必要がある。又、焼却によ
りハロゲン化水素ガスが発生するので、焼却排ガスの処
理を行う必要がある。
However, in the decomposition by incineration, there is a risk that the halogen-containing organic compound is converted into a more toxic substance by the action of heat, and in order to prevent this, the incineration treatment temperature should be set to an appropriate temperature. Need to be adjusted. Further, since hydrogen halide gas is generated by incineration, it is necessary to treat incineration exhaust gas.

【0006】一方、化学的な処理による分解には、ナト
リウム等のアルカリ金属やナトリウムメチラート等のア
ルカリ金属化合物の様な試薬を用いる方法、還元性条件
下で脱ハロゲンを進行させる方法などがあり、還元性条
件下での脱ハロゲンは、水素ガス、アルコール、工業油
などの水素供与物質を使用する。アルコール、工業油の
ような液体の水素供与物質を用いる場合には、この液体
に含ハロゲン有機化合物を混合し、液相中で加熱して脱
ハロゲン・水素化反応を起こす液相分解となる。
On the other hand, for the decomposition by chemical treatment, there are a method of using a reagent such as an alkali metal such as sodium and an alkali metal compound such as sodium methylate, and a method of advancing dehalogenation under reducing conditions. For dehalogenation under reducing conditions, hydrogen-donating substances such as hydrogen gas, alcohol, and industrial oil are used. When a liquid hydrogen-donating substance such as alcohol or industrial oil is used, the liquid is mixed with a halogen-containing organic compound and heated in the liquid phase to cause dehalogenation / hydrogenation reaction, which results in liquid-phase decomposition.

【0007】上述のアルカリ金属等の試薬を用いる方法
は、その試薬の取扱が難しいため、安全性などの面で問
題がある。又、還元性条件下での脱ハロゲンにおいて、
水素供与物質として水素などのガス物質を使用すると、
非常に高い圧力下で反応を行うことになるため、安全な
処理操作のために特別な装置が必要とされる。他方、液
体の水素供与物質を用いて液相中で脱ハロゲンする液相
分解の場合には、反応条件が比較的穏やかなため安全な
処理が可能であり、排出ガスが少ないなどの長所を有す
るが、水素供与物質の反応性が低いために、処理に長時
間を要するという欠点がある。
The above-mentioned method using a reagent such as an alkali metal has a problem in safety since it is difficult to handle the reagent. Also, in dehalogenation under reducing conditions,
When using a gas substance such as hydrogen as a hydrogen donor,
Since the reaction is carried out under extremely high pressure, special equipment is required for safe processing operation. On the other hand, in the case of liquid phase decomposition in which a liquid hydrogen donor is used to dehalogenate in the liquid phase, the reaction conditions are relatively mild, so safe processing is possible and there are advantages such as less exhaust gas. However, there is a drawback that the treatment takes a long time because the reactivity of the hydrogen donor is low.

【0008】[0008]

【課題を解決するための手段】本発明は、上述のような
有害分解物の生成や排ガス処理の必要性等の問題を生じ
ることなく、安全に効率よく含ハロゲン有機化合物を分
解無害化できる含ハロゲン有機化合物の分解方法を提供
することを目的とする。
The present invention includes a method for safely and efficiently decomposing and detoxifying a halogen-containing organic compound without causing problems such as the production of harmful decomposition products and the necessity of treating exhaust gas as described above. An object is to provide a method for decomposing a halogen organic compound.

【0009】本発明の含ハロゲン有機化合物の分解方法
は、白金族又は鉄族に属する金属あるいは該金属の化合
物と、脂肪族炭化水素溶媒と、アルカリ物質との共存下
で、含ハロゲン有機化合物を加熱することにより含ハロ
ゲン有機化合物を脱ハロゲン化するものである。
The method for decomposing a halogen-containing organic compound according to the present invention is a method of decomposing a halogen-containing organic compound in the coexistence of a metal belonging to the platinum group or the iron group or a compound of the metal, an aliphatic hydrocarbon solvent and an alkaline substance. The halogen-containing organic compound is dehalogenated by heating.

【0010】上記方法において、含ハロゲン有機化合物
は、1〜11 atmの加圧雰囲気中で加熱される。又、含
ハロゲン有機化合物は、150〜400℃の温度に加熱
される。
In the above method, the halogen-containing organic compound is heated in a pressurized atmosphere of 1 to 11 atm. Further, the halogen-containing organic compound is heated to a temperature of 150 to 400 ° C.

【0011】上記方法に従って、加熱を行うと、前記白
金族又は鉄族に属する金属あるいは該金属の化合物は、
触媒として脂肪族炭化水素溶媒から水素を引き抜く作用
をする。更に、触媒は、含ハロゲン有機化合物のハロゲ
ン原子を引き抜き、触媒表面上の水素と置換する。含ハ
ロゲン有機化合物から引き抜かれたハロゲン原子は触媒
表面上の水素と結合してハロゲン化水素を形成し、アル
カリ物質によって中和される。。
When heating is performed according to the above method, the metal belonging to the platinum group or the iron group or the compound of the metal is
It acts as a catalyst to extract hydrogen from the aliphatic hydrocarbon solvent. Further, the catalyst abstracts the halogen atom of the halogen-containing organic compound and replaces it with hydrogen on the surface of the catalyst. The halogen atom extracted from the halogen-containing organic compound combines with hydrogen on the catalyst surface to form hydrogen halide, which is neutralized by the alkaline substance. .

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0013】本発明の分解方法の処理対象となる含ハロ
ゲン有機化合物は、ハロゲン原子が共有結合により炭素
と結合している構造を有する化合物であり、例えば、塩
化メチル、塩化メチレン、クロロホルム、四塩化炭素、
トリクレン、フロン等のハロゲン化アルカン、クロロベ
ンゼン等のハロゲン化ベンゼン、PCB等のハロゲン化
ビフェニル、クロロジベンゾジオキシンなどが挙げられ
る。この様な化合物を単独でも混合物の状態でも処理す
ることができ、鉱油のようなハロゲンを含まない物質と
の混合物であっても適用できる。
The halogen-containing organic compound to be treated by the decomposition method of the present invention is a compound having a structure in which a halogen atom is bonded to carbon by a covalent bond, and examples thereof include methyl chloride, methylene chloride, chloroform and tetrachloride. carbon,
Examples include halogenated alkanes such as trichlene and freon, halogenated benzenes such as chlorobenzene, halogenated biphenyls such as PCB, and chlorodibenzodioxin. Such compounds can be treated alone or in the form of a mixture, and can be applied to a mixture with a halogen-free substance such as mineral oil.

【0014】本発明の分解方法では、上記のような含ハ
ロゲン有機化合物を、触媒、炭化水素溶媒及びアルカリ
物質の共存下で加熱することによって、含ハロゲン有機
化合物の脱ハロゲン反応が進行して該化合物は分解(つ
まりハロゲンを含まない物質へ転化)される。
In the decomposition method of the present invention, the halogen-containing organic compound as described above is heated in the coexistence of a catalyst, a hydrocarbon solvent and an alkaline substance, whereby the dehalogenation reaction of the halogen-containing organic compound proceeds, The compound is decomposed (ie converted to a halogen-free material).

【0015】上記触媒は、パラジウム、白金、ルテニウ
ム、ロジウム等の白金族に属する金属;鉄、コバルト、
ニッケル等の鉄族に属する金属の単体;及び前記金属の
化合物から選択するのが好ましい。金属化合物の場合
は、ハロゲン化物であるのが望ましい。特に、パラジウ
ム及びその化合物が好ましい。
The catalyst is a metal belonging to the platinum group such as palladium, platinum, ruthenium, rhodium; iron, cobalt,
It is preferable to select from simple substances of metals belonging to the iron group such as nickel; and compounds of the metals. In the case of a metal compound, it is preferably a halide. Particularly, palladium and its compound are preferable.

【0016】上述の金属及び金属化合物で例示される触
媒は、水素を有する化合物から水素を引き抜く作用を有
し、本発明に係る反応系においては炭化水素溶媒から水
素を引き抜く。引き抜かれた水素は、触媒表面で含ハロ
ゲン有機化合物のハロゲン原子と置換される。これによ
り、含ハロゲン有機化合物は脱ハロゲン・水素化され
る。触媒表面の脱離ハロゲン原子はハロゲン化水素とし
て触媒から離脱し、アルカリ物質によって中和される。
The catalysts exemplified by the above-mentioned metals and metal compounds have a function of extracting hydrogen from a compound having hydrogen, and in the reaction system according to the present invention, hydrogen is extracted from a hydrocarbon solvent. The abstracted hydrogen is replaced with the halogen atom of the halogen-containing organic compound on the catalyst surface. As a result, the halogen-containing organic compound is dehalogenated and hydrogenated. The desorbed halogen atoms on the catalyst surface are desorbed from the catalyst as hydrogen halide and are neutralized by the alkaline substance.

【0017】触媒の量は、分解対象である含ハロゲン有
機化合物の重量の0.01〜5倍とするのが好ましい。
触媒は、担体に担持させたものでもよく、この場合、担
体としては、活性炭、カーボンブラック、グラファイト
等の炭素担体が特に適しているが、ゼオライトやケイソ
ウ土、マグネシア、アルミナ、コージュライト等のよう
な担体を使用することもでき、必要に応じて適宜選択し
てよい。触媒の担持率は0.5〜10%の範囲内である
ことが好ましい。
The amount of the catalyst is preferably 0.01 to 5 times the weight of the halogen-containing organic compound to be decomposed.
The catalyst may be supported on a carrier. In this case, carbon carriers such as activated carbon, carbon black and graphite are particularly suitable as the carrier, but zeolites, diatomaceous earth, magnesia, alumina, cordierite, etc. Various carriers can be used, and may be appropriately selected as needed. The catalyst loading rate is preferably in the range of 0.5 to 10%.

【0018】従って炭化水素溶媒は水素の供給源であ
り、前記触媒が水素を引き抜き易い化合物が用いられ
る。このような役割のためには、脂肪族炭化水素の使用
が好ましく、例えば、ヘキサン、デカン、トリデカン等
の直鎖炭化水素や、イソオクタン、ジメチルヘキサデカ
ン等の枝鎖を有する炭化水素、シクロヘキサン、シクロ
ドデカン等の環状炭化水素等が挙げられ、芳香族炭化水
素は触媒による水素の引き抜きが電子の共鳴構造により
容易でないので、本発明の炭化水素溶媒としては適して
いない。炭化水素溶媒は単独で用いても良いし、2種類
以上を混合して用いてもよい。脂肪族炭化水素以外の炭
化水素溶媒と混合して用いてもよい。この場合、脂肪族
炭化水素の割合が50重量%以上であることが好まし
い。経済性や入手容易性の点から、重油、軽油、灯油、
ベンジン等の鉱油が特に実用に適していると言える。使
用する炭化水素溶媒の量は、含ハロゲン有機化合物の重
量の5〜1000倍とするのが好ましい。炭化水素溶媒
は、常温常圧で液体であるものであるが、反応条件下で
も液相あるいは液相の一部分として存在し得るのが好ま
しく、炭化水素溶媒の沸点が反応温度より低い場合に
は、例えば、反応容器の密閉や加圧により炭化水素の沸
点を上昇させたり高沸点媒体に混合することによって炭
化水素を液相に存在させることができる。高沸点媒体
は、炭化水素溶媒から触媒が水素を引き抜く作用を阻害
しなければ特に制限はなく、芳香族炭化水素等を高沸点
媒体に適用してもよい。
Therefore, the hydrocarbon solvent is a source of hydrogen, and the catalyst is a compound which easily extracts hydrogen. For such a role, it is preferable to use an aliphatic hydrocarbon, for example, a straight chain hydrocarbon such as hexane, decane and tridecane, a hydrocarbon having a branched chain such as isooctane and dimethylhexadecane, cyclohexane and cyclododecane. Aromatic hydrocarbons are not suitable as the hydrocarbon solvent of the present invention because the extraction of hydrogen by a catalyst is not easy due to the electron resonance structure. The hydrocarbon solvent may be used alone or in combination of two or more kinds. You may mix and use with hydrocarbon solvents other than an aliphatic hydrocarbon. In this case, the proportion of aliphatic hydrocarbon is preferably 50% by weight or more. From the viewpoint of economy and availability, heavy oil, light oil, kerosene,
It can be said that mineral oil such as benzine is particularly suitable for practical use. The amount of the hydrocarbon solvent used is preferably 5 to 1000 times the weight of the halogen-containing organic compound. The hydrocarbon solvent is a liquid at room temperature and atmospheric pressure, but it is preferable that it can exist as a liquid phase or a part of the liquid phase even under reaction conditions. When the boiling point of the hydrocarbon solvent is lower than the reaction temperature, For example, the hydrocarbon can be made to exist in the liquid phase by raising the boiling point of the hydrocarbon by sealing or pressurizing the reaction vessel or by mixing it with a high-boiling medium. The high boiling point medium is not particularly limited as long as it does not inhibit the action of the catalyst to extract hydrogen from the hydrocarbon solvent, and aromatic hydrocarbon or the like may be applied to the high boiling point medium.

【0019】本発明に用いられるアルカリ物質として
は、アルカリ金属又はアルカリ土類金属の水酸化物が好
ましく、中でも水酸化ナトリウム又は水酸化カリウムが
経済性等の点から適している。使用するアルカリ物質の
量が増加すると含ハロゲン有機化合物の分解効率が向上
し、処理する含ハロゲン有機化合物のハロゲンのモル数
の2倍モルに相当する量以上のアルカリ物質を使用する
のが好ましい。但し、30倍モル相当量を越えると、反
応液の粘性過大や装置の耐性限界といった実施上の問題
が生じる。アルカリ物質は炭化水素に溶解しないため、
細粒に粉砕して反応系に添加される。
As the alkaline substance used in the present invention, a hydroxide of an alkali metal or an alkaline earth metal is preferable, and among them, sodium hydroxide or potassium hydroxide is suitable from the viewpoint of economy. When the amount of the alkaline substance used is increased, the decomposition efficiency of the halogen-containing organic compound is improved, and it is preferable to use the alkaline substance in an amount equal to or more than twice the number of moles of halogen of the halogen-containing organic compound to be treated. However, if the amount exceeds 30 times the molar equivalent, practical problems such as excessive viscosity of the reaction solution and the limit of resistance of the apparatus occur. Alkaline substances do not dissolve in hydrocarbons,
It is pulverized into fine particles and added to the reaction system.

【0020】本発明の反応系において、アルカリ物質
は、ハロゲン化水素の中和のみならず、含ハロゲン化合
物中のハロゲン原子の共有結合を弱める作用や、ハロゲ
ン原子の触媒表面からの脱離を促進する作用のような、
反応進行の補助的な役割をしていると考えられる。
In the reaction system of the present invention, the alkaline substance not only neutralizes the hydrogen halide but also promotes the action of weakening the covalent bond of the halogen atom in the halogen-containing compound and the elimination of the halogen atom from the catalyst surface. Like action,
It is considered to play an auxiliary role in the progress of the reaction.

【0021】上記で説明した触媒、炭化水素溶媒及びア
ルカリと共に、含ハロゲン有機化合物を加熱することに
よって、含ハロゲン有機化合物の脱ハロゲンが進行す
る。加熱温度は、150〜400℃の範囲が好ましい。
150℃より低いと反応が進行せず、400℃を越える
と炭化水素や含ハロゲン有機化合物の重合反応のような
目的としない反応が進行する。
By heating the halogen-containing organic compound together with the catalyst, hydrocarbon solvent and alkali described above, dehalogenation of the halogen-containing organic compound proceeds. The heating temperature is preferably in the range of 150 to 400 ° C.
If the temperature is lower than 150 ° C., the reaction does not proceed, and if it exceeds 400 ° C., an unintended reaction such as a polymerization reaction of a hydrocarbon or a halogen-containing organic compound proceeds.

【0022】反応容器を密閉して加熱すると、炭化水素
及び含ハロゲン有機化合物の気化圧により反応容器内の
圧力が増加する。本発明に係る含ハロゲン有機化合物の
分解反応は、常圧においても加圧下においても行うこと
ができるが、加圧下で行うと分解反応の効率が飛躍的に
向上する。従って、雰囲気圧が1〜11 atm(ゲージ圧
で0〜10 atm)、好ましくは2〜8 atm(ゲージ圧で
1〜7 atm)程度となるように加圧下で分解反応を行う
のがよい。反応系の圧力が11 atmを越えると、炭化水
素が変質する可能性、即ち、脂肪族炭化水素の縮合反応
が進行して芳香族炭化水素に転化する可能性が高くな
る。芳香族炭化水素は燃料油などとしての利用も難し
く、反応後の炭化水素の処理や別用途への転用を考慮す
ると好ましくない。
When the reaction vessel is closed and heated, the pressure inside the reaction vessel increases due to the vaporization pressure of the hydrocarbon and the halogen-containing organic compound. The decomposition reaction of the halogen-containing organic compound according to the present invention can be carried out either at normal pressure or under pressure, but if it is carried out under pressure, the efficiency of the decomposition reaction is dramatically improved. Therefore, it is preferable to carry out the decomposition reaction under pressure so that the atmospheric pressure is about 1 to 11 atm (0 to 10 atm in gauge pressure), preferably 2 to 8 atm (1 to 7 atm in gauge pressure). If the pressure of the reaction system exceeds 11 atm, the hydrocarbon is likely to be denatured, that is, the condensation reaction of the aliphatic hydrocarbon may proceed to be converted into the aromatic hydrocarbon. Aromatic hydrocarbons are also difficult to use as fuel oil and the like, which is not preferable in consideration of treatment of hydrocarbons after reaction and diversion to other purposes.

【0023】密閉容器中で分解反応を行うことは、反応
系外に有毒物を放出する恐れがなく安全性が高いという
利点も有する。又、低沸点の含ハロゲン有機化合物でも
系外に揮散させずに効率よく分解処理が可能であるとい
う点でも優れている。
Carrying out the decomposition reaction in a closed container also has the advantage that there is no danger of releasing toxic substances outside the reaction system and the safety is high. Further, it is also excellent in that even a halogen-containing organic compound having a low boiling point can be efficiently decomposed without being vaporized outside the system.

【0024】本発明のように溶媒に触媒を添加した反応
系で一般に用いられる触媒は、細かい粒子形状の触媒で
あることが多く、反応系に分散させて反応させる。しか
し、カラム等の固定手段を用いて触媒を固定し、アルカ
リ物質及び含ハロゲン有機化合物を混合した炭化水素溶
媒が繰り返し固定触媒に接触するように構成して反応を
行うと、反応後の触媒の回収操作の省略が可能になる。
The catalyst generally used in the reaction system in which the catalyst is added to the solvent as in the present invention is often a catalyst having a fine particle shape, and the catalyst is dispersed in the reaction system and reacted. However, when the catalyst is fixed by using a fixing means such as a column, and the reaction is carried out so that the hydrocarbon solvent mixed with the alkaline substance and the halogen-containing organic compound is repeatedly brought into contact with the fixed catalyst, the reaction of the catalyst after the reaction is The collection operation can be omitted.

【0025】[0025]

【実施例】以下、実施例を参照して本発明を更に説明す
る。
The present invention will be further described below with reference to examples.

【0026】(実施例1)前処理として、PCB(5塩
化物56重量%、4塩化物及び6塩化物各21重量%)
2.0g、パラジウム担持活性炭(担持率10重量%)
2.0g及び水酸化カリウム15.0gを重油100ml
に混合した調製液を、攪拌装置付きのステンレス製反応
容器に注ぎ入れ、調製液に窒素ガスを吹き込んで溶存酸
素を追い出し、反応容器内を窒素ガスで置換した。そし
て、反応容器内の圧力が大気圧となるように過剰窒素ガ
スを除いて反応容器を密閉した。
(Example 1) As a pretreatment, PCB (56% by weight of pentachloride, 21% by weight of tetrachloride and 21% by weight of tetrachloride)
2.0 g, palladium-supported activated carbon (support rate 10% by weight)
2.0 g and 15.0 g of potassium hydroxide 100 ml of heavy oil
The prepared solution mixed with was poured into a stainless steel reaction vessel equipped with a stirrer, nitrogen gas was blown into the prepared solution to expel dissolved oxygen, and the inside of the reaction vessel was replaced with nitrogen gas. Then, the reaction vessel was sealed by removing excess nitrogen gas so that the pressure inside the reaction vessel became atmospheric pressure.

【0027】この後、調製液を攪拌装置で攪拌しながら
反応容器を加熱し調製液の温度を300℃まで上昇さ
せ、この温度を2時間維持した。この間の反応容器内の
圧力は、調製液の温度が300℃に達した時点で4.1
atmとなり、その後2時間の間徐々に上昇して6.2 a
tmに達した。
After that, the reaction vessel was heated while stirring the preparation liquid with a stirrer to raise the temperature of the preparation liquid to 300 ° C., and this temperature was maintained for 2 hours. During this time, the pressure in the reaction vessel was 4.1 when the temperature of the preparation liquid reached 300 ° C.
It became atm, then gradually increased for 2 hours to 6.2 a
Reached tm.

【0028】加熱終了後、反応容器を室温まで冷却し
て、濾過及び遠心分離により調製液から触媒、水酸化カ
リウムを含む固形分を除去し、ガスクロマトグラフを用
いて調製液のPCB濃度を測定した。結果を表1に示
す。
After completion of heating, the reaction vessel was cooled to room temperature, the solid content containing the catalyst and potassium hydroxide was removed from the prepared solution by filtration and centrifugation, and the PCB concentration of the prepared solution was measured using a gas chromatograph. . The results are shown in Table 1.

【0029】(実施例2)反応容器の容積が実施例1の
ものより大きい点以外は同様のステンレス製反応容器を
用いて、実施例1と同様の前処理操作を繰り返し、調製
液の入った反応容器を用意した。
Example 2 Using the same stainless steel reaction container except that the volume of the reaction container was larger than that of Example 1, the same pretreatment operation as in Example 1 was repeated to contain the preparation liquid. A reaction container was prepared.

【0030】反応容器を実施例1と同様に加熱して、温
度が300℃に達した時、反応容器内部の圧力が2.0
atmになり、その後2時間の間徐々に上昇して2.7 a
tmに達した。
The reaction vessel was heated in the same manner as in Example 1, and when the temperature reached 300 ° C., the pressure inside the reaction vessel was 2.0.
It became atm and then gradually increased for 2 hours to 2.7 a
Reached tm.

【0031】加熱終了後、実施例1と同様に、調製液の
冷却及び固形分の除去を行い、調製液のPCB濃度を測
定した。結果を表1に示す。
After the heating was completed, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1 to measure the PCB concentration of the preparation liquid. The results are shown in Table 1.

【0032】(実施例3)反応容器の容積が実施例1の
ものより小さい点以外は同様のステンレス製反応容器を
用いて、実施例1と同様の前処理操作を繰り返し、調製
液の入った反応容器を用意した。
(Example 3) The same pretreatment operation as in Example 1 was repeated using the same stainless steel reaction container except that the volume of the reaction container was smaller than that of Example 1, and the preparation liquid was added. A reaction container was prepared.

【0033】反応容器を実施例1と同様に加熱して、温
度が300℃に達した時、反応容器内部の圧力が6.0
atmになり、その後2時間の間徐々に上昇して9.8 a
tmに達した。
The reaction vessel was heated as in Example 1, and when the temperature reached 300 ° C., the pressure inside the reaction vessel was 6.0.
became atm, then gradually increased for 2 hours to 9.8 a
Reached tm.

【0034】加熱終了後、実施例1と同様に、調製液の
冷却及び固形分の除去を行い、調製液のPCB濃度を測
定した。結果を表1に示す。
After the heating was completed, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1 to measure the PCB concentration of the preparation liquid. The results are shown in Table 1.

【0035】(実施例4)パラジウム担持活性炭に代え
て、常法により塩化パラジウムより調製したパラジウム
粉末0.2gを用いた点以外は実施例1と同様の前処理
操作及び加熱操作を行った。
Example 4 The same pretreatment and heating operations as in Example 1 were carried out except that 0.2 g of palladium powder prepared from palladium chloride by a conventional method was used instead of the palladium-supported activated carbon.

【0036】加熱終了後、実施例1と同様に、調製液の
冷却及び固形分の除去を行い、調製液のPCB濃度を測
定した。結果を表1に示す。
After the end of heating, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1 to measure the PCB concentration of the preparation liquid. The results are shown in Table 1.

【0037】(実施例5)パラジウム担持活性炭に代え
て、パラジウム担持ゼオライト(担持率10重量%)
2.0gを用いた点以外は実施例1と同様の前処理操作
及び加熱操作を行った。
(Example 5) Palladium-supporting zeolite (supporting ratio: 10% by weight) was used in place of the palladium-supporting activated carbon.
The same pretreatment operation and heating operation as in Example 1 were performed except that 2.0 g was used.

【0038】加熱終了後、実施例1と同様に、調製液の
冷却及び固形分の除去を行い、調製液のPCB濃度を測
定した。結果を表1に示す。
After the heating, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1 to measure the PCB concentration of the preparation liquid. The results are shown in Table 1.

【0039】(実施例6)水酸化カリウムの添加量を
7.5gに変えた点以外は実施例1と同様の前処理操作
及び加熱操作を行った。
Example 6 The same pretreatment and heating operations as in Example 1 were carried out except that the amount of potassium hydroxide added was changed to 7.5 g.

【0040】加熱終了後、実施例1と同様に、調製液の
冷却及び固形分の除去を行い、調製液のPCB濃度を測
定した。結果を表1に示す。
After the heating, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1 to measure the PCB concentration of the preparation liquid. The results are shown in Table 1.

【0041】(実施例7)攪拌装置及び還流冷却器を装
着したステンレス製反応容器を用いて、実施例1と同様
の前処理操作を繰り返し、調製液の入った解放系の反応
容器を用意した。調製液の成分が反応容器外に洩れない
ように還流冷却器を冷却しながら、反応容器を加熱し
て、温度が300℃に達したら300℃の温度を2時間
維持した。加熱終了後、実施例1と同様に、調製液の冷
却及び固形分の除去を行い、調製液のPCB濃度を測定
した。結果を表1に示す。
(Example 7) Using a stainless steel reaction vessel equipped with a stirrer and a reflux condenser, the same pretreatment operation as in Example 1 was repeated to prepare an open system reaction vessel containing the preparation liquid. . The reaction vessel was heated while cooling the reflux condenser so that the components of the preparation liquid did not leak outside the reaction vessel, and when the temperature reached 300 ° C, the temperature of 300 ° C was maintained for 2 hours. After the heating, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 1, and the PCB concentration of the preparation liquid was measured. The results are shown in Table 1.

【0042】(実施例8)前処理として、フロン(CF
C−11)3.0g、パラジウム担持活性炭(担持率1
0重量%)2.0g及び水酸化カリウム24.2gを重
油100mlに混合した調製液を、攪拌装置付きのステン
レス製反応容器に注ぎ入れ、フロンが反応容器から洩れ
ないような穏やかな速度で窒素ガスを調製液に吹き込ん
で溶存酸素を追い出し、反応容器内を窒素ガスで置換し
た。そして、反応容器内の圧力が大気圧となるように過
剰窒素ガスを除いて反応容器を密閉した。
(Embodiment 8) As a pretreatment, Freon (CF
C-11) 3.0 g, palladium-supported activated carbon (support rate 1
(0% by weight) 2.0 g and potassium hydroxide 24.2 g mixed in 100 ml of heavy oil was poured into a stainless reaction vessel equipped with a stirrer, and nitrogen was introduced at a gentle rate so that CFCs would not leak from the reaction vessel. Gas was blown into the prepared liquid to expel dissolved oxygen, and the inside of the reaction vessel was replaced with nitrogen gas. Then, the reaction vessel was sealed by removing excess nitrogen gas so that the pressure inside the reaction vessel became atmospheric pressure.

【0043】この後、調製液を攪拌装置で攪拌しながら
反応容器を加熱し調製液の温度を275℃まで上昇さ
せ、この温度を1時間維持した。この間の反応容器内の
圧力は、調製液の温度が275℃に達した時点で5.0
atmとなり、その後1時間の間徐々に上昇して8.3 a
tmに達した。
After this, the reaction vessel was heated while stirring the preparation liquid with a stirrer to raise the temperature of the preparation liquid to 275 ° C., and this temperature was maintained for 1 hour. During this period, the pressure in the reaction vessel is 5.0 when the temperature of the prepared solution reaches 275 ° C.
It became atm and then gradually increased for 1 hour to 8.3 a
Reached tm.

【0044】加熱終了後、反応容器を室温まで冷却し
て、濾過及び遠心分離により調製液から触媒、水酸化カ
リウムを含む固形分を除去し、ガスクロマトグラフを用
いて調製液のフロン濃度を測定した。結果を表1に示
す。
After completion of heating, the reaction vessel was cooled to room temperature, the solid content containing the catalyst and potassium hydroxide was removed from the prepared solution by filtration and centrifugation, and the freon concentration of the prepared solution was measured using a gas chromatograph. . The results are shown in Table 1.

【0045】(実施例9)攪拌装置及び還流冷却器を装
着したステンレス製反応容器を用いて、実施例8と同様
の前処理操作を繰り返し、調製液の入った解放系の反応
容器を用意した。調製液の成分が反応容器外に洩れない
ように還流冷却器を冷却しながら、反応容器を加熱し
て、温度が275℃に達したら275℃の温度を1時間
維持した。加熱終了後、実施例8と同様に、調製液の冷
却及び固形分の除去を行い、調製液のフロン濃度を測定
した。結果を表1に示す。
(Example 9) Using a stainless reaction vessel equipped with a stirrer and a reflux condenser, the same pretreatment operation as in Example 8 was repeated to prepare an open type reaction vessel containing the preparation liquid. . The reaction vessel was heated while cooling the reflux condenser so that the components of the preparation liquid would not leak out of the reaction vessel, and when the temperature reached 275 ° C, the temperature of 275 ° C was maintained for 1 hour. After the heating was completed, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 8, and the freon concentration of the preparation liquid was measured. The results are shown in Table 1.

【0046】(実施例10)前処理として、1−クロロ
ヘキサン2.0g、パラジウム担持活性炭(担持率10
重量%)2.0g及び水酸化カリウム9.2gを重油1
00mlに混合した調製液を、攪拌装置付きのステンレス
製反応容器に注ぎ入れ、窒素ガスを調製液に吹き込んで
溶存酸素を追い出し、反応容器内を窒素ガスで置換し
た。そして、反応容器内の圧力が大気圧となるように過
剰窒素ガスを除いて反応容器を密閉した。
(Example 10) As a pretreatment, 2.0 g of 1-chlorohexane and palladium-supported activated carbon (supporting rate: 10) were used.
Wt%) 2.0 g and potassium hydroxide 9.2 g to heavy oil 1
The prepared solution mixed with 00 ml was poured into a stainless steel reaction vessel equipped with a stirrer, nitrogen gas was blown into the prepared solution to expel dissolved oxygen, and the inside of the reaction vessel was replaced with nitrogen gas. Then, the reaction vessel was sealed by removing excess nitrogen gas so that the pressure inside the reaction vessel became atmospheric pressure.

【0047】この後、調製液を攪拌装置で攪拌しながら
反応容器を加熱し調製液の温度を300℃まで上昇さ
せ、この温度を1時間維持した。この間の反応容器内の
圧力は、調製液の温度が300℃に達した時点で2.0
atmとなり、その後1時間の間徐々に上昇して3.5 a
tmに達した。
Then, the reaction vessel was heated while stirring the preparation liquid with a stirrer to raise the temperature of the preparation liquid to 300 ° C., and this temperature was maintained for 1 hour. During this time, the pressure in the reaction vessel was 2.0 when the temperature of the preparation liquid reached 300 ° C.
Atm, then gradually rises to 3.5 a for 1 hour
Reached tm.

【0048】加熱終了後、反応容器を室温まで冷却し
て、濾過及び遠心分離により調製液から触媒、水酸化カ
リウムを含む固形分を除去し、ガスクロマトグラフを用
いて調製液の1−クロロヘキサン濃度を測定した。結果
を表1に示す。
After the heating is completed, the reaction vessel is cooled to room temperature, the solid content containing the catalyst and potassium hydroxide is removed from the preparation liquid by filtration and centrifugation, and the 1-chlorohexane concentration of the preparation liquid is measured by using a gas chromatograph. Was measured. The results are shown in Table 1.

【0049】(実施例11)攪拌装置及び還流冷却器を
装着したステンレス製反応容器を用いて、実施例10と
同様の前処理操作を繰り返し、調製液の入った解放系の
反応容器を用意した。
Example 11 Using a stainless steel reaction vessel equipped with a stirrer and a reflux condenser, the same pretreatment operation as in Example 10 was repeated to prepare an open system reaction vessel containing the preparation liquid. .

【0050】調製液の成分が反応容器外に洩れないよう
に還流冷却器を冷却しながら、反応容器を加熱して、温
度が300℃に達したら300℃の温度を1時間維持し
た。加熱終了後、実施例10と同様に、調製液の冷却及
び固形分の除去を行い、調製液の1−クロロヘキサン濃
度を測定した。結果を表1に示す。
The reaction vessel was heated while cooling the reflux condenser so that the components of the preparation liquid would not leak out of the reaction vessel, and when the temperature reached 300 ° C., the temperature of 300 ° C. was maintained for 1 hour. After the heating was completed, the preparation liquid was cooled and the solid content was removed in the same manner as in Example 10, and the 1-chlorohexane concentration of the preparation liquid was measured. The results are shown in Table 1.

【0051】[0051]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 含ハロゲン化合物 反応温度 圧力 含ハロゲン化合物濃度 加熱前 加熱後 (℃) (atm) (ppm) (ppm) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 PCB 300 4.1-6.2 21000 0.047 実施例2 PCB 300 2.0-2.7 21000 0.22 実施例3 PCB 300 6.0-9.8 21000 0.044 実施例4 PCB 300 4.1-6.2 21000 0.62 実施例5 PCB 300 4.1-6.2 21000 0.13 実施例6 PCB 300 4.1-6.2 21000 0.19 実施例7 PCB 300 1.0 21000 3.9 実施例8 フロン 275 5.0-8.3 19600 0.43 実施例9 フロン 275 1.0 19600 95 実施例10 クロロヘキサン 300 2.0-3.5 20600 0.20 実施例11 クロロヘキサン 300 1.0 20600 55 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] -------------------------------------- Halogen-containing compound Reaction temperature Pressure Halogen-containing compound concentration Heating Before heating (° C) (atm) (ppm) (ppm) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 PCB 300 4.1-6.2 21000 0.047 Example 2 PCB 300 2.0-2.7 21000 0.22 Example 3 PCB 300 6.0-9.8 21000 0.044 Example 4 PCB 300 4.1-6.2 21000 0.62 Example 5 PCB 300 4.1-6.2 21000 0.13 Example 6 PCB 300 4.1-6.2 21000 0.19 Example 7 PCB 300 1.0 21000 3.9 Example 8 Freon 275 5.0-8.3 19600 0.43 Example 9 Freon 275 1.0 19600 95 Example 10 Chlorohexane 300 2.0-3.5 20600 0.20 Example 11 Chlorohexane 300 1.0 20600 55 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0052】上記実施例において、3種の含ハロゲン有
機化合物はいずれも効率よく分解している。この中で、
実施例7、9、11は解放系の反応容器を用いており、
加熱雰囲気は大気圧である。これらの例と他の例との結
果を比較すると、加圧下で加熱する方が含ハロゲン有機
化合物の分解が進行することがわかる。又、2 atm程度
の比較的低い加圧程度で効率の高い分解が可能になるの
で、従来の水素ガスなどを用いた方法よりはるかに安全
性が高い。尚、反応容器を密閉した場合において一定反
応温度で加熱中に反応容器の内部圧が徐々に増加するの
は、溶媒として用いてた重油が熱分解することによって
軽質な炭化水素になることによるものと考えられる。こ
のことから、重質油の熱分解による軽質化と含ハロゲン
有機化合物の分解とを一時に行うことも可能ということ
がわかる。
In the above example, all three halogen-containing organic compounds decomposed efficiently. In this,
Examples 7, 9, and 11 use an open type reaction vessel,
The heating atmosphere is atmospheric pressure. Comparing the results of these examples and other examples, it is understood that the decomposition of the halogen-containing organic compound progresses when heated under pressure. Further, since the decomposition can be performed with high efficiency at a relatively low pressure of about 2 atm, the safety is much higher than that of the conventional method using hydrogen gas or the like. When the reaction vessel is closed, the internal pressure of the reaction vessel gradually increases during heating at a constant reaction temperature because the heavy oil used as a solvent is pyrolyzed to become a light hydrocarbon. it is conceivable that. From this, it is understood that the lightening of the heavy oil by the thermal decomposition and the decomposition of the halogen-containing organic compound can be performed at the same time.

【0053】又、実施例1、4及び5から、触媒を活性
炭に担持すると他の担体を用いた場合や担体がない場合
より分解効率が上がることが理解される。更に、実施例
1と6との比較から、アルカリ物質の量が増加すると分
解効率が向上することもわかる。つまり、アルカリ物質
はハロゲン化水素の中和のみではなく、分解反応の進行
にも寄与する。
Further, from Examples 1, 4 and 5, it is understood that supporting the catalyst on the activated carbon improves the decomposition efficiency as compared with the case of using another carrier or the case of no carrier. Further, from the comparison between Examples 1 and 6, it can be seen that the decomposition efficiency is improved when the amount of the alkaline substance is increased. That is, the alkaline substance contributes not only to the neutralization of hydrogen halide but also to the progress of the decomposition reaction.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
含ハロゲン有機化合物の分解が効率よく行われるので、
不要となった含ハロゲン有機化合物の処理が簡単にな
り、反応後の処理も容易である点も優れており、その工
業及び環境保護における価値は大である。
As described above, according to the present invention,
Since the decomposition of halogen-containing organic compounds is performed efficiently,
It is also excellent in that the treatment of the halogen-containing organic compound that has become unnecessary is easy and the treatment after the reaction is easy, and its value in industry and environmental protection is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 白金族又は鉄族に属する金属あるいは該
金属の化合物と、脂肪族炭化水素溶媒と、アルカリ物質
との共存下で、含ハロゲン有機化合物を加熱することに
より含ハロゲン有機化合物を脱ハロゲン化することを特
徴とする含ハロゲン有機化合物の分解方法。
1. A halogen-containing organic compound is removed by heating the halogen-containing organic compound in the coexistence of a metal belonging to the platinum group or the iron group or a compound of the metal, an aliphatic hydrocarbon solvent, and an alkaline substance. A method for decomposing a halogen-containing organic compound, which comprises halogenating.
【請求項2】 含ハロゲン有機化合物は、1〜11 atm
の加圧雰囲気中で加熱されることを特徴とする請求項1
記載の含ハロゲン有機化合物の分解方法。
2. The halogen-containing organic compound is 1 to 11 atm.
The heating is performed in a pressurized atmosphere according to claim 1.
A method for decomposing the halogen-containing organic compound described.
【請求項3】 含ハロゲン有機化合物は、150〜40
0℃の温度に加熱されることを特徴とする請求項1又は
2記載の含ハロゲン有機化合物の分解方法。
3. The halogen-containing organic compound is 150 to 40.
The method for decomposing a halogen-containing organic compound according to claim 1 or 2, wherein the decomposition is performed at a temperature of 0 ° C.
JP5648296A 1996-03-13 1996-03-13 Decomposition of halogen-containing organic compound Pending JPH09249582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5648296A JPH09249582A (en) 1996-03-13 1996-03-13 Decomposition of halogen-containing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5648296A JPH09249582A (en) 1996-03-13 1996-03-13 Decomposition of halogen-containing organic compound

Publications (1)

Publication Number Publication Date
JPH09249582A true JPH09249582A (en) 1997-09-22

Family

ID=13028327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5648296A Pending JPH09249582A (en) 1996-03-13 1996-03-13 Decomposition of halogen-containing organic compound

Country Status (1)

Country Link
JP (1) JPH09249582A (en)

Similar Documents

Publication Publication Date Title
US5108647A (en) Method of dehalogenating halogenated hydrocarbons
EP0675748B1 (en) Process for the chemical decomposition of halogenated organic compounds
WO1990012853A1 (en) Degradation of polychlorinated biphenyls
JP4514284B2 (en) Method for treating organohalogen compounds
US5152844A (en) Degradation of polychlorinated biphenyls
JPH09249582A (en) Decomposition of halogen-containing organic compound
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP3970277B2 (en) Contaminated oil treatment method
JP3216773B2 (en) Decomposition method of aromatic halogen compound
JP2918542B1 (en) Method for treating organic halogen compounds
JP2810978B2 (en) Dechlorination of aromatic chlorides with formate using palladium and phase transfer catalyst.
JPH1085584A (en) Decomposition process for halogen containing organic compound
JP3678740B1 (en) Method for dechlorination of PCB-containing high-concentration organic halogen compounds
Trifan et al. Microwave assisted catalytic dechlorination of PCB
Janis et al. Dechlorination and reclamation of PCB-contaminated insulating fluids
JPH08141107A (en) Decomposing method for organic compound halide
JP3641554B2 (en) Organic halogen compound decomposition method and organic halogen compound decomposition apparatus
JP3638928B2 (en) Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds
JP3678738B2 (en) Method for dechlorination of polychlorinated biphenyls
JPH07289656A (en) Alkali decomposition method for halogenated aromatic compound
JPH10225667A (en) Method of decomposing aromatic halogenated compound
JP2005270388A (en) Method for decomposing organic halogen compound
JPH1190385A (en) Decomposition of aromatic halogen compound

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20031121

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20031204

A131 Notification of reasons for refusal

Effective date: 20040315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040705