JP3638928B2 - Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds - Google Patents
Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds Download PDFInfo
- Publication number
- JP3638928B2 JP3638928B2 JP2002279355A JP2002279355A JP3638928B2 JP 3638928 B2 JP3638928 B2 JP 3638928B2 JP 2002279355 A JP2002279355 A JP 2002279355A JP 2002279355 A JP2002279355 A JP 2002279355A JP 3638928 B2 JP3638928 B2 JP 3638928B2
- Authority
- JP
- Japan
- Prior art keywords
- organic halogen
- halogen compound
- soil
- solvent
- hcb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000002896 organic halogen compounds Chemical class 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 32
- 239000002689 soil Substances 0.000 title claims description 27
- 230000002085 persistent effect Effects 0.000 title claims description 15
- 239000003344 environmental pollutant Substances 0.000 title claims description 10
- 231100000719 pollutant Toxicity 0.000 title claims description 10
- 239000010802 sludge Substances 0.000 title claims description 10
- 239000002904 solvent Substances 0.000 claims description 32
- 229910052783 alkali metal Inorganic materials 0.000 claims description 27
- 150000001340 alkali metals Chemical class 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000002612 dispersion medium Substances 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 13
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 10
- 239000000356 contaminant Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- -1 alicyclic hydrocarbon Chemical class 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 41
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 34
- 239000011734 sodium Substances 0.000 description 19
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 18
- 229910052708 sodium Inorganic materials 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 239000003905 agrochemical Substances 0.000 description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 10
- 238000000605 extraction Methods 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 8
- 239000008096 xylene Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000002013 dioxins Chemical class 0.000 description 5
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 5
- 238000009841 combustion method Methods 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- JLYXXMFPNIAWKQ-GNIYUCBRSA-N gamma-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-GNIYUCBRSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229960002809 lindane Drugs 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical group 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 150000003613 toluenes Chemical class 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- DFBKLUNHFCTMDC-GKRDHZSOSA-N endrin Chemical compound C([C@@H]1[C@H]2[C@@]3(Cl)C(Cl)=C([C@]([C@H]22)(Cl)C3(Cl)Cl)Cl)[C@@H]2[C@H]2[C@@H]1O2 DFBKLUNHFCTMDC-GKRDHZSOSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009284 supercritical water oxidation Methods 0.000 description 1
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、難分解性有機ハロゲン化合物で汚染された土壌,汚泥等の汚染物質の処理方法、さらに詳しくは、ヘキサクロロシクロヘキサン(BHC)やヘキサクロロベンゼン(HCB)等の主として残留性農薬を含有する土壌等の汚染物質を処理するための方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ヘキサクロロシクロヘキサン(BHC)、ヘキサクロロベンゼン(HCB)等の残留性農薬は常温で固形の物質であり、且つ融点も高く、また有機溶剤に対する溶解性も低いことから、これらに汚染された土壌、汚泥、底質、底泥等は高温で加熱燃焼させる以外には無害化処理が難しいのが実情である。
【0003】
これら残留性農薬の処理方法としては、一般にはそのまま燃焼させる燃焼法が採用されているが、BHCやHCB等は加熱分解処理の際に大量のダイオキシン類が生成することが知られており、燃焼法に代わる無害化処理方法の開発が重要な課題となっている。
【0004】
また、ポリ塩化ビフェニル(PCB)等、上記のような残留性農薬以外の有機ハロゲン化合物に汚染された土壌や底泥の処理方法としては、直接燃焼法やロータリーキルン等の間接加熱法、鉄粉・アルカリ等の触媒を用いた下記特許文献1、2のような接触分解法、分解剤を添加する下記特許文献3のような分解剤添加法、土壌中の有機ハロゲン化合物のアミノ酸塩、ポリアミン類、ポリアミノ酸等を加熱分解する下記特許文献4、5のような加熱分解処理法等の多くの技術が発明されている。
【0005】
【特許文献1】
特開2001-259608 号公報
【特許文献2】
特許第3025701 号公報
【特許文献3】
特開2001-247839 号公報
【特許文献4】
特開2000-342709 号公報
【特許文献5】
特開2001-112883 号公報
【0006】
しかし、上記のような種々の方法を残留農薬に適用した場合、次のような問題が生じる。
加熱燃焼法では雰囲気に関係なくダイオキシン類が生成し易く、大気中への拡散防止を図るためのバグフィルター等による吸着対策が不可欠となり、結果的に活性炭の最終処分が避けられないという問題がある。
また、接触分解法では、有機ハロゲン化合物の分解率が有機ハロゲン化合物の融点や添加触媒濃度に依存し、高い融点の有機ハロゲン化合物、たとえばエンドリンのようなものでは350 ℃以上の条件下で分解処理する必要があり、必然的に熱分解が生じ、結果的にダイオキシン類の生成や再合成が生ずることになる。
さらに、分解剤添加法は、水の存在下でスラリー状態で処理することが可能であるが、分解剤の水に対する溶解度が低いので、有機ハロゲン化合物の分解率も低くなり、また分解剤の凝集等の問題点もある。
【0007】
そこで、上記のような問題点を生じさせない方法として、土壌や底泥から有機ハロゲン化合物を溶媒で抽出する溶媒抽出法がある。溶媒抽出法としては、下記特許文献6のように、疎水性及び親水性を有する両親媒性物質と水とを含む抽出剤によってダイオキシン類を抽出する方法、下記特許文献7のように、カルボン酸及び親水性溶媒により有機ハロゲン化合物及び重金属類を汚泥から抽出する方法、下記特許文献8のように、固体中の有機塩素化合物を抽出流体に接触させるとともに移行させ、その後、超臨界水酸化処理を行う方法等が開発されている。
【0008】
【特許文献6】
特開2001-219001 号公報
【特許文献7】
特開2001-286894 号公報
【特許文献8】
特開2001-246201 号公報
しかし、上記のような溶媒抽出法では、有機ハロゲン化合物が抽出されても、その抽出された有機ハロゲン化合物をどのように分解処理するかという課題を解決することができない。
【0009】
一方、このような有機ハロゲン化合物を分解処理する方法として、たとえば次の特許文献9のように金属ナトリウム分散体を用いて処理する方法が採用されている。
【0010】
【特許文献9】
特開2000-15088号公報
【0011】
そこで、このような特許文献9のような金属ナトリウム分散体を用いる方法を上記のような残留性農薬の分解処理に適用することも考えられる。
この方法は、金属ナトリウム等のアルカリ金属の微粒子を、そのようなアルカリ金属に不活性な分散媒、たとえばケロシン、デカリン、トランス油、重油等に分散させた金属ナトリウム分散体を用いる方法であるが、このようなケロシン、デカリン、トランス油、重油等の分散媒は残留性農薬の溶解性がさほど良好ではなく、上記残留性農薬のような固体状の難分解性有機ハロゲン化合物を上記のような金属ナトリウム分散体を用いて良好に分解することは到底困難である。
【0012】
一方、残留性農薬のような固体状の難分解性有機ハロゲン化合物を溶解する溶剤として、アセトンやエチルエーテル等の極性溶剤が用いられるが、このような溶剤はアルカリ金属に対して活性が高く、従って溶剤がアルカリ金属と反応してしまうので、有機ハロゲン化合物を分解させるために用いられているアルカリ金属分散体の本来の機能を発揮させることができない。従って、このようなアルカリ金属分散体を用いる方法を上記残留性農薬のような固体状の難分解性有機ハロゲン化合物の分解処理に採用することはできなかった。
【0013】
本発明は、このような問題点を解決するためになされたもので、残留性農薬等の難分解性有機ハロゲン化合物を土壌、汚泥等の汚染物質から好適に抽出することができ、しかもアルカリ金属分散体を用いる方法であるにもかかわらず、残留性農薬のような固体状の難分解性有機ハロゲン化合物を好適に分解処理させることを課題とするものである。
【0014】
【課題を解決するための手段】
本発明者等は、上記残留性農薬のような難分解性有機ハロゲン化合物を汚染物質から好適に抽出し、アルカリ金属分散体による処理法により効率良く分解処理するための溶剤、及びアルカリ金属分散体の分散媒等について鋭意研究した結果、アルカリ金属に対して不活性で且つ上記難分解性有機ハロゲン化合物の溶解性に優れており、汚染物質から難分解性有機ハロゲン化合物を好適に抽出しうるという条件を、特定の溶剤が満たしており、その結果上記のような難分解性有機ハロゲン化合物を汚染物質から抽出しうるとともに、容易に分解処理しうることを見い出し、本発明を完成するに至った。
【0015】
すなわち、本発明が上記課題を解決するための手段は、難分解性有機ハロゲン化合物を含有する土壌,汚泥等の汚染物質から、沸点が80℃〜200 ℃の芳香族系炭化水素又は脂環式炭化水素からなる溶剤により前記難分解性有機ハロゲン化合物を抽出し、抽出された難分解性有機ハロゲン化合物に、沸点がアルカリ金属の融点よりも高い芳香族系炭化水素からなる分散媒にアルカリ金属を分散させたアルカリ金属分散体を反応させて、前記難分解性有機ハロゲン化合物を脱ハロゲン化処理することである。
【0016】
汚染物質がたとえば底泥のようなもともと含水率の高いものの場合には、上記のような溶剤を使用した場合、有機ハロゲン化合物の抽出効率が低下するおそれがあるために、予め乾燥処理を行うか、或いはアルコール、アセトン等の親水性溶剤による汚染物質の洗浄処理により予め水が除去される。
【0017】
沸点が80℃〜200 ℃の芳香族系炭化水素又は脂環式炭化水素としては、たとえばトルエン、キシレン、又はシクロヘキサンが用いられる。また、沸点がアルカリ金属の融点よりも高い芳香族系炭化水素としては、トルエン又はキシレンが用いられる。さらに難分解性有機ハロゲン化合物としては、たとえばヘキサクロロシクロヘキサンやヘキサクロロベンゼンが用いられる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
(実施形態1)
本実施形態では、難分解性有機ハロゲン化合物としてヘキサクロロベンゼン(HCB)を含有する汚染土壌を用い、そのHCBを汚染土壌から抽出するための溶剤としてトルエンを用いた。この場合の抽出は、抽出効率を高めるべく、溶剤を加熱して行った。
このトルエンでHCBを抽出したものと、イソプロピルアルコールとを反応槽内に入れ、その反応槽内に、キシレンを分散媒とする金属ナトリウム分散体を添加した。
【0020】
反応槽内を攪拌翼等で攪拌し、反応温度30〜100 ℃、反応時間5〜180 分の条件下でHCBと金属ナトリウムを反応させた。主要反応生成物としてベンゼンが生成され、HCBは完全に分解された。これによって、難分解性有機ハロゲン化合物であるHCBが無害化されたこととなる。
さらに、イソプロピルアルコールによって、HCBと金属ナトリウムとの反応が促進される。反応終了後、冷却し、残存している金属ナトリウムは水を添加して分解した。
【0021】
(実施形態2)
上記実施形態1と同様にHCBを含有する汚染土壌を用いたが、本実施形態では、実施形態1に比べて含水率の高い汚染土壌を用いた。
本実施形態では、その汚染土壌を先ずエタノールで洗浄して水及び少量のHCBを分離した。エタノール洗浄後の汚染土壌を風乾した後、実施形態1と同様に、抽出溶剤としてトルエンを添加し、加熱してHCBを汚染土壌から抽出した。
【0022】
このトルエンでHCBを抽出したものと、イソプロピルアルコールとを反応槽内に入れ、実施形態1と同様にキシレンを分散媒とする金属ナトリウム分散体を添加した。添加後、実施形態1と同様に攪拌し、反応温度30〜100 ℃、反応時間5〜180 分の条件下でBHCと金属ナトリウムを反応させた。反応終了後、実施形態1と同様の処理を行った。
【0023】
(その他の実施形態)
尚、上記実施形態では、金属ナトリウム分散体の分散媒としてキシレンを用いたが、分散媒の種類は該実施形態に限定されるものではなく、たとえばトルエンを使用することも可能であり、その他の分散媒を用いることも可能である。
【0024】
ただし、金属ナトリウム分散体に用いる分散媒は、一般に平均粒径約10μm 以下の微粒子分散体を製造する製造過程において、金属ナトリウムを融点(98℃)以上に加熱し、その後にミキサー等により攪拌する必要があるため、金属ナトリウムに不活性で且つ沸点が98℃より高いものであり、しかも上記難分解性ハロゲン化炭化水素の溶解性を阻害することのないものである必要がある。
【0025】
また、上記実施形態では、難分解性有機ハロゲン化合物を抽出するための溶剤としてトルエンを用いたが、溶剤の種類はこれに限定されるものではなく、たとえばシクロヘキサンやキシレン等のものであってもよく、その他のものであってもよい。
要は、沸点が80℃〜200 ℃の芳香族系炭化水素又は脂環式炭化水素からなるものであればよい。実際には、難分性有機ハロゲン化合物に対する溶解度1〜50g/l のものが適している。
いずれの溶剤を用いる場合でも、抽出時に溶剤の沸点より低い温度で加熱するのが好ましい。
【0026】
さらに、上記実施形態2では、エタノールで洗浄することによって、含水率の高い汚染土壌から一旦水を分離した上で、難分解性有機ハロゲン化合物を抽出したが、このように含水率の高い汚染土壌から水を分離する手段は、該実施形態のようなエタノールによる洗浄に限定されるものではなく、たとえば低温で乾燥するような手段であってもよい。
尚、溶剤で洗浄する場合には、エタノール以外の親水性溶剤、たとえば他のアルコールやアセトン等を用いることも可能である。
【0027】
難分解性有機ハロゲン化合物を分解処理する際の反応条件は特に限定されないが、反応温度30〜100 ℃、塩素に対するアルカリ金属の添加割合(Na/Cl比)が0.2 〜50とされることが好ましい。
溶剤、分散媒を添加する手順等は特に問わないが、低濃度の場合は、難分解性有機ハロゲン化合物の溶解液に後からアルカリ金属分散体を添加し、高濃度の場合には先にアルカリ金属分散体を仕込み、後から難分解性有機ハロゲン化合物の溶解液を添加するのが望ましい。
【0028】
また、上記実施形態では、安価で入手し易く、取り扱いが容易という利点を有することから金属ナトリウムを用いたが、これに限らず、金属カリウム、金属リチウム、金属セシウム或いはこれらの合金を用いることも可能である。
【0029】
また、反応促進剤としては、イソプロピルアルコール以外に水を使用することが可能であるが、特にイソプロピルアルコールが好ましい。
【0030】
さらに、上記実施形態では、難分解性有機ハロゲン化合物としてHCBを処理する場合について説明したが、処理すべき難分解性有機ハロゲン化合物の種類も、上記実施形態のHCBに限定されるものではなく、たとえばヘキサクロロシクロヘキサン(BHC)のようなものであってもよい。また、DDTやCNP等のものであってもよい。
【0031】
尚、本発明は、上記のような残留性農薬に適用することを主眼とするものであるが、残留性農薬以外の難分解性有機ハロゲン化合物に適用することも可能である。
【0032】
【実施例】
次に、本発明の実施例について説明する。
【0033】
(実施例1)
攪拌機及び温度計を取り付けた1L の四つ口フラスコに、含水率数%以下のヘキサクロロベンゼン(HCB)汚染土壌20g とトルエン150ml を入れ、100 ℃、1時間攪拌しながらHCBを抽出した。
【0034】
抽出処理終了後、溶媒と土壌を濾紙で分離した。溶媒は濃縮後、ECD−GCによりHCB濃度を測定した。その後、HCB濃度が1%となるようにトルエンで希釈し、キシレンを分散媒とする濃度30重量%の金属ナトリウム分散体を5.4g添加し、50℃、1時間分解処理を行った。
【0035】
(実施例2)
含水率10%のHCB汚染土壌20g を予めエタノール100ml で洗浄した後、土壌と水と少量のHCBを含むエタノール溶液を分離した。風乾後、実施例1と同様の装置を用いて、土壌及びトルエン150ml を入れ、同一条件で抽出処理を行った後、土壌と溶媒を分離した。またエタノール中に溶出したHCBはトルエンで溶液抽出した後、トルエン層を上記トルエン溶媒に加えた。
濃縮処理後、HCB濃度をECD−GCで測定した。さらに、HCBはキシレンを分散媒とする濃度30重量%の金属ナトリウム分散体を5.4g添加して分解処理した。
【0036】
(比較例)
上記実施例1において、溶剤としてトルエンの代わりにヘキサンを用いた。反応終了後、ヘキサン中のHCB濃度を測定した。
【0037】
実施例1、2、及び比較例の結果を表1に示す。
【0038】
【表1】
【0039】
表1からも明らかなように、実施例1及び実施例2では、残留HCBはほとんど検出されなかった。すなわち基準値以下であった。
【0040】
これに対して、比較例ではHCBがヘキサンに良好に溶解せず、土壌中からHCBを好適に抽出できなかった。また、一部抽出できたHCBも、金属ナトリウム分散体中へ添加する過程で析出したため、いずれにしても測定は困難であった。
【0041】
【発明の効果】
以上のように、本発明は、難分解性有機ハロゲン化合物を含有する土壌,汚泥等の汚染物質から、沸点が80℃〜200 ℃の芳香族系炭化水素又は脂環式炭化水素からなる溶剤により前記難分解性有機ハロゲン化合物を抽出し、抽出された難分解性有機ハロゲン化合物に、沸点がアルカリ金属の融点より高い芳香族系炭化水素からなる分散媒にアルカリ金属を分散させたアルカリ金属分散体を反応させて、前記難分解性有機ハロゲン化合物を脱ハロゲン化処理する方法であるため、難分解性有機ハロゲン化合物が、上記のような溶剤に好適に溶解して土壌、汚泥等の汚染物質から好適に抽出され、しかもこの溶剤はアルカリ金属に対して不活性であるので、不用意にアルカリ金属と反応することがなく、よってアルカリ金属分散体を利用した方法でありながら、難分解性有機ハロゲン化合物を好適に分解することができるという、従来解決できなかった課題を達成することが可能となった。
【0042】
また、沸点がアルカリ金属の融点より高い芳香族系炭化水素からなる分散媒を用いているので、分散媒の沸点以下の反応温度で分解反応を行うことができ、短時間で効率良く難分解性有機ハロゲン化合物を分解処理することができるという効果がある。
【0043】
このように、本発明では、上記のような溶剤とアルカリ金属分散体とを併用することによって、穏やかな温度条件下であるにもかかわらず、残留性農薬等の難分解性有機ハロゲン化合物を効率良く分解することができるという効果を有するに至った。
【0044】
さらに、従来の燃焼法等で大量に生成が確認されたダイオキシン類は全く生成されず、より安全に難分解性有機ハロゲン化合物を処理することができるという効果がある。
【0045】
さらに、土壌、底泥等の汚染物質が含水率の高いものの場合には、溶剤で難分解性有機ハロゲン化合物を抽出する前に、予め乾燥処理を行うか、或いはアルコールやアセトン等の親水性溶剤によって汚染物質を洗浄することにより、汚染物質から予め水を除去することができ、その結果、上記溶剤による難分解性有機ハロゲン化合物の抽出効率の低下を防止することができるという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating pollutants such as sludge and sludge contaminated with a hardly decomposable organic halogen compound, and more specifically, soil containing mainly residual agricultural chemicals such as hexachlorocyclohexane (BHC) and hexachlorobenzene (HCB). The present invention relates to a method for treating contaminants such as
[0002]
[Prior art and problems to be solved by the invention]
Persistent agricultural chemicals such as hexachlorocyclohexane (BHC) and hexachlorobenzene (HCB) are solid substances at room temperature, have a high melting point, and have low solubility in organic solvents. Sediment, bottom mud, etc. are actually difficult to detoxify except by heating and burning at high temperatures.
[0003]
As a method for treating these residual agricultural chemicals, a combustion method in which combustion is carried out as it is is generally adopted, but it is known that a large amount of dioxins are produced during the thermal decomposition treatment of BHC, HCB, etc. Development of a detoxification treatment method that replaces the law is an important issue.
[0004]
In addition, as a method of treating soil and bottom mud contaminated with organic halogen compounds other than the above persistent agricultural chemicals such as polychlorinated biphenyl (PCB), direct combustion method, indirect heating method such as rotary kiln, iron powder, The catalytic cracking method as in Patent Documents 1 and 2 using a catalyst such as an alkali, the decomposing agent addition method as in Patent Document 3 below in which a decomposing agent is added, the amino acid salt of an organic halogen compound in soil, polyamines, Many techniques have been invented, such as thermal decomposition treatment methods as described in Patent Documents 4 and 5 below, which thermally decompose polyamino acids and the like.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-259608 [Patent Document 2]
Japanese Patent No. 3025701 [Patent Document 3]
JP 2001-247839 A [Patent Document 4]
JP 2000-342709 A [Patent Document 5]
JP 2001-112883 A [0006]
However, when the various methods described above are applied to residual agricultural chemicals, the following problems arise.
In the heating combustion method, dioxins are easily generated regardless of the atmosphere, and adsorption measures such as a bag filter to prevent diffusion into the air are indispensable, and as a result, final disposal of activated carbon is inevitable. .
In the catalytic cracking method, the decomposition rate of the organic halogen compound depends on the melting point of the organic halogen compound and the concentration of the added catalyst. In the case of a high melting point organic halogen compound such as endrin, the decomposition treatment is performed at 350 ° C or higher. Therefore, pyrolysis will inevitably occur, resulting in the formation and resynthesis of dioxins.
Furthermore, the decomposition agent addition method can be processed in a slurry state in the presence of water, but the decomposition rate of the organic halogen compound is also low because the decomposition agent has low solubility in water, and the decomposition agent aggregates. There are also problems such as.
[0007]
Therefore, as a method that does not cause the above problems, there is a solvent extraction method in which an organic halogen compound is extracted from soil or bottom mud with a solvent. Examples of the solvent extraction method include a method of extracting dioxins using an extractant containing a hydrophobic and hydrophilic amphiphile and water as in Patent Document 6 below, and a carboxylic acid as in Patent Document 7 below. And a method of extracting organohalogen compounds and heavy metals from sludge with a hydrophilic solvent, as in Patent Document 8 below, bringing an organic chlorine compound in a solid into contact with the extraction fluid and transferring it, and then performing supercritical water oxidation treatment Methods to do so have been developed.
[0008]
[Patent Document 6]
JP 2001-219001 A [Patent Document 7]
JP 2001-286894 A [Patent Document 8]
However, in the solvent extraction method as described above, even if an organic halogen compound is extracted, the problem of how to decompose the extracted organic halogen compound cannot be solved. .
[0009]
On the other hand, as a method for decomposing such an organic halogen compound, for example, a method using a metal sodium dispersion as in Patent Document 9 is adopted.
[0010]
[Patent Document 9]
Japanese Patent Laid-Open No. 2000-15088
Therefore, it is also conceivable to apply a method using such a metal sodium dispersion as in Patent Document 9 to the above-described decomposition treatment of residual agricultural chemicals.
This method uses a metal sodium dispersion in which fine particles of alkali metal such as metal sodium are dispersed in a dispersion medium inert to such an alkali metal, for example, kerosene, decalin, trans oil, heavy oil or the like. The dispersion medium such as kerosene, decalin, trans oil, and heavy oil is not so good in the solubility of the residual agricultural chemicals, and the solid persistent organic halogen compounds such as the residual agricultural chemicals are not as described above. It is extremely difficult to decompose well using a metal sodium dispersion.
[0012]
On the other hand, polar solvents such as acetone and ethyl ether are used as solvents for dissolving solid persistent organic halogen compounds such as residual agricultural chemicals, but such solvents are highly active against alkali metals, Accordingly, since the solvent reacts with the alkali metal, the original function of the alkali metal dispersion used for decomposing the organic halogen compound cannot be exhibited. Therefore, such a method using an alkali metal dispersion could not be employed for the decomposition treatment of a solid persistent organic halogen compound such as the residual agricultural chemical.
[0013]
The present invention has been made in order to solve such problems, and is capable of suitably extracting a hardly decomposable organic halogen compound such as residual agricultural chemicals from contaminants such as soil and sludge, and also an alkali metal. In spite of the method of using a dispersion, it is an object to suitably decompose a solid persistent organic halogen compound such as a residual agricultural chemical.
[0014]
[Means for Solving the Problems]
The present inventors have successfully extracted a hardly decomposable organohalogen compound such as the above-mentioned persistent agricultural chemicals from contaminants, and efficiently decomposed the alkali metal dispersion by a treatment method using an alkali metal dispersion, and an alkali metal dispersion. As a result of diligent research on the dispersion medium, etc., it is said that it is inert to alkali metals and has excellent solubility of the above-mentioned hardly decomposable organic halogen compound, and it can be suitably extracted from contaminants. It was found that the specific solvent satisfies the conditions, and as a result, it was possible to extract the hardly-decomposable organic halogen compound as described above from the pollutant and to easily decompose it, thereby completing the present invention. .
[0015]
That is, the means for the present invention to solve the above problems is that aromatic hydrocarbons or alicyclic compounds having boiling points of 80 ° C. to 200 ° C. are obtained from pollutants such as soil and sludge containing persistent organic halogen compounds. The hard-to-decompose organic halogen compound is extracted with a solvent made of hydrocarbon, and an alkali metal is added to the dispersion medium made of aromatic hydrocarbon having a boiling point higher than the melting point of the alkali metal. It is to dehalogenate the hardly decomposable organic halogen compound by reacting the dispersed alkali metal dispersion.
[0016]
If the pollutant has an originally high moisture content such as bottom mud, the extraction efficiency of the organic halogen compound may be reduced when the above solvent is used. Alternatively, the water is removed in advance by washing the contaminants with a hydrophilic solvent such as alcohol or acetone.
[0017]
As the aromatic hydrocarbon or alicyclic hydrocarbon having a boiling point of 80 ° C. to 200 ° C., for example, toluene, xylene, or cyclohexane is used. Moreover, toluene or xylene is used as the aromatic hydrocarbon having a boiling point higher than the melting point of the alkali metal. Further, as the hardly decomposable organic halogen compound, for example, hexachlorocyclohexane or hexachlorobenzene is used.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
(Embodiment 1)
In this embodiment, contaminated soil containing hexachlorobenzene (HCB) is used as the hardly decomposable organic halogen compound, and toluene is used as a solvent for extracting the HCB from the contaminated soil. The extraction in this case was performed by heating the solvent in order to increase the extraction efficiency.
This toluene extracted HCB and isopropyl alcohol were placed in a reaction tank, and a metal sodium dispersion containing xylene as a dispersion medium was added to the reaction tank.
[0020]
The reaction vessel was stirred with a stirring blade or the like, and HCB and metal sodium were reacted under the conditions of a reaction temperature of 30 to 100 ° C. and a reaction time of 5 to 180 minutes. Benzene was produced as the main reaction product and HCB was completely decomposed. As a result, HCB which is a hardly decomposable organic halogen compound is rendered harmless.
Furthermore, the reaction between HCB and metallic sodium is promoted by isopropyl alcohol. After completion of the reaction, the mixture was cooled and the remaining metallic sodium was decomposed by adding water.
[0021]
(Embodiment 2)
Contaminated soil containing HCB was used in the same manner as in Embodiment 1, but in this embodiment, contaminated soil having a higher water content than that in Embodiment 1 was used.
In this embodiment, the contaminated soil was first washed with ethanol to separate water and a small amount of HCB. After the ethanol-washed contaminated soil was air-dried, toluene was added as an extraction solvent and heated to extract HCB from the contaminated soil, as in Embodiment 1.
[0022]
This toluene extracted HCB and isopropyl alcohol were placed in a reaction vessel, and a metal sodium dispersion using xylene as a dispersion medium was added as in the first embodiment. After the addition, the mixture was stirred in the same manner as in Embodiment 1, and BHC and metal sodium were reacted under the conditions of a reaction temperature of 30 to 100 ° C. and a reaction time of 5 to 180 minutes. After completion of the reaction, the same treatment as in Embodiment 1 was performed.
[0023]
(Other embodiments)
In the above embodiment, xylene is used as the dispersion medium of the metal sodium dispersion, but the type of the dispersion medium is not limited to this embodiment, and for example, toluene can be used. It is also possible to use a dispersion medium.
[0024]
However, the dispersion medium used for the metal sodium dispersion is generally heated to a melting point (98 ° C.) or higher and then stirred by a mixer or the like in the production process for producing a fine particle dispersion having an average particle size of about 10 μm or less. Therefore, it must be inert to metallic sodium and has a boiling point higher than 98 ° C. and does not hinder the solubility of the hardly decomposable halogenated hydrocarbon.
[0025]
In the above embodiment, toluene is used as a solvent for extracting the hardly decomposable organic halogen compound. However, the type of the solvent is not limited to this, and may be, for example, cyclohexane or xylene. It may be other things.
In short, what is necessary is just to consist of an aromatic hydrocarbon or alicyclic hydrocarbon having a boiling point of 80 ° C to 200 ° C. In practice, those having a solubility of 1 to 50 g / l in a refractory organic halogen compound are suitable.
Whichever solvent is used, it is preferable to heat at a temperature lower than the boiling point of the solvent during extraction.
[0026]
Furthermore, in Embodiment 2 described above, water is once separated from contaminated soil having a high water content by washing with ethanol, and then the hardly decomposable organic halogen compound is extracted. The means for separating water from the water is not limited to washing with ethanol as in the embodiment, and may be a means for drying at a low temperature, for example.
In the case of washing with a solvent, it is possible to use a hydrophilic solvent other than ethanol, such as other alcohols or acetone.
[0027]
The reaction conditions for decomposing the hardly decomposable organic halogen compound are not particularly limited, but it is preferable that the reaction temperature is 30 to 100 ° C. and the addition ratio of the alkali metal to chlorine (Na / Cl ratio) is 0.2 to 50. .
The procedure for adding the solvent and the dispersion medium is not particularly limited. In the case of a low concentration, an alkali metal dispersion is added later to the solution of the hardly decomposable organic halogen compound, and in the case of a high concentration, the alkali is first added. It is desirable to prepare a metal dispersion and add a solution of a hardly decomposable organic halogen compound later.
[0028]
In the above embodiment, metal sodium is used because it has the advantages of being inexpensive, easily available, and easy to handle. However, the present invention is not limited to this, and metal potassium, metal lithium, metal cesium, or an alloy thereof may be used. Is possible.
[0029]
In addition to isopropyl alcohol, water can be used as the reaction accelerator, and isopropyl alcohol is particularly preferable.
[0030]
Furthermore, although the case where HCB is treated as the hardly decomposable organic halogen compound has been described in the above embodiment, the kind of the hardly decomposable organic halogen compound to be treated is not limited to the HCB of the above embodiment, For example, it may be hexachlorocyclohexane (BHC). Moreover, things such as DDT and CNP may be used.
[0031]
The present invention is mainly applied to the persistent agricultural chemicals as described above, but can also be applied to persistent organic halogen compounds other than the persistent agricultural chemicals.
[0032]
【Example】
Next, examples of the present invention will be described.
[0033]
(Example 1)
Into a 1 L four-necked flask equipped with a stirrer and a thermometer, 20 g of hexachlorobenzene (HCB) -contaminated soil having a water content of several percent or less and 150 ml of toluene were added, and HCB was extracted while stirring at 100 ° C. for 1 hour.
[0034]
After completion of the extraction treatment, the solvent and the soil were separated with filter paper. After concentration of the solvent, the HCB concentration was measured by ECD-GC. Thereafter, the mixture was diluted with toluene so that the HCB concentration became 1%, 5.4 g of a metal sodium dispersion having a concentration of 30% by weight using xylene as a dispersion medium was added, and a decomposition treatment was performed at 50 ° C. for 1 hour.
[0035]
(Example 2)
After washing 20 g of HCB-contaminated soil with a water content of 10% with 100 ml of ethanol in advance, the ethanol solution containing soil, water and a small amount of HCB was separated. After air-drying, using the same apparatus as in Example 1, 150 ml of soil and toluene were added, extraction processing was performed under the same conditions, and then the soil and the solvent were separated. The HCB eluted in ethanol was solution extracted with toluene, and the toluene layer was added to the toluene solvent.
After the concentration treatment, the HCB concentration was measured by ECD-GC. Further, HCB was decomposed by adding 5.4 g of a metal sodium dispersion having a concentration of 30% by weight using xylene as a dispersion medium.
[0036]
(Comparative example)
In Example 1 above, hexane was used in place of toluene as the solvent. After completion of the reaction, the concentration of HCB in hexane was measured.
[0037]
Table 1 shows the results of Examples 1 and 2 and the comparative example.
[0038]
[Table 1]
[0039]
As is clear from Table 1, in Examples 1 and 2, almost no residual HCB was detected. That is, it was below the reference value.
[0040]
On the other hand, in the comparative example, HCB did not dissolve well in hexane, and HCB could not be suitably extracted from the soil. Further, HCB that was partially extracted also precipitated during the process of addition into the metal sodium dispersion, and in any case, measurement was difficult.
[0041]
【The invention's effect】
As described above, the present invention uses a solvent comprising an aromatic hydrocarbon or an alicyclic hydrocarbon having a boiling point of 80 ° C. to 200 ° C. from a pollutant such as soil and sludge containing a hardly decomposable organic halogen compound. An alkali metal dispersion obtained by extracting the hardly decomposable organohalogen compound, and dispersing the alkali metal in a dispersion medium composed of an aromatic hydrocarbon having a boiling point higher than the melting point of the alkali metal in the extracted hardly decomposable organohalogen compound In order to dehalogenate the hard-to-decompose organic halogen compound, so that the hard-to-decompose organic halogen compound is suitably dissolved in the solvent as described above to dissolve from contaminants such as soil and sludge. Since this solvent is preferably extracted and is inert to the alkali metal, it does not inadvertently react with the alkali metal. Therefore, it is a method using an alkali metal dispersion. While seeking, that can be suitably decompose the hardly decomposable organic halogen compounds, it has become possible to achieve the object that could not be conventionally resolved.
[0042]
In addition, since a dispersion medium consisting of aromatic hydrocarbons whose boiling point is higher than the melting point of the alkali metal is used, the decomposition reaction can be carried out at a reaction temperature below the boiling point of the dispersion medium, and it is difficult to decompose efficiently in a short time. There is an effect that the organic halogen compound can be decomposed.
[0043]
As described above, in the present invention, by using the solvent and the alkali metal dispersion in combination, it is possible to efficiently convert a hardly decomposable organic halogen compound such as a persistent agricultural chemical, even under a mild temperature condition. It came to have the effect that it can decompose | disassemble well.
[0044]
Furthermore, dioxins that have been confirmed to be produced in large quantities by conventional combustion methods and the like are not produced at all, and there is an effect that it is possible to treat a hardly decomposable organic halogen compound more safely.
[0045]
In addition, if the pollutant such as soil and bottom mud has a high water content, it should be dried before extraction of the hard-to-decompose organic halogen compound with the solvent, or a hydrophilic solvent such as alcohol or acetone. By washing the pollutant with water, it is possible to remove water from the pollutant in advance, and as a result, it is possible to prevent the extraction efficiency of the hardly decomposable organic halogen compound from being reduced by the solvent.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002279355A JP3638928B2 (en) | 2002-09-25 | 2002-09-25 | Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002279355A JP3638928B2 (en) | 2002-09-25 | 2002-09-25 | Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004113907A JP2004113907A (en) | 2004-04-15 |
JP3638928B2 true JP3638928B2 (en) | 2005-04-13 |
Family
ID=32274392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002279355A Expired - Fee Related JP3638928B2 (en) | 2002-09-25 | 2002-09-25 | Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3638928B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5569914B2 (en) * | 2012-07-06 | 2014-08-13 | 株式会社ネオス | Selective fixation of persistent organic pollutants using cyclodextrin polymer |
-
2002
- 2002-09-25 JP JP2002279355A patent/JP3638928B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004113907A (en) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3025701B2 (en) | Method for decomposing halogenated and non-halogenated organic compounds in contaminated media with base catalyst | |
JP4514284B2 (en) | Method for treating organohalogen compounds | |
JP2006212354A (en) | Detoxification treatment method and detoxification processor for organic halogen compound | |
JP3638928B2 (en) | Method of treating pollutants such as soil and sludge contaminated with persistent organic halogen compounds | |
JP2001294539A (en) | Method for dehalogenating organic halogen compound | |
JP5138838B2 (en) | Method for reductive dehalogenation of liquid or solid halogenated hydrocarbons | |
JP2918542B1 (en) | Method for treating organic halogen compounds | |
JP6323951B2 (en) | Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent | |
JP3966886B2 (en) | Method for regenerating dechlorination catalyst | |
JPH0426632A (en) | Dehydrohalogenation of organic compound | |
JP2001259607A (en) | Treatment method and apparatus for heavy metal or organic chlorine compound | |
JPH01131676A (en) | Treatment method for making organic halide compound harmless | |
JP4159165B2 (en) | Purification method and apparatus for solid substances contaminated with organic halogen compounds | |
JP3771120B2 (en) | Method and apparatus for treating organic halogen compound contaminated oil | |
JP2001334251A (en) | Method for cleaning polluted soil | |
JP3641554B2 (en) | Organic halogen compound decomposition method and organic halogen compound decomposition apparatus | |
JP3410797B2 (en) | Decomposition method of halogenated organic compounds | |
JP4537539B2 (en) | Decomposition treatment method and treatment equipment for hazardous substances | |
JP7182829B1 (en) | Method for decomposing and carbonizing organochlorine compounds, and apparatus for decomposing and carbonizing the same | |
JP3408390B2 (en) | Decomposition method of aromatic halogen compound | |
JP2004115411A (en) | Method for decomposing hardly decomposable organic halogen compound | |
US20050256359A1 (en) | Process for the oxidative degradation of toxic organic compounds | |
JP3623387B2 (en) | Purification method for solid substances contaminated with organic halogen compounds | |
JP4250964B2 (en) | Method for dehalogenating materials containing organic halogen compounds | |
JP2604309B2 (en) | Method for dechlorination of polyvinyl chloride resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3638928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |