JPH09246944A - 温度補正付きドライバ回路 - Google Patents

温度補正付きドライバ回路

Info

Publication number
JPH09246944A
JPH09246944A JP8078228A JP7822896A JPH09246944A JP H09246944 A JPH09246944 A JP H09246944A JP 8078228 A JP8078228 A JP 8078228A JP 7822896 A JP7822896 A JP 7822896A JP H09246944 A JPH09246944 A JP H09246944A
Authority
JP
Japan
Prior art keywords
output
temperature
correction
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8078228A
Other languages
English (en)
Other versions
JP3650460B2 (ja
Inventor
Toshiyuki Okayasu
俊幸 岡安
Satoshi Iwamoto
敏 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07822896A priority Critical patent/JP3650460B2/ja
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to US08/913,350 priority patent/US5973542A/en
Priority to CN97190002A priority patent/CN1098561C/zh
Priority to KR1019970704687A priority patent/KR100252721B1/ko
Priority to DE19780296T priority patent/DE19780296C2/de
Priority to PCT/JP1997/000103 priority patent/WO1997033370A1/ja
Priority to GB9722767A priority patent/GB2316559B/en
Priority to TW086101828A priority patent/TW320684B/zh
Publication of JPH09246944A publication Critical patent/JPH09246944A/ja
Priority to US09/121,953 priority patent/US6094085A/en
Application granted granted Critical
Publication of JP3650460B2 publication Critical patent/JP3650460B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)
  • Manipulation Of Pulses (AREA)
  • Electronic Switches (AREA)

Abstract

(57)【要約】 【課題】本発明は、出力段のドライバの消費電力を検出
して補正制御することで、比較的安定した波形振幅、出
力タイミングの温度補正付きドライバ回路を実現する。 【解決手段】出力素子31、32の温度変化を検出する
温度検出手段を各々設け、温度検出手段からの温度検出
信号を受けて、入力信号1に対する出力信号3の出力タ
イミングを温度補正する出力タイミング温度補正手段を
設け、温度検出手段からの温度検出信号を受けて、出力
信号3の出力振幅の温度補正をする出力振幅温度補正手
段を設ける。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】電子機器に適用されるパルス
波信号を出力すべきドライバ回路において、温度変化に
対しても安定した所定波形及びタイミングの出力信号を
実現するドライバ回路の温度補正回路に関する。
【0002】
【従来の技術】図4は、従来技術によるコンプリメンタ
リ構成の最終段ドライバ回路のブロック図であり、バイ
アス回路40と、出力素子31、32と、出力インピー
ダンス整合用の出力抵抗4で成る。図5は、IC試験装
置における被試験デバイス(DUT)のデバイスピンを
駆動する1チャンネル分のピンドライバ基本回路であ
り、温度補正無しドライバ回路の具体的回路例である。
【0003】本例の出力素子31、32はCMOSトラ
ンスファ・ゲートを使用している。最終版の出力素子3
1、32は、パルス波形や動作スピードに伴い電力消費
が変わり、素子ジャンクション温度も変化して出力特性
が変化してしまう。この結果、当初の出力波形、伝播遅
延の変動に伴う出力タイミングが変動してくる。
【0004】図6に温度上昇による出力素子のゲート電
圧に対するドレイン電流特性図の一例を示す。一般にM
OSFETでは温度が上昇すると、Vt10で示したス
レッショルド電圧が低下する。この結果、当初のバイア
ス点9のドレイン電流Id7が低下してしまう。この影
響を受けて、図7(a)の出力信号3に示すように出力
レベルが時間の経過と共に低下してしまう難点がある。
また、図7(b〜d)に出力信号3のタイミング変化の
発生例を示す。即ち入力信号1に対し、図7(c)に示
す当初の出力信号3の所定遅延量11が、図7(d)の
示すように、温度変化に伴ってΔt6の時間の遅延変動
をもたらす。つまりタイミングのズレが生ずる不具合を
もたらす難点がある。他方、高精度が要求されるドライ
バ回路においては、強制空冷と空調装置により一定の回
路周囲温度を維持する外部装置を設けて対処する必要が
あり、利用上の難点となる場合がある。
【0005】
【発明が解決しようとする課題】上記説明のように、温
度補正の無いドライバ回路においては、出力素子31、
32での電力消費に伴う発熱変動に伴って、当初の出力
振幅や出力タイミングから変化してしまい、この結果、
精度の良い波形振幅、精度の良いタイミングのドライバ
回路とは言えず、利用上の難点となっている。
【0006】そこで本発明は、出力段のドライバの消費
電力が主な発熱源である点に着目して、これを検出しバ
イアス回路の補正制御することで、比較的安定した波形
振幅、出力タイミングの温度補正付きドライバ回路を実
現することを目的とする。
【0007】
【課題を解決するための手段】上記課題を解決するため
に、本発明の構成では、出力素子31、32の温度変化
を検出する温度検出手段を各々設け、温度検出手段から
の温度検出信号を受けて、入力信号1に対する出力信号
3の出力タイミングを温度補正する出力タイミング温度
補正手段を設け、温度検出手段からの温度検出信号を受
けて、出力信号3の出力振幅の温度補正をする出力振幅
温度補正手段を設ける構成手段にする。これにより、コ
ンプリメンタリ構成の出力素子31、32を有し、入力
信号1を受けて、所定の振幅、所定の出力タイミングの
出力信号3を出力するドライバ回路の温度補正回路にお
いて、出力段のドライバである出力素子31、32の消
費電力の対応して安定な波形振幅と、出力タイミングの
ドライバ回路が実現できる。
【0008】温度検出手段としては、出力素子31、3
2自体に流れる電流を個々に検出することで温度検出手
段とし、あるいは出力素子31、32に接した温度セン
サによる温度検出手段とする温度補正付きドライバ回路
の構成手段がある。また、出力タイミング温度補正手段
としては、温度検出手段からの温度検出信号を受けて、
可変遅延手段である直列接続された複数ゲートに供給す
る正負電源電圧を制御し、この電源電圧制御により入出
力信号の伝播遅延を制御して出力タイミングの温度補正
手段とする温度補正付きドライバ回路の構成手段があ
る。また、出力振幅温度補正手段としては、温度検出手
段からの温度検出信号を受けて、可変振幅手段であるバ
ッファ回路に供給する正負電源電圧を制御し、この電源
電圧制御により入力信号に対する出力信号の振幅を制御
して出力振幅の温度補正手段とする温度補正付きドライ
バ回路の構成手段がある。
【0009】より具体的解決手段の構成としては、出力
最終段の出力素子31、32に流れる電流を検出抵抗3
3、34を設けて、両端の電圧信号から出力素子31、
32の温度検出手段とする電力モニタ回路H35、L3
6を各々設け、電力モニタ回路H35、L36からの温
度検出信号H22、L23を受けて、タイミング調整回
路39とバイアス回路40に与える補正信号51、5
2、53、54を生成する補正回路37、38を設け、
補正回路37、38からの補正信号53、54を受け
て、入力信号1に対する出力信号3の出力タイミング温
度補正手段とするタイミング調整回路39を設け、補正
回路37、38からの補正信号51、52を受け、タイ
ミング調整回路39からの駆動信号H41、L42を受
けて、出力素子31、32への出力振幅を温度補正した
ドライブ信号を出力する出力振幅温度補正手段とするバ
イアス回路40を設ける温度補正付きドライバ回路の構
成手段がある。
【0010】
【発明の実施の形態】以下に、本発明の実施形態を実施
例と共に詳細に説明する。
【0011】
【実施例】図1は、本発明による温度補正付きドライバ
回路のブロック図である。図2は、本発明による実施例
の1例を示す具体的な温度補正付きドライバ回路図であ
る。図3は、本発明による補正の原理を説明するための
説明図である。
【0012】(1)先ず図3に本発明における温度補正
の原理を説明するための入出力特性補正説明図を示し
て、温度補正の基本原理を説明する。図3(A)は、出
力電圧として要求される理想特性を示し、入力レベルと
出力レベルが当初の比例関係状態にある。図3(B)
は、出力素子31、32の素子ジャンクション発熱に伴
い、非直線特性に変化した後の特性状態である。この非
直線特性を受けて、図3(C)に示すように本発明では
補正回路で逆特性の非直線特性の補正を補正回路に与え
る。この結果、図3(D)に示すように、ほぼ本来の直
線性に補正されて温度変化の影響を低減したドライバ回
路とする原理である。
【0013】(2)次に本発明の温度補正付きドライバ
回路のブロック図を図1に示して以下に説明する。構成
は、出力素子31、32と、電流検出抵抗33、34
と、差動アンプ33b、34bと、電力モニタ回路H3
5、L36と、補正回路37、38と、タイミング調整
回路39と、バイアス回路40とで成る。
【0014】電流検出抵抗33、34は、各出力素子3
1、32に流れる消費電流を検出する抵抗であり、差動
アンプ33b、34bは、各々出力素子31、32の電
源端に供給する電源を安定化する為のものである。電力
モニタ回路H35、L36は、各々電流検出抵抗33、
34両端の電位差を検出して、対応する補正回路37、
38に温度検出信号H22、L23を供給する。補正回
路37、38は、電力モニタ回路H35、L36からの
温度検出信号H22、L23を各々受けて、タイミング
調整回路39とバイアス回路40に与える(ViH、Vi
L)補正用供給電源信号51、52、53、54を生成
する。タイミング調整回路39は、内部に可変遅延手段
が設けてあり、補正回路37、38からの遅延補正信号
53、54を受けて、出力素子31、32へ与える駆動
信号H41、L42のタイミング遅延量を補正調整する
回路である。バイアス回路40は、内部に可変振幅手段
が設けてあり、上記駆動信号H41、L42を受け、補
正回路37、38からの遅延補正信号51、52を受け
て、出力振幅を補正したドライブ信号を対応する出力素
子31、32の入力端へ各々供給する回路である。
【0015】(3)次に、図1の構成ブロックに対応す
る具体的ドライバ回路の一例を図2に示す。タイミング
調整回路39は、レベルシフタ2と可変遅延ゲートの回
路構成例である。この可変遅延手段例では複数ゲートを
直列接続し、補正用供給電源信号53、54を受けて、
この複数ゲートの電源電圧を変化させることで入出力間
の伝播遅延時間が微調整可変の機能とした遅延手段を有
している。レベルシフタ2は、入力信号1を受けて差動
の信号を生成して所定の電圧レベルにシフトする回路で
ある。電力モニタ回路H35、L36内の積分回路fH
20、fL21は、電流検出抵抗33、34で検出した
脈流電圧を積分して平均化した信号として補正回路へ供
給する。
【0016】補正回路37、38は、補正係数回路と加
算器と減算器の回路構成例である。電力モニタ回路H3
5、L36からの温度検出信号H22、L23を各々受
けて、タイミング調整回路39とバイアス回路40に与
える(ViH、ViL)補正用供給電源信号51、52、5
3、54を生成して出力する。
【0017】ここで補正回路37、38内にある補正係
数回路K43、K44、K45、K46は、電力モニタ
回路H35、L36からの信号を受けて、出力素子3
1、32の振幅温度特性や出力タイミング温度特性の温
度変化曲線に対応して個々に補正するゲイン調整やカー
ブ調整を微調整する部分であり、予め調整された状態に
ある。ここでカーブ調整手段としては半導体の非直線特
性を利用してカーブフィットさせる例がある。これによ
ってゲイン/カーブが補正された信号が加算器と減算器
の一端にそれぞれ供給される。各加算器と減算器は、こ
れにより対応するタイミング調整回路39やバイアス回
路40への供給電源(ViH、ViL)を微調整した後供給
する。この結果、タイミング調整回路39側では複数ゲ
ート段数による伝播遅延が微調整可変機能を実現し、ま
た、バイアス回路40側では出力素子31、32をドラ
イブする振幅が微調整可変機能が実現されることとな
る。
【0018】このように構成することで、出力素子3
1、32での電力消費に伴う発熱変動に伴って、当初の
出力振幅や出力タイミングの変動を補正でき、この結
果、精度の良い安定な波形振幅、精度の良いタイミング
のドライバ回路が実現できる。
【0019】(4)上記図2に示す実施例では、CMO
Sトランスファ・ゲートを用いた具体的ドライバ回路を
示したが、バイポーラ回路で構成しても良く、これに対
応した周辺回路で構成することで同様に実施可能であ
る。
【0020】(5)上記実施例の説明では、出力素子3
1、32の温度変化の検出を電力モニタ回路H35、L
36で検出する構成例で説明していたが、所望により、
サーミスタやポジスタ等の温度センサを出力素子31、
32に接して設け、この温度検出信号を補正回路37、
38に供給する構成手段としても良く、同様に実施可能
である。
【0021】(6)上記実施例の説明では、タイミング
調整回路39は、入力信号1が1本の単一信号入力の場
合で説明していたが、入力信号1が差動入力信号の場合
には、レベルシフタ2を削除したタイミング調整回路3
9で実現しても良い。
【0022】(7)上記実施例の説明では、温度補正対
象を出力素子31、32に注目して実施する例で説明し
たが、所望により、タイミング調整回路39や、バイア
ス回路40や、補正回路37、38や電力モニタ回路H
35、L36のドライバ回路系全体の温度特性を含め、
総合的な温度補正するように補正係数回路K43、K4
4、K45、K46を設定調整して使用する形態でも良
い。
【0023】
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。補
正回路37、38とタイミング調整回路39とにより、
補正回路37、38からの温度補正用電源の供給を受け
て、直列接続された複数ゲートの入出力間の伝播遅延時
間を微調整可変の機能、即ち出力タイミング温度補正手
段が得られ、この結果、出力信号3の出力タイミングの
温度依存性を大幅に改善する効果が得られる。補正回路
37、38とバイアス回路40とにより、可変振幅手段
機能、即ち出力振幅温度補正手段が実現でき、この結
果、出力信号の振幅の温度依存性を大幅に改善する効果
が得られる。これらの結果、出力素子31、32での電
力消費に伴う発熱変動に伴って、当初の出力振幅や出力
タイミングの変動を補正されて、精度の良い安定な波形
振幅、精度の良いタイミングのドライバ回路が実現でき
る。また、これにより従来のように、強制空冷と空調装
置により一定の回路周囲温度を維持する必要が解消可能
になる利点も得られる。
【図面の簡単な説明】
【図1】本発明による温度補正付きドライバ回路のブロ
ック図である。
【図2】本発明による実施例の1例を示す具体的な温度
補正付きドライバ回路図である。
【図3】本発明における温度補正の原理を説明するため
の入出力特性補正説明図である。
【図4】従来の温度補正無しドライバ回路の構成ブロッ
ク図である。
【図5】従来の温度補正無しドライバ回路の具体的回路
例である。
【図6】温度上昇による出力素子のゲート電圧に対する
ドレイン電流特性図例を示す。
【図7】(a)温度上昇による出力レベルの経過変動
と、(b〜d)温度上昇による出力信号の出力タイミン
グの変動を説明する図である。
【符号の説明】
1 入力信号 2 レベルシフタ 3 出力信号 4 出力抵抗 Id7 ドレイン電流 11 所定遅延量 fH20、fL21 積分回路 H22、L23 温度検出信号 37、38 補正回路 31、32 出力素子 33、34 検出抵抗 33b、34b 差動アンプ H35、L36 電力モニタ回路 39 タイミング調整回路 40 バイアス回路 H41、L42 駆動信号 K43、K44、K45、K46 補正係数回路 51、52、53、54 補正信号
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 19/003 H03K 17/687 F

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 コンプリメンタリ(complementary)構
    成の出力素子(31、32)を有し、入力信号(1)を
    受けて、所定の振幅、所定の出力タイミングの出力信号
    (3)を出力するドライバ回路の温度補正回路におい
    て、 出力素子(31、32)の温度変化を検出する温度検出
    手段を各々設け、 該温度検出手段からの温度検出信号を受けて、入力信号
    (1)に対する出力信号(3)の出力タイミングを温度
    補正する出力タイミング温度補正手段を設け、 該温度検出手段からの温度検出信号を受けて、出力信号
    (3)の出力振幅の温度補正をする出力振幅温度補正手
    段を設け、 以上の構成を具備することを特徴とする温度補正付きド
    ライバ回路。
  2. 【請求項2】 温度検出手段は、出力素子(31、3
    2)自体に流れる電流を個々に検出することで温度検出
    手段とし、あるいは出力素子(31、32)に接した温
    度センサによる温度検出手段とした請求項1記載の温度
    補正付きドライバ回路。
  3. 【請求項3】 出力タイミング温度補正手段は、該温度
    検出手段からの温度検出信号を受けて、可変遅延手段で
    ある直列接続された複数ゲートに供給する正負電源電圧
    を制御し、この電源電圧制御により入出力信号の伝播遅
    延を制御して出力タイミングの温度補正手段とした請求
    項1記載の温度補正付きドライバ回路。
  4. 【請求項4】 出力振幅温度補正手段は、該温度検出手
    段からの温度検出信号を受けて、可変振幅手段であるバ
    ッファ回路に供給する正負電源電圧を制御し、この電源
    電圧制御により入力信号に対する出力信号の振幅を制御
    して出力振幅の温度補正手段とした請求項1記載の温度
    補正付きドライバ回路。
  5. 【請求項5】 コンプリメンタリ構成の出力素子(3
    1、32)を有し、入力信号(1)を受けて、所定の振
    幅、所定の出力タイミングの出力信号(3)を出力する
    ドライバ回路の温度補正回路において、 出力最終段の出力素子(31、32)に流れる電流を検
    出抵抗(33、34)を設けて、両端の電圧信号から出
    力素子(31、32)の温度検出手段とする電力モニタ
    回路(H35、L36)を各々設け、 電力モニタ回路(H35、L36)からの温度検出信号
    (H22、L23)を受けて、タイミング調整回路(3
    9)とバイアス回路(40)に与える補正信号(51、
    52、53、54)を生成する補正回路(37、38)
    を設け、 補正回路(37、38)からの補正信号(53、54)
    を受けて、入力信号(1)に対する出力信号(3)の出
    力タイミング温度補正手段とするタイミング調整回路
    (39)を設け、 補正回路(37、38)からの補正信号(51、52)
    を受け、タイミング調整回路(39)からの駆動信号
    (H41、L42)を受けて、出力素子(31、32)
    への出力振幅を温度補正したドライブ信号を出力する出
    力振幅温度補正手段とするバイアス回路(40)を設
    け、 以上の構成を具備することを特徴とする温度補正付きド
    ライバ回路。
JP07822896A 1996-03-06 1996-03-06 温度補正付きドライバ回路 Expired - Fee Related JP3650460B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP07822896A JP3650460B2 (ja) 1996-03-06 1996-03-06 温度補正付きドライバ回路
CN97190002A CN1098561C (zh) 1996-03-06 1997-01-20 附加温度补偿的驱动电路
KR1019970704687A KR100252721B1 (ko) 1996-03-06 1997-01-20 온도보정용구동회로
DE19780296T DE19780296C2 (de) 1996-03-06 1997-01-20 Treiberschaltung mit Temperaturkorrekturschaltung
US08/913,350 US5973542A (en) 1996-03-06 1997-01-20 Driver circuit with temperature correction circuit
PCT/JP1997/000103 WO1997033370A1 (fr) 1996-03-06 1997-01-20 Circuit de commande compense en temperature
GB9722767A GB2316559B (en) 1996-03-06 1997-01-20 Driver circuit with temperature correction circuit
TW086101828A TW320684B (ja) 1996-03-06 1997-02-17
US09/121,953 US6094085A (en) 1996-03-06 1998-07-24 Driver circuit with temperature correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07822896A JP3650460B2 (ja) 1996-03-06 1996-03-06 温度補正付きドライバ回路

Publications (2)

Publication Number Publication Date
JPH09246944A true JPH09246944A (ja) 1997-09-19
JP3650460B2 JP3650460B2 (ja) 2005-05-18

Family

ID=13656199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07822896A Expired - Fee Related JP3650460B2 (ja) 1996-03-06 1996-03-06 温度補正付きドライバ回路

Country Status (8)

Country Link
US (1) US5973542A (ja)
JP (1) JP3650460B2 (ja)
KR (1) KR100252721B1 (ja)
CN (1) CN1098561C (ja)
DE (1) DE19780296C2 (ja)
GB (1) GB2316559B (ja)
TW (1) TW320684B (ja)
WO (1) WO1997033370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088713A1 (ja) * 2006-01-31 2007-08-09 Advantest Corporation 温度補償回路および試験装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204720B1 (en) * 1998-10-09 2001-03-20 Elantec Semiconductor, Inc. Load current control circuitry for power supplies driving a common load for providing a uniform temperature distribution
US6415388B1 (en) * 1998-10-30 2002-07-02 Intel Corporation Method and apparatus for power throttling in a microprocessor using a closed loop feedback system
EP0961409B1 (en) * 1999-02-10 2001-09-26 Agilent Technologies Inc. a Delaware Corporation Compensations of timing errors caused by dynamic thermal mismatches
US20030076154A1 (en) * 2001-10-17 2003-04-24 Kaveh Shakeri Controlling circuit power consumption through supply voltage control
US7395527B2 (en) 2003-09-30 2008-07-01 International Business Machines Corporation Method and apparatus for counting instruction execution and data accesses
US8381037B2 (en) 2003-10-09 2013-02-19 International Business Machines Corporation Method and system for autonomic execution path selection in an application
US7415705B2 (en) 2004-01-14 2008-08-19 International Business Machines Corporation Autonomic method and apparatus for hardware assist for patching code
US7895382B2 (en) 2004-01-14 2011-02-22 International Business Machines Corporation Method and apparatus for qualifying collection of performance monitoring events by types of interrupt when interrupt occurs
US7323898B2 (en) * 2005-07-18 2008-01-29 Teradyne, Inc. Pin electronics driver
CN102938650A (zh) * 2012-11-09 2013-02-20 华为技术有限公司 对信号进行补偿的方法、串行器以及解串器
US9322719B2 (en) * 2013-05-29 2016-04-26 Intel IP Corporation Input stage for temperature measurement system
US9885685B2 (en) 2014-10-10 2018-02-06 Ford Global Technologies, Llc Compensating oxygen sensor aging
US10317862B2 (en) 2015-02-06 2019-06-11 Johnson Controls Technology Company Systems and methods for heat rise compensation
US10082308B2 (en) 2015-02-06 2018-09-25 Johnson Controls Technology Company Thermostat with heat rise compensation based on wireless data transmission
US11493220B2 (en) 2015-02-06 2022-11-08 Johnson Controls Technology Company Systems and methods for heat rise compensation
CN115250124B (zh) * 2021-04-26 2024-01-19 瑞昱半导体股份有限公司 收发器电路与传送功率偏差补偿方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523154A (en) * 1983-05-18 1985-06-11 Genrad, Inc. Enhanced-accuracy semiconductor power amplifier
NZ216904A (en) * 1985-07-22 1989-01-06 Beale David George Audio amplifier with overload limiting
US4924112A (en) * 1988-10-31 1990-05-08 Motorola Inc. Microprocessor having high current drive and feedback for temperature control
US4975598A (en) * 1988-12-21 1990-12-04 Intel Corporation Temperature, voltage, and process compensated output driver
US4952818A (en) * 1989-05-17 1990-08-28 International Business Machines Corporation Transmission line driver circuits
US5021684A (en) * 1989-11-09 1991-06-04 Intel Corporation Process, supply, temperature compensating CMOS output buffer
US5066873A (en) * 1989-12-04 1991-11-19 Altera Corporation Integrated circuits with reduced switching noise
US5017807A (en) * 1990-07-05 1991-05-21 At&T Bell Laboratories Output buffer having capacitive drive shunt for reduced noise
JP3288727B2 (ja) * 1991-05-24 2002-06-04 株式会社東芝 出力回路
JPH0579481A (ja) * 1991-09-19 1993-03-30 Daikin Ind Ltd ロータリ圧縮機
JP2688035B2 (ja) * 1992-02-14 1997-12-08 テキサス インスツルメンツ インコーポレイテッド 温度補償回路及び動作方法
JPH0579481U (ja) * 1992-03-30 1993-10-29 横河電機株式会社 Lsiテスタ
US5311084A (en) * 1992-06-23 1994-05-10 At&T Bell Laboratories Integrated circuit buffer with controlled rise/fall time
JPH0786900A (ja) * 1993-09-17 1995-03-31 Fujitsu Ltd 半導体装置
JPH0897693A (ja) * 1994-09-20 1996-04-12 Mazda Motor Corp 出力バッファ補償回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088713A1 (ja) * 2006-01-31 2007-08-09 Advantest Corporation 温度補償回路および試験装置
US7342407B2 (en) 2006-01-31 2008-03-11 Advantest Corporation Temperature compensation circuit and testing apparatus

Also Published As

Publication number Publication date
GB2316559A (en) 1998-02-25
KR19980701298A (ko) 1998-05-15
WO1997033370A1 (fr) 1997-09-12
CN1178041A (zh) 1998-04-01
GB2316559B (en) 2000-12-13
US5973542A (en) 1999-10-26
KR100252721B1 (ko) 2000-04-15
DE19780296T1 (de) 1998-05-07
JP3650460B2 (ja) 2005-05-18
GB2316559A8 (en) 1998-03-12
CN1098561C (zh) 2003-01-08
DE19780296C2 (de) 2002-10-10
TW320684B (ja) 1997-11-21
GB9722767D0 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
JP3650460B2 (ja) 温度補正付きドライバ回路
US7528637B2 (en) Driver circuit
KR100212348B1 (ko) 전위검출회로 및 반도체 집적회로
KR100521354B1 (ko) 온도에 의해 유도되는 집적 회로의 지연 변동을 보상하기위한 시스템
JP3463628B2 (ja) スルーレート調整可能な出力回路を備えた半導体回路およびその調整方法ならびに自動調整装置
US7548115B1 (en) Common mode rejection ratio trim circuit and methodology
WO2023018667A1 (en) Variable gain amplifier with temperature compensated gain
US6028467A (en) Differential output circuit
US7692453B2 (en) Detector of differential threshold voltage
US5869992A (en) Delay time control circuit
KR950010412B1 (ko) 집적회로 검사장치
US6094085A (en) Driver circuit with temperature correction circuit
WO1997024806A1 (en) Semiconductor integrated circuit device with delay error correcting circuit
US7345536B2 (en) Amplifier circuit and control method thereof
EP1079515A1 (en) MOSFET amplifier circuit
US6462598B1 (en) Delay time control circuit
US7009420B2 (en) Input circuit for receiving a signal at an input on an integrated circuit
EP0610064B1 (en) Transistor switching
US7659756B2 (en) MOSFET transistor amplifier with controlled output current
JP2868115B2 (ja) 半導体集積回路駆動用電源回路
RU2116693C1 (ru) Устройство стабилизации режима транзистора
KR100214477B1 (ko) 반도체 메모리장치
KR100219162B1 (ko) 파워앰프의 아이들링전류 자동조정회로
US20060076969A1 (en) Current switch and method of driving the same
US20030011425A1 (en) Injection current test circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees