JPH09232008A - Regenerating method for nonaqueous electrolyte - Google Patents

Regenerating method for nonaqueous electrolyte

Info

Publication number
JPH09232008A
JPH09232008A JP3489496A JP3489496A JPH09232008A JP H09232008 A JPH09232008 A JP H09232008A JP 3489496 A JP3489496 A JP 3489496A JP 3489496 A JP3489496 A JP 3489496A JP H09232008 A JPH09232008 A JP H09232008A
Authority
JP
Japan
Prior art keywords
activated carbon
aqueous electrolyte
electrolytic solution
deteriorated
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3489496A
Other languages
Japanese (ja)
Inventor
Yuko Kanazawa
祐子 金澤
Toshiyuki Miwa
俊之 美和
Nozomi Narita
望 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3489496A priority Critical patent/JPH09232008A/en
Publication of JPH09232008A publication Critical patent/JPH09232008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To recycle deteriorated nonaqueous electrolyte. SOLUTION: When deteriorated nonaqueous electrolyte is recycled by activated carbon, the activated carbon is added in form of powder or particle by 100g or more in relation to one liter of nonaqueous electrolyte. The nonaqueous electrolyte is stirred after addition, it is left for the required time, and the deterioration causing material in electrolyte is adsorbed by the activated carbon. The deteriorating causing material can be removed from the electrolyte by filtering the electrolyte and removing the activated carbon after leaving, and regeneration of deteriorated electrolyte can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
を始めとする各種電池などにおいて用いられている非水
系電解液に係り、特に電解液が劣化したときの再生方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte used in various batteries such as a lithium secondary battery, and more particularly to a method for regenerating a deteriorated electrolyte.

【0002】[0002]

【従来の技術】リチウム二次電池を始めとする各種電池
などにおいて用いられる非水系電解液は、電池などの試
験または研究などにおける用途で、例えば容器などに貯
留されて長期間保管されたり高温環境下に置かれたりし
た場合に、変色したり変質したりすることがある。これ
らの変色や変質は、空気中の水分が電解液に混入して、
フッ化水素(HF)といった塩の分解によってできた物
質や、プロピレンカーボネートまたはポリプロピレンの
ような溶媒の重合物などが多量に生成されるのが原因で
あると考えられている。非水系電解液は、このような塩
の分解物や溶媒の重合物などが多量に生成されることに
よって、電解液本来の能力を損ない劣化してしまう。劣
化した電解液は、他へ再利用されることなくほとんど廃
棄処分されていた。
2. Description of the Related Art Non-aqueous electrolytes used in various batteries such as lithium secondary batteries are used for testing or research of batteries, and are stored in containers for a long period of time or in a high temperature environment. When placed underneath, it may discolor or deteriorate. These discolorations and alterations are caused by the inclusion of moisture in the air in the electrolyte,
It is considered that the cause is that a large amount of a substance such as hydrogen fluoride (HF) formed by decomposition of a salt or a polymer of a solvent such as propylene carbonate or polypropylene is generated. The non-aqueous electrolyte solution deteriorates by impairing the original ability of the electrolyte solution due to the production of a large amount of such salt decomposition products and solvent polymerization products. Most of the deteriorated electrolyte was discarded without being reused elsewhere.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記非
水系電解液にあっては、非常に高価であり、貴重な素材
であることから、劣化後の再利用が望まれていた。
However, since the non-aqueous electrolyte solution is a very expensive and valuable material, it has been desired to reuse it after deterioration.

【0004】本発明は、前記事情に鑑みてなされたもの
であって、その目的は、劣化した非水系電解液の再利用
を図ることが可能な非水系電解液の再生方法を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of regenerating a deteriorated non-aqueous electrolytic solution. is there.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る非水系電解液の再生方法にあっては、
劣化した非水系電解液に活性炭を添加して、該非水系電
解液を撹拌してから該非水系電解液を所要時間放置し、
その後、該非水系電解液を濾過して該活性炭を除去す
る。この方法によれば、劣化した非水系電解液に含有し
ているHFなどの劣化原因物を活性炭に吸着させて除去
することができる。これにより、劣化した非水系電解液
の能力を回復させることができるので、再び電解液とし
ての利用が可能となる。従って、非水系電解液が劣化し
た場合であっても廃棄処分することなく再利用を図るこ
とが可能となる。
In order to achieve the above object, in the method for regenerating a non-aqueous electrolyte according to the present invention,
Activated carbon is added to the deteriorated non-aqueous electrolyte, the non-aqueous electrolyte is stirred, and then the non-aqueous electrolyte is left for a required time,
Then, the non-aqueous electrolyte solution is filtered to remove the activated carbon. According to this method, the cause of deterioration such as HF contained in the deteriorated non-aqueous electrolyte can be adsorbed on the activated carbon and removed. As a result, the capacity of the deteriorated non-aqueous electrolyte can be restored, and the electrolyte can be used again as an electrolyte. Therefore, even if the non-aqueous electrolyte is deteriorated, it can be reused without discarding it.

【0006】また、好ましくは、前記劣化した非水系電
解液のHF量が40ppm以下になるまで、前記非水系
電解液の撹拌または放置を繰り返してなる。このように
して非水系電解液のHF量が40ppm以下になれば、
電解液としての能力を劣化前と遜色ない程度にまで回復
させることができ、電解液として十分利用できるように
再生することができる。
[0006] Preferably, the non-aqueous electrolyte solution is repeatedly stirred or left standing until the HF amount of the deteriorated non-aqueous electrolyte solution becomes 40 ppm or less. In this way, if the HF content of the non-aqueous electrolyte solution becomes 40 ppm or less,
The ability as an electrolytic solution can be restored to a level comparable to that before deterioration and can be regenerated so that it can be sufficiently used as an electrolytic solution.

【0007】さらに、好ましくは、前記活性炭が前記非
水系電解液1リットルに対し100g以上添加されれ
ば、劣化原因物の除去を十分行うことができる。
Further, preferably, if 100 g or more of the activated carbon is added to 1 liter of the non-aqueous electrolyte solution, the deterioration-causing substances can be sufficiently removed.

【0008】[0008]

【発明の実施の形態】以下に本発明に係る非水系電解液
の再生方法について、添付図面に基づき説明する。本発
明に係る非水系電解液は、例えばリチウム二次電池を始
めとする各種電池などで用いられるものである。
BEST MODE FOR CARRYING OUT THE INVENTION A method for regenerating a non-aqueous electrolyte solution according to the present invention will be described below with reference to the accompanying drawings. The non-aqueous electrolyte solution according to the present invention is used, for example, in various batteries such as a lithium secondary battery.

【0009】この非水系電解液は有機溶媒に電解質を溶
解させたものであり、ここで用いられる有機溶媒として
は、例えば、プロピレンカーボネート(略称記号:P
C、以下同じ)、ジエチルカーボネート(DEC)、ジ
メチルカーボネート(DMC)、エチレンカーボネート
(EC)、1,2−ジメトキシエタン(DME)、γ−
ブチロラクトン(γ−BL)、テトラヒドロフラン(T
HF)、2−メチルテトラヒドロフラン(2−MeTH
F)、ジエチルエーテル(DEE)、スルホラン(S
L)などの単独溶媒またはそれらの混合溶媒などがあ
る。また、電解質としては、例えば、LiPF6 、Li
ClO4 、LiBF4 、LiAsF6 、LiCF3 SO
3 などがある。
This non-aqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent, and the organic solvent used here is, for example, propylene carbonate (abbreviation: P
C, the same hereinafter), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), γ-
Butyrolactone (γ-BL), tetrahydrofuran (T
HF), 2-methyltetrahydrofuran (2-MeTH
F), diethyl ether (DEE), sulfolane (S
L) and the like, single solvents or mixed solvents thereof. Further, as the electrolyte, for example, LiPF 6 , Li
ClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO
There are 3 etc.

【0010】このような非水系電解液は、電池などの試
験または研究などにおける用途で、例えば容器などに貯
留されて長期間保管されたり高温環境下に置かれたりし
た場合に、空気中の水分の混入によって、HFなどの塩
の分解によってできた物質や、プロピレンカーボネート
またはポリプロピレンのような溶媒の重合物などが多量
に生成されて、変色したり変質したりして劣化すること
がある。
Such a non-aqueous electrolyte solution is used in the test or research of batteries and the like, and when it is stored in a container or the like and stored for a long period of time or placed in a high temperature environment, the water content in the air is increased. Due to the incorporation of a large amount of a substance such as HF or the like formed by the decomposition of a salt or a polymer of a solvent such as propylene carbonate or polypropylene, a large amount of the substance may be discolored or deteriorated to deteriorate.

【0011】以下の表1は、4種類の非水系電解液、実
施例1乃至4について劣化前と劣化後の状態を、色、含
有水分量及び含有HF量について調べてまとめたもので
ある。ここで実施例1乃至4は、それぞれPCの単独溶
媒、混合比率1:1のPCとDECとの混合溶媒、混合
比率1:1:1のPCとDECとDMCとの混合溶媒、
混合比率1:1:1のECとPCとDECとの混合溶媒
に対し、それぞれ電解質としてLiPF6 を1mol/
リットルの割合で溶解させてなる。
Table 1 below summarizes the states of the four types of non-aqueous electrolytes, Examples 1 to 4 before and after deterioration, in terms of color, water content and HF content. Here, Examples 1 to 4 are, respectively, a single solvent of PC, a mixed solvent of PC and DEC with a mixing ratio of 1: 1 and a mixed solvent of PC, DEC and DMC with a mixing ratio of 1: 1: 1.
For a mixed solvent of EC, PC and DEC having a mixing ratio of 1: 1: 1, LiPF 6 as an electrolyte was 1 mol / mol, respectively.
Dissolved at a rate of 1 liter.

【0012】[0012]

【表1】 この表1から、非水系電解液は劣化すると、無色透明か
ら濃褐色または黒色へと変色しているとともに、含有H
F量及び含有水分量についても劣化前に比べ増加してい
ることが判る。
[Table 1] From this Table 1, when the non-aqueous electrolyte solution deteriorates, it changes from colorless and transparent to dark brown or black and contains H
It can be seen that the F content and the water content are also increased as compared with those before the deterioration.

【0013】本発明にあっては、このような劣化した非
水系電解液を、活性炭を用いて再生するものである。こ
こで用いられる活性炭については、主に植物系と鉱物系
とがあり、植物系では、ヤシの実の殻から作られるヤシ
殻活性炭が有名で、この他、一般木材、鋸屑、木炭、素
灰(鋸屑乾留物)、クルミ殻などからなる果実殻、果実
種子(桃など)、果実殻炭、果実種子炭、パルプ製造副
生物、リグニン、廃液、製糖廃物(バカス)、廃糖蜜な
どがある。また、鉱物系では、泥炭、草炭、亜炭、褐
炭、レキ青炭、無煙炭、コークス、コールタール、石炭
ピッチ、石油蒸留残さ、石油ピッチなどがある。これら
の他、天然素材として海藻、再生繊維(レーヨン)、ま
た合成素材としてフェノール、サラン、アクリル樹脂な
どがある。
In the present invention, such deteriorated non-aqueous electrolyte is regenerated by using activated carbon. The activated carbon used here is mainly of plant type and mineral type, and in the plant type, coconut shell activated carbon made from palm shells is famous, in addition to this, general wood, sawdust, charcoal, ash. (Sawdust dry distillate), fruit shells such as walnut shells, fruit seeds (peaches, etc.), fruit shell charcoal, fruit seed charcoal, pulp production by-product, lignin, waste liquor, sugar waste (bacus), molasses, etc. In addition, in the mineral system, there are peat, grass peat, lignite, lignite, leek coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch and the like. In addition to these, there are seaweed and regenerated fibers (rayon) as natural materials, and phenol, saran, acrylic resin, etc. as synthetic materials.

【0014】これらの素材からなる活性炭は、粉末状ま
たは粒状で用いられ、劣化した非水系電解液に添加され
る。添加後、非水系電解液を撹拌することによって、活
性炭が電解液に十分に混合される。さらに、非水系電解
液を所要時間放置することによって、非水系電解液の劣
化原因物が活性炭に十分に吸着される。尚、ここで活性
炭による十分な吸着を行うために、さらに撹拌と放置と
を繰り返し行っても良い。その後、非水系電解液を濾過
して活性炭を除去することによって、劣化した非水系電
解液から劣化原因物を取り除くことができ、非水系電解
液を再生することができる。
Activated carbon made of these materials is used in the form of powder or particles and is added to the deteriorated non-aqueous electrolyte. After the addition, by stirring the non-aqueous electrolyte solution, the activated carbon is sufficiently mixed with the electrolyte solution. Furthermore, by allowing the non-aqueous electrolyte solution to stand for a required time, the cause of deterioration of the non-aqueous electrolyte solution is sufficiently adsorbed on the activated carbon. Here, in order to perform sufficient adsorption by the activated carbon, stirring and standing may be further repeated. After that, by filtering the non-aqueous electrolyte solution to remove the activated carbon, the cause of deterioration can be removed from the deteriorated non-aqueous electrolyte solution, and the non-aqueous electrolyte solution can be regenerated.

【0015】以下に、本発明の効果を確認するために行
った試験について説明する。この試験では、まず始め
に、電解液の劣化に対する性能限界について知るため
に、非水系電解液の含有HF量と電池の充放電性能との
関係について調べた。ここでは、前記実施例2と同様の
成分構成を有する非水系電解液を基にして、含有HF量
がそれぞれ10ppm,20ppm,30ppm,40
ppm,50ppm,60ppm,70ppmに各々設
定された7種類の電解液を作成し、これらを用いてそれ
ぞれスパイラル形リチウム二次電池を組み立てた。
The test conducted to confirm the effect of the present invention will be described below. In this test, first, in order to know the performance limit against deterioration of the electrolytic solution, the relationship between the amount of HF contained in the non-aqueous electrolytic solution and the charge / discharge performance of the battery was examined. Here, based on the non-aqueous electrolyte having the same composition as in Example 2, the HF contents were 10 ppm, 20 ppm, 30 ppm and 40, respectively.
Seven types of electrolytic solutions were set to ppm, 50 ppm, 60 ppm, and 70 ppm, respectively, and spiral type lithium secondary batteries were assembled using these electrolytic solutions.

【0016】ここで、このスパイラル形リチウム二次電
池について詳述する。この電池は、図1に示すように、
円筒状の負極缶2の内部に、正極シート4と負極シート
6との間にポリプロピレン製の多孔質フィルムセパレー
タ8を挟んで渦巻き状に巻回してなる電極群10が収装
され、負極缶2の開口端部にポリプロピレン製絶縁ガス
ケット12を介して安全弁付正極端子板14が封止され
てなる。正極シート4は、正極活物質のLiCoO2
導電材のカーボン粉末と結着剤のPTFEの水性ディス
パーションとを重量比100:10:10の割合で混合
し、水でペースト状に混練してなる正極合剤を厚さ30
μmのアルミニウム箔の両面に塗着し、乾燥、圧延し
て、所定の大きさに切断し、帯状に成形したものであ
る。この正極シート4には、シートの長手方向に対して
垂直に一部の正極合剤をはぎ取ってむき出しとなったア
ルミニウム箔表面にチタン製の正極リード板16がスポ
ット溶接により取り付けられている。正極シート4には
1枚あたり約6.0gのLiCoO2 が塗着している。
また、負極シート6は、負極カーボン材料を銅金属箔に
塗着した後、乾燥、圧延し、所定の大きさに切断して帯
状に成形したものである。そして、負極シート6には、
シートの長手方向に対して垂直に一部の負極合剤をはぎ
取ってむき出しとなった銅金属箔表面にニッケル製の負
極リード板18がスポット溶接により取り付けられてい
る。前記正極リード板16は電極群10の上端部より延
出して正極端子板14の下面にスポット溶接により接続
されており、他方前記負極リード板18は電極群10の
下端部より延出し、電極群10の下端面と負極缶4の内
底面との間に介設されたポリプロピレン製絶縁底板20
を貫通して、負極缶4の内底面にスポット溶接により接
続されている。負極缶4内には前記非水系電解液が約
2.3ml注液され、電池は単三型電池(14.5φm
m×50mm)になっている。
Here, the spiral type lithium secondary battery will be described in detail. This battery, as shown in FIG.
Inside the cylindrical negative electrode can 2, an electrode group 10 formed by spirally winding a polypropylene porous film separator 8 sandwiched between a positive electrode sheet 4 and a negative electrode sheet 6 is housed, and the negative electrode can 2 A positive electrode terminal plate 14 with a safety valve is sealed at the open end of the via a polypropylene insulating gasket 12. The positive electrode sheet 4 was prepared by mixing LiCoO 2 as a positive electrode active material, carbon powder as a conductive material, and an aqueous dispersion of PTFE as a binder at a weight ratio of 100: 10: 10, and kneading them in a paste form with water. A positive electrode mixture that has a thickness of 30
The aluminum foil with a thickness of μm is applied on both sides, dried, rolled, cut into a predetermined size, and formed into a band shape. A positive electrode lead plate 16 made of titanium is attached to the positive electrode sheet 4 by spot welding on the exposed aluminum foil surface by stripping a part of the positive electrode mixture perpendicular to the longitudinal direction of the sheet. Each positive electrode sheet 4 is coated with about 6.0 g of LiCoO 2 .
The negative electrode sheet 6 is formed by applying a negative electrode carbon material to a copper metal foil, drying it, rolling it, cutting it into a predetermined size, and molding it into a strip shape. Then, in the negative electrode sheet 6,
A negative electrode lead plate 18 made of nickel is attached by spot welding to the surface of the copper metal foil which is exposed by stripping off a part of the negative electrode mixture perpendicularly to the longitudinal direction of the sheet. The positive electrode lead plate 16 extends from the upper end portion of the electrode group 10 and is connected to the lower surface of the positive electrode terminal plate 14 by spot welding, while the negative electrode lead plate 18 extends from the lower end portion of the electrode group 10. An insulating bottom plate 20 made of polypropylene interposed between the lower end surface of 10 and the inner bottom surface of the negative electrode can 4.
And is connected to the inner bottom surface of the negative electrode can 4 by spot welding. About 2.3 ml of the non-aqueous electrolyte was poured into the negative electrode can 4, and the battery was an AA battery (14.5 φm).
m × 50 mm).

【0017】そして、これら組み立てられた電池に対し
それぞれ、上限電圧4.2V、下限電圧3.0Vで電流
密度1mA/cm2 として充放電を繰り返すサイクル試
験を行った。各サイクル毎に放電容量を測定し、サイク
ル数を横軸、放電容量を縦軸にとり図2にグラフとして
示した。この図2から、含有HF量が50ppm以上で
ある電解液については、100サイクル経過するまでに
放電容量の低減が見られ、十分な性能が得られないこと
が認められた。これに対し、非水系電解液の含有HF量
が40ppm以下であれば、安定した充放電サイクル特
性が得られることが認められた。これらのことから、電
解液が性能を十分発揮するための含有HF量の上限値
は、40ppmであることが判った。
Then, each of the assembled batteries was subjected to a cycle test in which charging / discharging was repeated with an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V and a current density of 1 mA / cm 2 . The discharge capacity was measured for each cycle, and the horizontal axis represents the number of cycles and the vertical axis represents the discharge capacity, which is shown as a graph in FIG. From FIG. 2, it was confirmed that the discharge capacity of the electrolyte solution containing 50 ppm or more of HF was reduced by 100 cycles and sufficient performance could not be obtained. On the other hand, it was confirmed that when the HF content of the non-aqueous electrolyte solution was 40 ppm or less, stable charge / discharge cycle characteristics were obtained. From these, it was found that the upper limit value of the contained HF amount for the electrolyte to sufficiently exhibit its performance is 40 ppm.

【0018】次に、活性炭の吸着能力について知るため
に、活性炭添加量と電解液の含有HF量との関係を調べ
た。ここでは前記実施例1乃至4に係る劣化電解液を用
い、また活性炭については20μm程の粉末状のヤシ殻
活性炭を用いた。活性炭の添加量は電解液1リットル当
たり0〜200gの範囲内で20g毎に設定された。活
性炭添加後、電解液の容器を振って内部の電解液を撹拌
した後、途中容器を3,4回振り電解液の再撹拌を行い
つつ20日間放置した。そして、各々放置後における電
解液のHF量を測定し、実施例1乃至4についての結果
をそれぞれ図3乃至6のグラフに示した。
Next, in order to know the adsorption capacity of activated carbon, the relationship between the amount of activated carbon added and the amount of HF contained in the electrolytic solution was investigated. Here, the deteriorated electrolyte solutions according to Examples 1 to 4 were used, and the activated carbon used was powdery coconut shell activated carbon having a particle size of about 20 μm. The amount of activated carbon added was set at every 20 g within the range of 0 to 200 g per liter of the electrolytic solution. After the activated carbon was added, the container of the electrolytic solution was shaken to stir the electrolytic solution inside, and then the container was shaken 3 or 4 times to allow the electrolytic solution to re-stir for 20 days. Then, the amount of HF of the electrolytic solution after each standing was measured, and the results of Examples 1 to 4 are shown in the graphs of FIGS. 3 to 6, respectively.

【0019】これら図3乃至6から、活性炭添加量の増
加に伴ってHF量が低減していることが認められた。そ
して、前記結果から、電解液の含有HF量の上限値が4
0ppmであることから、活性炭の添加量が電解液1リ
ットル当たり最低約100gあれば、HFなどの劣化原
因物を吸着除去を十分に行えることが判った。
From these FIGS. 3 to 6, it was confirmed that the amount of HF decreased as the amount of activated carbon added increased. Then, from the above results, the upper limit of the amount of HF contained in the electrolytic solution is 4
Since it was 0 ppm, it was found that if the amount of activated carbon added was at least about 100 g per liter of the electrolytic solution, it was possible to sufficiently adsorb and remove deterioration-causing substances such as HF.

【0020】さらに、再生された電解液を用いた電池の
性能を調べた。ここでは、前記実施例1乃至4に係る劣
化電解液に対し、活性炭を最低添加量、即ち電解液1リ
ットル当たり100gで添加して、前記場合と同様、添
加後に電解液の撹拌を行ってから途中容器を3,4回振
り電解液の再撹拌を行いつつ20日間放置し、その後活
性炭を濾過により除去して電解液の再生を行った。そし
て、この再生された電解液に加え、それぞれ劣化前の電
解液を比較例1とし、また劣化した電解液を比較例2と
してこれら比較例1及び2をも用意して、それぞれ図1
に示すスパイラル形リチウム二次電池を組み立てた。組
み立てられた電池各々に対して、前記場合と同じ条件で
充放電サイクル試験を行い、その結果を実施例1乃至4
毎にそれぞれ図7乃至10に示した。
Further, the performance of the battery using the regenerated electrolytic solution was examined. Here, activated carbon was added to the deteriorated electrolytes according to Examples 1 to 4 in a minimum amount, that is, 100 g per liter of the electrolyte, and after the addition, stirring of the electrolyte was performed in the same manner as described above. On the way, the container was shaken 3 or 4 times and left for 20 days while re-stirring the electrolytic solution, and then the activated carbon was removed by filtration to regenerate the electrolytic solution. In addition to the regenerated electrolytic solution, the electrolytic solution before deterioration was used as Comparative Example 1, and the deteriorated electrolytic solution was used as Comparative Example 2 to prepare Comparative Examples 1 and 2, respectively.
The spiral lithium secondary battery shown in was assembled. A charge / discharge cycle test was performed on each of the assembled batteries under the same conditions as in the above case, and the results are shown in Examples 1 to 4.
Each is shown in FIGS. 7 to 10.

【0021】これら図7乃至10から、実施例1乃至4
に係る再生された電解液にあっては、劣化前の状態にあ
る比較例1とあまり遜色のない充放電サイクル特性が得
られており、再生によって性能が十分に回復されること
が確認できた。
From these FIGS. 7 to 10, Embodiments 1 to 4 are described.
With the regenerated electrolyte solution according to (1), the charge / discharge cycle characteristics comparable to those of Comparative Example 1 in the state before deterioration were obtained, and it was confirmed that the performance was sufficiently recovered by regeneration. .

【0022】[0022]

【発明の効果】以上発明の実施の形態で説明したよう
に、本発明に係る非水系電解液の再生方法によれば、劣
化した非水系電解液の劣化原因物を活性炭によって吸着
除去することができるので、劣化した非水系電解液の再
生を行うことができ、非水系電解液が劣化した場合でも
廃棄処分することなく再利用を図ることができるように
なる。
As described above in the embodiments of the invention, according to the method for regenerating a non-aqueous electrolyte according to the present invention, the deteriorated substance of the deteriorated non-aqueous electrolyte can be adsorbed and removed by activated carbon. As a result, the deteriorated non-aqueous electrolyte can be regenerated, and even if the non-aqueous electrolyte is deteriorated, it can be reused without discarding it.

【0023】また、前記劣化した非水系電解液のHF量
が40ppm以下になるまで、前記非水系電解液の撹拌
または放置を繰り返すことで、電解液としての能力を劣
化前と遜色ない程度にまで回復させることができ、電解
液として十分利用できるように再生することができる。
By repeating stirring or leaving the non-aqueous electrolyte solution until the HF amount of the deteriorated non-aqueous electrolyte solution becomes 40 ppm or less, the performance as the electrolyte solution is comparable to that before deterioration. It can be recovered and regenerated so that it can be fully utilized as an electrolyte.

【0024】さらにまた、活性炭が前記非水系電解液1
リットルに対し100g以上添加されれば、劣化原因物
の除去を十分に行うことができる。
Furthermore, activated carbon is the non-aqueous electrolyte 1
If 100 g or more is added to the liter, the deterioration-causing substance can be sufficiently removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】スパイラル状リチウム二次電池の内部構造を示
した縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the internal structure of a spiral lithium secondary battery.

【図2】電池の充放電サイクル特性を電解液の含有HF
量毎に示したグラフである。
FIG. 2 shows the charge / discharge cycle characteristics of a battery based on the HF content of the electrolyte
It is the graph shown for every quantity.

【図3】実施例1に係る電解液への活性炭添加量と再生
後の含有HF量との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the amount of activated carbon added to the electrolytic solution and the amount of contained HF after regeneration according to Example 1.

【図4】実施例2に係る電解液への活性炭添加量と再生
後の含有HF量との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the amount of activated carbon added to the electrolytic solution according to Example 2 and the amount of contained HF after regeneration.

【図5】実施例3に係る電解液への活性炭添加量と再生
後の含有HF量との関係を示したグラフである。
5 is a graph showing the relationship between the amount of activated carbon added to the electrolytic solution and the amount of contained HF after regeneration according to Example 3. FIG.

【図6】実施例4に係る電解液への活性炭添加量と再生
後の含有HF量との関係を示したグラフである。
FIG. 6 is a graph showing the relationship between the amount of activated carbon added to the electrolytic solution and the amount of contained HF after regeneration according to Example 4.

【図7】実施例1に係る電池の充放電サイクル特性を示
したグラフである。
7 is a graph showing charge / discharge cycle characteristics of the battery according to Example 1. FIG.

【図8】実施例2に係る電池の充放電サイクル特性を示
したグラフである。
FIG. 8 is a graph showing charge / discharge cycle characteristics of the battery according to Example 2.

【図9】実施例3に係る電池の充放電サイクル特性を示
したグラフである。
9 is a graph showing charge / discharge cycle characteristics of the battery according to Example 3. FIG.

【図10】実施例4に係る電池の充放電サイクル特性を
示したグラフである。
FIG. 10 is a graph showing charge / discharge cycle characteristics of the battery according to Example 4.

【符号の説明】[Explanation of symbols]

2 負極缶 4 正極シー
ト 6 負極シート 8 セパレー
タ 10 電極群 12 ガスケ
ット 14 正極端子板 16 正極リ
ード板 18 負極リード板 20 絶縁底
2 Negative electrode can 4 Positive electrode sheet 6 Negative electrode sheet 8 Separator 10 Electrode group 12 Gasket 14 Positive electrode terminal plate 16 Positive electrode lead plate 18 Negative electrode lead plate 20 Insulating bottom plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 劣化した非水系電解液に活性炭を添加し
て、該非水系電解液を撹拌してから該非水系電解液を所
要時間放置し、その後、該非水系電解液を濾過して該活
性炭を除去することを特徴とする非水系電解液の再生方
法。
1. Activated carbon is added to a deteriorated non-aqueous electrolyte solution, the non-aqueous electrolyte solution is stirred, and the non-aqueous electrolyte solution is allowed to stand for a required period of time. Thereafter, the non-aqueous electrolyte solution is filtered to remove the activated carbon. A method for regenerating a non-aqueous electrolytic solution, which comprises removing the electrolytic solution.
【請求項2】 前記劣化した非水系電解液のHF量が4
0ppm以下になるまで、前記非水系電解液の撹拌また
は放置を繰り返してなることを特徴とする請求項1記載
の非水系電解液の再生方法。
2. The HF amount of the deteriorated non-aqueous electrolyte is 4
The method for regenerating a non-aqueous electrolytic solution according to claim 1, wherein the non-aqueous electrolytic solution is repeatedly stirred or left to stand until it becomes 0 ppm or less.
【請求項3】 前記活性炭は、前記非水系電解液1リッ
トルに対し100g以上添加されることを特徴とする請
求項1または2記載の非水系電解液の再生方法。
3. The method for regenerating a non-aqueous electrolytic solution according to claim 1, wherein 100 g or more of the activated carbon is added to 1 liter of the non-aqueous electrolytic solution.
JP3489496A 1996-02-22 1996-02-22 Regenerating method for nonaqueous electrolyte Pending JPH09232008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3489496A JPH09232008A (en) 1996-02-22 1996-02-22 Regenerating method for nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3489496A JPH09232008A (en) 1996-02-22 1996-02-22 Regenerating method for nonaqueous electrolyte

Publications (1)

Publication Number Publication Date
JPH09232008A true JPH09232008A (en) 1997-09-05

Family

ID=12426886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3489496A Pending JPH09232008A (en) 1996-02-22 1996-02-22 Regenerating method for nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JPH09232008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103084A1 (en) * 2002-06-04 2003-12-11 有限会社 横井企画 Sheet member for regeneration of lithium-ion secondary battery and method of regenerating lithium-ion secondary battery with use of the sheet member
WO2011155298A1 (en) 2010-06-07 2011-12-15 トヨタ自動車株式会社 System and method for determination of deterioration of lithium ion secondary battery
WO2014065441A1 (en) * 2012-10-22 2014-05-01 (주)턴투 Lead acid battery electrolyte filtering device and reusage method using same
KR101428972B1 (en) * 2011-10-14 2014-08-14 (주)턴투 Lead-acid batteries electrolyte filtration devices
CN104600392A (en) * 2015-01-30 2015-05-06 湖南省正源储能材料与器件研究所 Method for recovering electrolyte of waste lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103084A1 (en) * 2002-06-04 2003-12-11 有限会社 横井企画 Sheet member for regeneration of lithium-ion secondary battery and method of regenerating lithium-ion secondary battery with use of the sheet member
WO2011155298A1 (en) 2010-06-07 2011-12-15 トヨタ自動車株式会社 System and method for determination of deterioration of lithium ion secondary battery
US8907674B2 (en) 2010-06-07 2014-12-09 Toyota Jidosha Kabushiki Kaisha System and method for determining degradation of rechargeable lithium ion battery
KR101428972B1 (en) * 2011-10-14 2014-08-14 (주)턴투 Lead-acid batteries electrolyte filtration devices
WO2014065441A1 (en) * 2012-10-22 2014-05-01 (주)턴투 Lead acid battery electrolyte filtering device and reusage method using same
CN104600392A (en) * 2015-01-30 2015-05-06 湖南省正源储能材料与器件研究所 Method for recovering electrolyte of waste lithium ion battery

Similar Documents

Publication Publication Date Title
US5296319A (en) Non-aqueous electrolyte secondary battery
DE112012004863B4 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4423277B2 (en) Lithium secondary battery
CN101636864A (en) Lithium / iron disulfide cell and method of preconditioning it
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
KR100424644B1 (en) Negative active material slurry composition for rechargeable lithium battery and method of preparing negative electrode for rechargeable lithium battery prepared using same
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH08162153A (en) Nonaqueous solvent secondary battery
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH05315006A (en) Noaqueous electrolyte cell and manufacture thereof
JPH09232008A (en) Regenerating method for nonaqueous electrolyte
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH09274920A (en) Nonaqueous electrolyte battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
DE19542608C2 (en) Secondary element with organic electrolyte
JP2778065B2 (en) Non-aqueous electrolyte secondary battery
EP1114480A4 (en) Metal ion batteries having non-compatible electrolytes and methods of fabricating same
CN111697233B (en) Positive electrode of lithium-manganese battery and lithium-manganese battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP2975627B2 (en) Battery
JPH0424824B2 (en)
US20190148710A1 (en) Lithium batteries
JP2003132948A (en) Nonaqueous electrolyte secondary battery
JPH0574491A (en) Nonaqueous electrolyte battery