JPH09232316A - Intermediate metal dielectric layer flattening method - Google Patents

Intermediate metal dielectric layer flattening method

Info

Publication number
JPH09232316A
JPH09232316A JP7507396A JP7507396A JPH09232316A JP H09232316 A JPH09232316 A JP H09232316A JP 7507396 A JP7507396 A JP 7507396A JP 7507396 A JP7507396 A JP 7507396A JP H09232316 A JPH09232316 A JP H09232316A
Authority
JP
Japan
Prior art keywords
dielectric layer
layer
dielectric
teos
intermediate metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7507396A
Other languages
Japanese (ja)
Other versions
JP2960886B2 (en
Inventor
Kotsuo Chin
光▲つぉう▼ 陳
玉堂 ▲とう▼
Gyokudo To
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWAN MOSHII DENSHI KOFUN YUGENKOSHI
TAIWAN MOSHII DENSHI KOFUN YUU
TAIWAN MOSHII DENSHI KOFUN YUUGENKOUSHI
Original Assignee
TAIWAN MOSHII DENSHI KOFUN YUGENKOSHI
TAIWAN MOSHII DENSHI KOFUN YUU
TAIWAN MOSHII DENSHI KOFUN YUUGENKOUSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWAN MOSHII DENSHI KOFUN YUGENKOSHI, TAIWAN MOSHII DENSHI KOFUN YUU, TAIWAN MOSHII DENSHI KOFUN YUUGENKOUSHI filed Critical TAIWAN MOSHII DENSHI KOFUN YUGENKOSHI
Priority to JP7507396A priority Critical patent/JP2960886B2/en
Publication of JPH09232316A publication Critical patent/JPH09232316A/en
Application granted granted Critical
Publication of JP2960886B2 publication Critical patent/JP2960886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a dielectric layer having a uniform thickness with which an air gap between patterns of a metal conducting layer is completely filled, on a dielectric layer bottom layer, by depositing an intermediate metal dielectric bottom layer by a plasma enhanced chemical vapor deposition method. SOLUTION: On a silicon semiconductor substrate 10, an insulating layer 20 is formed, on which a metal conducting layer pattern 30 is formed by photoresist or plasma etching. On the insulating layer 20 and the metal conducting layer pattern 30, reaction material of tetraethoxysilane with ozone is deposited by a plasma enhanced chemical vapor deposition method, and a dielectric layer bottom layer 40 is formed. In this case, the deposition efficiency is made about 100 watt. On the dielectric layer bottom layer 40, a dielectric layer 50 of silicon dioxide having fluidity of tetraethoxysilane with oxone is formed by a thermal decomposition chemical vapor deposition method. Thereby a dielectric layer having a uniform thickness with which gaps between patterns of the metal conducting layer are completely filled can be formed on the dielectric bottom layer, so that intermediate metal dielectric layer flattening effect can be excellently achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一種の超大型集積回
路製造工程中、起伏を有する地形(SeverTopo
graphy)に平坦化誘電層を形成する方法に関し、
特に、プラズマ強化式化学気相成長法(PECVD:P
lasma−Enhanced Chemical V
apor Deposition)でテトラエトキシシ
ラン(TEOS:Tetraethoxysilane
s)を堆積し、その堆積物をPE−TEOS誘電層底層
として表示し、その異なる堆積条件を利用し、中間金属
誘電層(inter−metal−dielectri
c)平坦化の目的を達するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terrain with undulations (SeverTopo) during a manufacturing process of a very large scale integrated circuit.
and a method of forming a planarization dielectric layer on the
In particular, plasma enhanced chemical vapor deposition (PECVD: P
lasma-Enhanced Chemical V
aor Deposition) Tetraethoxysilane (TEOS: Tetraethoxysilane)
s), displaying the deposit as a PE-TEOS dielectric bottom layer, and utilizing its different deposition conditions, an inter-metal-dielectric layer (inter-metal-dielectric).
c) Relating to achieving the purpose of flattening.

【0002】[0002]

【従来の技術】集積回路の高度集積化により、多層金属
(Multi−Level Metallizatio
n)集積回路製造プロセス中に、多層金属と絶縁層の交
互堆積、エッチングにより凹凸の地勢が形成されやすく
なった。特に、スタックDRAM(Stack DRA
M)製造プロセスでは、コンデンサの製造に必要な四層
のポリシリコンの交互堆積、エッチングの結果、高低の
階段状地勢が形成されやすく、この起伏のある地勢は後
続の製造プロセスに不良な影響を与えやすく、その中で
は、ろ光が深すぎてフォトレジスト影像がひずんだり、
或いはエッチングの残さを発生して金属線が短絡する弊
害が最も著しい。
2. Description of the Related Art Due to high integration of integrated circuits, multi-level metallization
n) During the integrated circuit manufacturing process, the uneven topography was easily formed by the alternate deposition and etching of the multilayer metal and the insulating layer. In particular, stack DRAM (Stack DRA)
M) In the manufacturing process, high and low stepped terrains are likely to be formed as a result of the alternating deposition and etching of the four layers of polysilicon required for manufacturing the capacitor, and this rugged terrain has a bad influence on the subsequent manufacturing process. It is easy to give, in which the filtered image is too deep and the photoresist image is distorted,
Alternatively, the adverse effect of short-circuiting the metal wire due to the generation of etching residue is the most serious.

【0003】現在、起伏の不平な地勢を平坦化する技術
には、バイアススパッタード二酸化ケイ素(Bias
Sputterd Silicon Dioxide)
及び二酸化ケイ素フロー(Flow)によるものがあ
る、この二つの平坦化方法は時間がかかり且つコストが
高い。別に、製造プロセスが簡単でコストが低い平坦化
方法として自旋塗布式ガラス膜平坦化方法〔SOG(S
pin−On−Glass) planarizati
on Process〕がある。伝統的な二つの金属層
の中間の誘電層(中間金属誘電層:IMD:inter
−Inetal−dielectric)平坦化方法
は、まず、PE−TEOSを金属層上に堆積し、誘電層
底層(underlayer)となし、PE−TEOS
で誘電層底層を表示し、その上に、さらにオゾンを伴う
テトラエトキシシラン(O/TEOS)の反応物を堆
積して、一つの二酸化ケイ素誘電層を形成し、続いて、
さらにSOG平坦化方法を用いて、中間金属誘電層(I
MD)平坦化の目的を達するものであった。それについ
てはアメリカ合衆国特許第5,393,708号を参照
されたい)。
At present, a technique for leveling uneven terrain is bias sputtered silicon dioxide (Bias).
Sputted Silicon Dioxide)
And silicon dioxide flow (Flow), both planarization methods are time consuming and costly. Separately, as a flattening method with a simple manufacturing process and low cost, a spin coating glass film flattening method [SOG (S
pin-On-Glass) planarizati
on Process]. An intermediate dielectric layer between two traditional metal layers (intermediate metal dielectric layer: IMD: inter).
-Inetal-dielectric) planarization method is that PE-TEOS is first deposited on a metal layer to form a dielectric layer underlayer, and PE-TEOS is used.
To display the bottom layer of the dielectric layer and further deposit a reactant of tetraethoxysilane (O 3 / TEOS) with ozone to form one silicon dioxide dielectric layer, followed by
Further, by using the SOG planarization method, the intermediate metal dielectric layer (I
MD) The purpose of flattening was achieved. See US Pat. No. 5,393,708).

【0004】従来のIMD平坦化プロセスのキーポイン
トステップは以下のとおりである。1.まず誘電層パタ
ーンを準備する。2.誘電層上に一つのPE−TEOS
誘電層底層を堆積する。3.PE−TEOS誘電層底層
上に、さらにO/TEOS反応物を堆積し、二酸化ケ
イ素誘電層を形成し、平坦化の目的を達成する。但し、
/TEOS反応物の表面は極めて強い敏感度を有す
るため、O/TEOSの反応物をPE−TEOS誘電
層底層上に堆積する時には、PE−TEOS誘電層底層
の材質とそのキャリアの濃度等の因子により、敏感なO
/TEOS反応物表面とPE−TEOS誘電層底層材
質の交互作用により、堆積する誘電層の厚さに影響が現
れ、誘電層の厚さが不均一となる現象を発生することが
あった。このほか、カット前のチップ上のパターンの間
の間隙はその高さの幅に対する比値の分布に大きな違い
があり、さらにO/TEOS反応物の表面の敏感度の
問題から、O/TEOS反応物の堆積した二酸化ケイ
素誘電層は完全に金属間の空隙中に埋め込まれず、IM
D平坦化効果不良を引き起こした。図1には従来の中間
金属誘電層(IMD:inter−metal−die
lectric)平坦化方法を示す。それは、導電層パ
ターン1、誘電層底層2、O/TEOS反応物の堆積
により形成される誘電層3を包括する。該方法では、二
つの金属パターン間の誘電層で充填されていない空隙
4、誘電層の不均一な膜の厚さ5と6が発生しやすかっ
た。該方法は、まず、金属導電層1の上に一つの誘電層
底層2を形成し、さらに反応物を誘電層底層2上に堆積
してO/TEOS反応物の誘電層3(一般には流動性
を有する二酸化ケイ素が形成される)となし、平坦化の
目的を達する。但し、O/TEOS反応堆積物の表面
敏感度が極めて高いことから、誘電層3が誘電層底層2
上に堆積する時、誘電層底層2に用いられる材料とその
キャリア濃度の違いがO/TEOS反応物が堆積した
誘電層3の膜の厚さ5、6の不均一を招く。さらに、も
し円形のチップ上の導電層パターンの間の空隙の、幅に
対する高さの比の分布の違いがおおきければ、O/T
EOS反応物の堆積した誘電層3は完全に金属間の空隙
を充填することができず、誘電層3と誘電層底層2中間
に空隙4が残りやすい。即ち、この従来の技術は、IM
D平坦化には十分な効果を発揮できなかった。
The key points of the conventional IMD planarization process are: 1. First, a dielectric layer pattern is prepared. 2. One PE-TEOS on the dielectric layer
Deposit the bottom layer of the dielectric layer. 3. On top of the PE-TEOS dielectric bottom layer, further O 3 / TEOS reactant is deposited to form a silicon dioxide dielectric layer to achieve the planarization purpose. However,
Since the surface of the O 3 / TEOS reactant has an extremely high sensitivity, when the O 3 / TEOS reactant is deposited on the PE-TEOS dielectric bottom layer, the material of the PE-TEOS dielectric bottom layer and the concentration of its carrier are used. Sensitive O due to factors such as
The interaction between the surface of the 3 / TEOS reactant and the material of the bottom layer of the PE-TEOS dielectric layer may affect the thickness of the deposited dielectric layer, resulting in a phenomenon in which the thickness of the dielectric layer becomes uneven. In addition, the gap between the patterns on the chip before cutting has a large difference in the distribution of the ratio value with respect to the width of its height. Further, due to the problem of the surface sensitivity of the O 3 / TEOS reactant, O 3 / The TEOS reactant deposited silicon dioxide dielectric layer was not completely embedded in the intermetallic voids, and the IM
D caused a flattening effect failure. FIG. 1 illustrates a conventional intermediate metal dielectric layer (IMD).
(lectric) A flattening method is shown. It comprises a conductive layer pattern 1, a dielectric bottom layer 2, a dielectric layer 3 formed by deposition of O 3 / TEOS reactant. In this method, voids 4 not filled with the dielectric layer between the two metal patterns, and non-uniform film thicknesses 5 and 6 of the dielectric layer were likely to occur. In the method, first, one dielectric layer bottom layer 2 is formed on a metal conductive layer 1, and a reactant is further deposited on the dielectric layer bottom layer 2 to form a dielectric layer 3 (generally a flow layer) of an O 3 / TEOS reactant. Silicon dioxide having a property is formed), and the purpose of planarization is achieved. However, since the surface sensitivity of the O 3 / TEOS reaction deposit is extremely high, the dielectric layer 3 becomes the bottom layer of the dielectric layer 2.
When deposited on top, the difference in the material used for the bottom layer 2 of the dielectric layer and its carrier concentration leads to non-uniformity of the film thickness 5, 6 of the dielectric layer 3 with the O 3 / TEOS reactant deposited. Furthermore, if there is a large difference in the distribution of the height to width ratio of the voids between the conductive layer patterns on the circular chip, then O 3 / T
The dielectric layer 3 on which the EOS reactant is deposited cannot completely fill the voids between the metals, and voids 4 are likely to remain between the dielectric layer 3 and the bottom layer 2 of the dielectric layer. That is, this conventional technique is
A sufficient effect could not be exhibited for D flattening.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
技術における中間金属誘電層(IMD:inter−m
etal−dielectric)平坦化効果不良の問
題を解決する、一種の新たな、誘電底層(underl
ayer)の簡単な製造プロセスを提供すること、即
ち、そのキーポイントステップにおいて、誘電層底層の
堆積条件を代え、それにより、誘電底層とO/TEO
S反応物の堆積による誘電層の敏感表面の交互作用時に
発生する題を解決して良好なIMD平坦化効果を達成す
ることを課題とする。
SUMMARY OF THE INVENTION The present invention provides an intermediate metal dielectric layer (IMD: inter-m) in the prior art described above.
a kind of new dielectric bottom layer that solves the problem of poor planarization effect.
providing a simple manufacturing process of the dielectric bottom layer, that is, in its key point step, the deposition conditions of the dielectric bottom layer are changed, and thereby the dielectric bottom layer and the O 3 / TEO
It is an object to solve the problem that occurs during the interaction of the sensitive surface of the dielectric layer due to the deposition of the S reactant and achieve a good IMD planarization effect.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、一種
の中間金属(inter−metal)導電層パターン
を有する半導体基板上に平坦化誘電層を形成する方法で
あり、一つの半導体基板上に半導体素子と金属導電層パ
ターンを形成し、その後、一つの中間金属誘電層(IM
D:inter−metal−diclectric)
底層を上述の金属導電層パターン上と上述の半導体基板
のその他の区域に形成するが、該中間金属誘電層底層
は、プラズマ強化式化学気相成長法(PECVD:Pl
asma−Enhanced Chemical Va
por Deposition)により堆積し、その反
応物質はオゾンにテトラエトキシシラン(TEOS:T
etraethoxysilanes)とし、堆積物は
PE−TEOSで表示し、堆積効率は約100ワット程
度でPE−TEOS誘電層底層(underlaye
r)の堆積を完成して該中間金属誘電層底層の製造を完
成し、その後、該中間金属誘電層底層上に、さらにオゾ
ンを伴うテトラエトキシシランで流動性を有する一つの
酸化シリコン誘電層を形成し、完全に上述の金属導電層
パターンの間の空隙を充填し、中間金属誘電層の厚さを
均一とし、優れた中間金属誘電層平坦化効果を挙げるこ
とを特徴としている。
According to a first aspect of the present invention, there is provided a method of forming a planarization dielectric layer on a semiconductor substrate having a kind of an intermediate-metal conductive layer pattern. A semiconductor device and a metal conductive layer pattern are formed on the substrate, and then one intermediate metal dielectric layer (IM
D: inter-metal-dielectric)
A bottom layer is formed on the metal conductive layer pattern described above and on other areas of the semiconductor substrate described above, wherein the middle metal dielectric layer bottom layer is formed by plasma enhanced chemical vapor deposition (PECVD: Pl).
asma-Enhanced Chemical Va
Por Deposition), the reactant is ozone tetraethoxysilane (TEOS: T).
and the deposition is represented by PE-TEOS, and the deposition efficiency is about 100 watts and the PE-TEOS dielectric layer bottom layer (underlayer).
r) is completed to complete the manufacture of the intermediate metal dielectric bottom layer, and then a silicon oxide dielectric layer having fluidity with tetraethoxysilane with ozone is further formed on the intermediate metal dielectric bottom layer. It is characterized in that it is formed and completely fills the voids between the above-mentioned metal conductive layer patterns to make the thickness of the intermediate metal dielectric layer uniform and to have an excellent flattening effect on the intermediate metal dielectric layer.

【0007】請求項2の発明では、中間金属誘電層底層
の製造プロセス及び条件中、約400〜900ワットの
高効率で堆積後、さらに約100ワットの低効率でPE
−TEOS誘電層底層を堆積させている。
According to the second aspect of the present invention, during the manufacturing process and conditions of the bottom layer of the intermediate metal dielectric layer, PE is deposited with a high efficiency of about 400 to 900 watts and then with a low efficiency of about 100 watts.
-Depositing the TEOS dielectric bottom layer.

【0008】請求項3の発明では、中間金属誘電層底層
の堆積厚さは1000オングストロームから3000オ
ングストロームの間としている。
According to the third aspect of the present invention, the deposition thickness of the intermediate metal dielectric layer bottom layer is between 1000 angstroms and 3000 angstroms.

【0009】請求項4の発明では、反応物テトラエトキ
シシランとオゾンにより堆積する二酸化シリコン誘電層
を熱分解化学気相成長法(THCVD:Pyrolyt
icChemical Vapor Depositi
on)により堆積し、その厚さは3000〜10000
オングストロームの間としている。
In the invention of claim 4, the silicon dioxide dielectric layer deposited by the reactant tetraethoxysilane and ozone is pyrolyzed by chemical vapor deposition (THCVD).
icChemical Vapor Depositi
on) and its thickness is 3000 to 10000
It is between Angstroms.

【0010】請求項5の発明では、高効率で堆積するP
E−TEOS誘電層底層の厚さを1000〜2000オ
ングストロームの間とし、さらに約100ワットの低効
率で堆積するPE−TEOS誘電層底層の厚さを500
〜2000オングストロームの間としている。
According to the invention of claim 5, P which is deposited with high efficiency
The E-TEOS dielectric bottom layer thickness is between 1000 and 2000 angstroms, and the PE-TEOS dielectric bottom layer thickness is about 500 watts with a low efficiency deposition of about 100 watts.
It is set between 2000 angstroms.

【0011】[0011]

【発明の実施の形態】本発明の提供する中間金属誘電層
平坦化方法は、以下のステップを含む。 1.シリコン半導体基板上に一層の絶縁層を形成し、続
いて、一層の金属導電層を形成し、並びに周知のリソグ
ラフィー技術とプラズマエッチング技術により金属導電
層図案を形成する。 2.金属導電層上にプラズマ強化式化学気相成長法(P
ECVD:Plasma−Enhanced Chem
ical Vapor Deposition)で異な
る効率の誘電層底層を堆積する方式を利用し、IMD平
坦化効果を増加する。 3.熱分解化学気相成長法(THCVD:Phroly
tic Chemical Vapor Deposi
tion)を利用し誘電層底層上にO/TEOSの反
応物を堆積し、誘電層(一般には流動性を備えた二酸化
シリコンが形成される)を形成してIMD平坦化効果を
達成する。
BEST MODE FOR CARRYING OUT THE INVENTION The intermediate metal dielectric layer planarization method provided by the present invention includes the following steps. 1. An insulating layer is formed on a silicon semiconductor substrate, a metal conductive layer is subsequently formed, and a metal conductive pattern is formed by a well-known lithography technique and plasma etching technique. 2. Plasma enhanced chemical vapor deposition (P
ECVD: Plasma-Enhanced Chem
The IMD planarization effect is increased by using a method of depositing a bottom layer of a dielectric layer having different efficiencies by using an ionic vapor deposition method. 3. Pyrolysis chemical vapor deposition (THCVD)
tic Chemical Vapor Deposi
reaction is used to deposit an O 3 / TEOS reactant on the bottom of the dielectric layer to form a dielectric layer (generally fluid silicon dioxide is formed) to achieve the IMD planarization effect.

【0012】本発明の方法は、O/TEOS反応物の
表面敏感度という因子により引き起こされるIMD平坦
化効果不良の問題を解決し、誘電層底層上に厚さが非常
に均一で且つ完全に金属導電層のパターン間の間隙を充
填するもう一つの誘電層を形成することにより、良好な
IMD平坦化効果を得られる。
The method of the present invention solves the problem of poor IMD planarization effect caused by the factor of the surface sensitivity of the O 3 / TEOS reactant, resulting in a very uniform and perfectly uniform thickness on the bottom layer of the dielectric layer. A good IMD planarization effect can be obtained by forming another dielectric layer that fills the gap between the patterns of the metal conductive layer.

【0013】本発明の中間金属誘電層平坦化方法は、誘
電層底層を堆積する技術を選択的に利用し、金属導電層
図案上の誘電層を平坦とする目的を達成するもので、並
びに、その実施例では、わずかに単層の金属導電層に応
用されているが、ただし、集積回路に通じた者ならば簡
単に分かるように、本発明に掲載の方法は、多層金属連
線集積回路にも応用されて、多層の平坦化誘電層の形成
に用いられる。
The intermediate metal dielectric layer planarization method of the present invention selectively utilizes the technique of depositing a bottom layer of a dielectric layer to achieve the purpose of planarizing a dielectric layer on a metal conductive layer pattern, and In that embodiment, it is applied to a slightly single layer of metal conductive layer, however, as will be readily appreciated by those familiar with integrated circuits, the method disclosed in the present invention is a multi-layer metal interconnect integrated circuit. It is also used in the formation of multiple planarized dielectric layers.

【0014】[0014]

【実施例】図2に示されるのは、本発明の中間金属誘電
層平坦化方法であり、それは、シリコン半導体基板1
0、絶縁層20、金属導電層パターン30、誘電層底層
40、及びO/TEOS反応物が堆積した誘電層50
を包括する。その製造過程では、まず、シリコン半導体
基板10上に一層の絶縁層20を形成し、続いて、絶縁
層20上にさらに一つの金属導電層を形成し並びに従来
のフォトレジスト或いはプラズマエッチングにより、上
述の金属導電層パターン30を形成する(図2)。続い
て図3のように、金属導電層上に、プラズマ強化式化学
気相成長法(PECVD:Plasma−Enhanc
ed Chemical VaporDepositi
on)によりPE−TEOSの誘電層底層(under
layer)40を金属導電層パターン30と絶縁層2
0上に形成する。このPECVDによるPE−TEOS
(Plazma Enhanced TEOS)の誘電
層底層40の形成条件は以下のとおりである。 1.その反応物質は、酸素ガスにテトラエトキシシラン
とし(O+TEOS:tetraethoxysil
anes)、反応の真空条件はほぼ8から10Tor
r、反応温度は380℃から400℃程度、堆積効率は
100ワット程度、堆積速度は約4285オングストロ
ーム/min)堆積厚さは約1000オングストローム
から3000オングストローム程度とし、即ち低効率堆
積でPE−TEOS誘電層底層40を形成する。 2.その反応物質は、酸素ガスにテトラエトキシシラン
とし、(O+TEOS:tetraethoxysi
lanes)、反応の真空条件はほぼ8から10Tor
r)反応温度は380℃から400℃程度、堆積効率は
400〜900ワット程度、堆積速度は約4285オン
グスットローム/minN堆積厚さは約500〜200
0オングストローム程度とし、即ちまず、高効率で、次
に低効率で堆積してPE−TEOS誘電層底層40を形
成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Illustrated in FIG. 2 is an intermediate metal dielectric layer planarization method of the present invention, which comprises a silicon semiconductor substrate 1
0, the insulating layer 20, the metal conductive layer pattern 30, the dielectric bottom layer 40, and the O 3 / TEOS reactant-deposited dielectric layer 50.
Inclusive. In the manufacturing process, first, one insulating layer 20 is formed on the silicon semiconductor substrate 10, and then one metal conductive layer is further formed on the insulating layer 20, and the conventional photoresist or plasma etching is used to perform the above-mentioned process. The metal conductive layer pattern 30 is formed (FIG. 2). Then, as shown in FIG. 3, plasma enhanced chemical vapor deposition (PECVD) is formed on the metal conductive layer.
ed Chemical Vapor Depositi
ON), PE-TEOS dielectric layer bottom layer (under)
layer 40 to the metal conductive layer pattern 30 and the insulating layer 2
Form on 0. PE-TEOS by this PECVD
The conditions for forming the dielectric layer bottom layer 40 of (Plazma Enhanced TEOS) are as follows. 1. The reaction substance is tetraethoxysilane in oxygen gas (O 2 + TEOS: tetraethoxysil).
anes), the vacuum condition of the reaction is about 8 to 10 Tor
r, reaction temperature is about 380 ° C. to 400 ° C., deposition efficiency is about 100 watts, deposition rate is about 4285 Å / min) Deposition thickness is about 1000 Å to 3000 Å, that is, PE-TEOS dielectric is used for low-efficiency deposition. The bottom layer 40 is formed. 2. The reaction material was tetraethoxysilane in oxygen gas, and (O 2 + TEOS: tetraethoxysi)
lanes), the vacuum condition of the reaction is approximately 8 to 10 Tor
r) Reaction temperature is about 380 ° C to 400 ° C, deposition efficiency is about 400 to 900 watts, deposition rate is about 4285 angstrom / minN deposition thickness is about 500 to 200.
The PE-TEOS dielectric bottom layer 40 is formed with a thickness of about 0 Å, that is, with high efficiency and then with low efficiency.

【0015】以上の二つの製造プロセスの方式の一つで
製造したPE−TEOS誘電層底層底層40はいずれも
誘電層底層40上のO/TEOS反応物が堆積した誘
電層50の表面敏感性を効果的に改善する。
The PE-TEOS dielectric bottom layer bottom layer 40 manufactured by one of the above-described two manufacturing process methods is the surface sensitivity of the dielectric layer 50 on which the O 3 / TEOS reactant is deposited. Effectively improve.

【0016】図4に示されるのは、上記二つの方法の
中、一つを利用して完成した誘電層底層40堆積後に、
さらに、熱分解化学気相成長法(THCVD)を利用し
てO/TEOS反応物を堆積し、流動性を備えた二酸
化ケイ素(silicon oxide)の誘電層50
を形成したもので、以上により、IMD平坦化作用を達
成する。その中、反応物質はオゾンを伴うテトラエトキ
シシラン(TEOS:Tetraethoxysila
nes)とし、反応の真空条件はほぼ200から760
Torr、反応温度は380℃から440℃程度、堆積
膜厚は約3000から10000オングストローム程度
とする。
As shown in FIG. 4, after the dielectric layer bottom layer 40 completed by using one of the above two methods is deposited,
In addition, a thermal decomposition chemical vapor deposition (THCVD) method is used to deposit the O 3 / TEOS reactant, and a dielectric layer 50 of silicon dioxide having fluidity is provided.
In this way, the IMD flattening action is achieved. Among them, the reactant is tetraethoxysilane (TEOS: Tetraethoxysila) with ozone.
and the vacuum condition of the reaction is about 200 to 760
Torr, the reaction temperature is about 380 ° C. to 440 ° C., and the deposited film thickness is about 3000 to 10000 Å.

【0017】以上の図2、3、4に示す三つのステップ
により、IMD平坦化作用を完成するが、その中、図3
はキーポイントステップとなる。本発明の製造方法を利
用して、誘電層の平坦化効果はさらに完全なものとな
る。
The IMD flattening operation is completed by the three steps shown in FIGS.
Is a key point step. Utilizing the manufacturing method of the present invention, the planarization effect of the dielectric layer is further perfected.

【0018】[0018]

【発明の効果】本発明の方法は単にO/TEOS反応
物の表面の敏感度の因子を解決するだけでなく、それに
より引き起こされるIMD平坦化効果不良の問題を解決
し、且つ熱分解化学気相成長法で、テトラエトキシシラ
ン(TEOS)とオゾンガスを利用して反応物を別の誘
電層を誘電層底層上に堆積し、該誘電層はその厚さが非
常に均一で、且つ完全に上述の金属導電層パターンの間
の空隙を充填するため、良好なIMD平坦化効果を達成
し、商品競争時に要求される製造コストの低さ、製造の
簡易性及び商品の優良性などにおいて優勢を示す。
INDUSTRIAL APPLICABILITY The method of the present invention not only solves the surface sensitivity factor of the O 3 / TEOS reactant, but also solves the problem of IMD flattening effect caused thereby, and the thermal decomposition chemistry. In a vapor deposition method, tetraethoxysilane (TEOS) and ozone gas are used to deposit a reactant on another dielectric layer on the bottom layer of the dielectric layer, the dielectric layer having a very uniform thickness and completely formed. Since it fills the voids between the metal conductive layer patterns described above, it achieves a good IMD flattening effect, and is superior in terms of low manufacturing cost required for product competition, ease of manufacturing, and product excellence. Show.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のIMD平坦化方法を示す断面図である。FIG. 1 is a cross-sectional view showing a conventional IMD flattening method.

【図2】本発明のIMD平坦化方法におけるプロセスを
示す断面図である。
FIG. 2 is a cross-sectional view showing a process in the IMD flattening method of the present invention.

【図3】図2に続く本発明のIMD平坦化方法における
プロセスを示す断面図である。
FIG. 3 is a cross-sectional view showing a process in the IMD flattening method of the present invention subsequent to FIG.

【図4】図3に続く本発明のIMD平坦化方法における
プロセスを示す断面図である。
FIG. 4 is a cross-sectional view showing a process in the IMD planarization method of the present invention subsequent to FIG.

【符号の説明】[Explanation of symbols]

1・・・導電層パターン 2・・・誘電層底層 3・・
・誘電層 4・・・空隙 5、6・・・膜の厚さ 10・・・シリ
コン半導体基板 20・・・絶縁層 30・・・金属導電層パターン 4
0・・・誘電層底層 50・・・誘電層
1 ... Conductive layer pattern 2 ... Dielectric layer bottom layer 3 ...
-Dielectric layer 4 ... Voids 5, 6 ... Film thickness 10 ... Silicon semiconductor substrate 20 ... Insulating layer 30 ... Metal conductive layer pattern 4
0 ... Dielectric layer bottom layer 50 ... Dielectric layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一種の中間金属(inter−meta
l)導電層パターンを有する半導体基板上に平坦化誘電
層を形成する方法であり、 一つの半導体基板上に半導体素子と金属導電層パターン
を形成し、その後、一つの中間金属誘電層(IMD:i
nter−metal−dielectric)底層を
上述の金属導電層パターン上と上述の半導体基板のその
他の区域に形成するが、該中間金属誘電層底層は、プラ
ズマ強化式化学気相成長法(PECVD:Plasma
−Enhanced Chemical Vapor
Depositlon)により堆積し、その反応物質は
オゾンにテトラエトキシシラン(TEOS:Tetra
ethoxysilanes)とし、堆積物はPE−T
EOSで表示し、堆積効率は約100ワット程度でPE
−TEOS誘電層底層(underlayer)の堆積
を完成して該中間金属誘電層底層の製造を完成し、 その後、該中間金属誘電層底層上に、さらにオゾンを伴
うテトラエトキシシランで流動性を有する一つの酸化シ
リコン誘電層を形成し、完全に上述の金属導電層パター
ンの間の空隙を充填し、中間金属誘電層の厚さを均一と
し、優れた中間金属誘電層平坦化効果を挙げる、中間金
属誘電層平坦化方法。
1. A kind of inter-meta
l) A method of forming a planarization dielectric layer on a semiconductor substrate having a conductive layer pattern, in which a semiconductor device and a metal conductive layer pattern are formed on one semiconductor substrate, and then one intermediate metal dielectric layer (IMD: i
An inter-metal-dielectric) bottom layer is formed on the metal conductive layer pattern described above and on other areas of the semiconductor substrate described above, wherein the middle metal dielectric layer bottom layer is formed by plasma enhanced chemical vapor deposition (PECVD).
-Enhanced Chemical Vapor
Depositron), whose reactant is ozone tetraethoxysilane (TEOS: Tetra).
Ethoxysilanes) and the deposit is PE-T
Displayed by EOS, the deposition efficiency is about 100 watts and PE
-Completion of the TEOS dielectric layer underlayer deposition to complete the manufacture of the intermediate metal dielectric layer bottom layer, and then on the intermediate metal dielectric layer bottom layer, with a flowability of tetraethoxysilane with further ozone. Forming two silicon oxide dielectric layers, completely filling the voids between the metal conductive layer patterns described above, making the thickness of the intermediate metal dielectric layer uniform, and providing an excellent intermediate metal dielectric layer flattening effect. Method for planarizing a dielectric layer.
【請求項2】 中間金属誘電層底層の製造プロセス及び
条件中、約400〜900ワットの高効率で堆積後、さ
らに約100ワットの低効率でPE−TEOS誘電層底
層を堆積させる、請求項1に記載の中間金属誘電層平坦
化方法。
2. The PE-TEOS dielectric bottom layer is deposited at a high efficiency of about 400-900 Watts and then at a low efficiency of about 100 Watts during the manufacturing process and conditions of the intermediate metal dielectric bottom layer. A method of planarizing an intermediate metal dielectric layer according to claim 1.
【請求項3】 中間金属誘電層底層の堆積厚さは100
0オングストロームから3000オングストロームの間
とする、請求項1または請求項2に記載の中間金属誘電
層平坦化方法。
3. The intermediate metal dielectric layer bottom layer has a deposited thickness of 100.
The method for planarizing an intermediate metal dielectric layer according to claim 1 or 2, wherein the thickness is between 0 Å and 3000 Å.
【請求項4】 反応物テトラエトキシシランとオゾンに
より堆積する二酸化シリコン誘電層は熱分解化学気相成
長法(THCVD:Pyrolytic Chemic
al Vapor Deposition)により堆積
し、その厚さは3000〜10000オーングストロー
ムの間とする、請求項1または請求項2に記載の中間金
属誘電層平坦化方法。
4. The silicon dioxide dielectric layer deposited with the reactants tetraethoxysilane and ozone is pyrolysis chemical vapor deposition (THCVD).
3. A method of planarizing an intermediate metal dielectric layer according to claim 1 or claim 2, wherein the intermediate metal dielectric layer is deposited by Al Vapor Deposition) and its thickness is between 3000 and 10000 angstroms.
【請求項5】 高効率で堆積するPE−TEOS誘電層
底層の厚さは1000〜2000オングストロームの間
とし、さらに約100ワットの低効率で堆積するPE−
TEOS誘電層底層の厚さは500〜2000オングス
トロームの間とする、請求項2に記載の中間金属誘電層
平坦化方法。
5. A highly efficient PE-TEOS dielectric bottom layer having a thickness between 1000 and 2000 angstroms, and a low efficient PE-TEOS deposition rate of about 100 watts.
The method of claim 2, wherein the TEOS dielectric bottom layer has a thickness between 500 and 2000 angstroms.
JP7507396A 1996-02-23 1996-02-23 Interlayer insulating film flattening method Expired - Fee Related JP2960886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7507396A JP2960886B2 (en) 1996-02-23 1996-02-23 Interlayer insulating film flattening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7507396A JP2960886B2 (en) 1996-02-23 1996-02-23 Interlayer insulating film flattening method

Publications (2)

Publication Number Publication Date
JPH09232316A true JPH09232316A (en) 1997-09-05
JP2960886B2 JP2960886B2 (en) 1999-10-12

Family

ID=13565659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7507396A Expired - Fee Related JP2960886B2 (en) 1996-02-23 1996-02-23 Interlayer insulating film flattening method

Country Status (1)

Country Link
JP (1) JP2960886B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510743B1 (en) * 2000-12-30 2005-08-30 주식회사 하이닉스반도체 Method for fabricating insulation between wire and wire
KR100691487B1 (en) * 2004-12-20 2007-03-09 주식회사 하이닉스반도체 Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510743B1 (en) * 2000-12-30 2005-08-30 주식회사 하이닉스반도체 Method for fabricating insulation between wire and wire
KR100691487B1 (en) * 2004-12-20 2007-03-09 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US7534553B2 (en) 2004-12-20 2009-05-19 Hynix Semiconductor Inc. Method for fabricating semiconductor device

Also Published As

Publication number Publication date
JP2960886B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US5721156A (en) Method of manufacturing a semiconductor device with a planarized integrated circuit
JP2973905B2 (en) Method for manufacturing semiconductor device
CN1049764C (en) Method for making dielectric layer of integrated circuit
JPH09232316A (en) Intermediate metal dielectric layer flattening method
JPH01185945A (en) Manufacture of semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
JP2981366B2 (en) Method for manufacturing semiconductor device
JPH09153487A (en) Manufacture of semiconductor device
JPH0744218B2 (en) Semiconductor device and manufacturing method thereof
JP2969680B2 (en) Method for manufacturing semiconductor device
JPH0456323A (en) Manufacture of semiconductor device
JP3070564B2 (en) Method for manufacturing semiconductor device
US7482278B1 (en) Key-hole free process for high aspect ratio gap filling with reentrant spacer
JP3279737B2 (en) Method for manufacturing semiconductor device
JPS61136244A (en) Wiring process of semiconductor device
KR100253355B1 (en) Method for fabricating contact of semiconductor device
JPS61206242A (en) Manufacture of semiconductor device
JPH01272121A (en) Through-hole structure and manufacture thereof
JPH098007A (en) Method for flattening insulation film
JPH0425159A (en) Forming method of electrode wiring
JPH0590203A (en) Manufacture of semiconductor device
JPH0653189A (en) Method for flattening of film formation layer
JPH03149818A (en) Semiconductor device and manufacture thereof
JPH07115092A (en) Manufacture of semiconductor device having insulating film
JPH0744219B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees