JPH09227951A - Manufacture of cold rolled steel sheet for deep drawing - Google Patents

Manufacture of cold rolled steel sheet for deep drawing

Info

Publication number
JPH09227951A
JPH09227951A JP8039703A JP3970396A JPH09227951A JP H09227951 A JPH09227951 A JP H09227951A JP 8039703 A JP8039703 A JP 8039703A JP 3970396 A JP3970396 A JP 3970396A JP H09227951 A JPH09227951 A JP H09227951A
Authority
JP
Japan
Prior art keywords
steel sheet
cus
cold
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8039703A
Other languages
Japanese (ja)
Other versions
JP3293450B2 (en
Inventor
Yoshimasa Funakawa
義正 船川
Kunikazu Tomita
邦和 冨田
Takeshi Fujita
毅 藤田
Toru Inazumi
透 稲積
Masaaki Yamamoto
雅明 山本
Takatomo Eda
尚智 江田
Kaoru Sato
馨 佐藤
Yasuhide Ishiguro
康英 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP03970396A priority Critical patent/JP3293450B2/en
Publication of JPH09227951A publication Critical patent/JPH09227951A/en
Application granted granted Critical
Publication of JP3293450B2 publication Critical patent/JP3293450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a cold rolled steel sheet for deep drawing, suitable for use in automobile, electrical equipment, etc., and excellent in workability. SOLUTION: In the method of manufacturing a steel sheet containing, by weight, <=0.005% C, 0.001-0.020% S, 0.005-0.1% Cu, 0.01-0.2% Ti, and <=0.005% N, a slab in which CuS is allowed to enter into solid solution is hot-rolled under the condition that the total time of existence at 1100-950 deg.C becomes >=70sec, coiled, and then cold-rolled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車や電気機
器等の用途に適する、加工性に優れた深絞り用冷延鋼板
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a cold-rolled steel sheet for deep drawing, which is suitable for use in automobiles, electric appliances, etc.

【0002】[0002]

【従来の技術】自動車や電気機器などに使用される鋼板
は良好な成形性が要求される。特に、複雑な形状に成形
される場合、r値の平均{=(r0 +2r45+r90)/
4、以下、本明細書でr−値と称する}を指標とする深
絞り性が重要視され、C濃度を極めて低減し、さらにT
iやNbを添加した極低炭素鋼が用いられる。このよう
な鋼板では、C、Nは熱間圧延時にTiやNbなどによ
りTiNやTiC、NbCのような析出物として一度固
定される。このことを利用して、従来から鋼中にTiな
どの炭・窒化物形成元素を添加し、良好なr−値を得よ
うとする提案があった。例えば、特公昭42-12348号公報
には、TiをCの7〜20倍添加することにより、Ti
でC、Nを固定した上にさらにTiを固溶させ、この固
溶Tiにより冷延・焼鈍時に{111}面を発達させる
方法が示されている。しかし、このようにTiを大量添
加しても鋼板のr−値は高々1.9程度までしか上昇し
ない。また、特公昭50-31531号公報には、この改良法と
してTiのC、N固定効果を妨げるOをAlにより除去
し、Ti添加効果向上を狙った方法が開示されている。
しかしこの方法においても、Tiを20〜25倍も添加
しているにも拘わらず、鋼板のr−値は高々1.9程度
である。
2. Description of the Related Art Steel sheets used for automobiles and electric equipment are required to have good formability. In particular, when molded into a complicated shape, the average of r values is {= (r 0 + 2r 45 + r 90 ) /
4, hereinafter referred to as "r-value" in this specification, the deep drawability is regarded as important, the C concentration is extremely reduced, and T
Ultra-low carbon steel with i or Nb added is used. In such a steel sheet, C and N are once fixed as precipitates such as TiN, TiC, and NbC by Ti and Nb during hot rolling. Utilizing this fact, it has been conventionally proposed to add a carbon / nitride-forming element such as Ti to steel to obtain a good r-value. For example, in Japanese Examined Patent Publication (Kokoku) No. 42-12348, by adding Ti in an amount of 7 to 20 times that of C,
In this method, C and N are fixed and Ti is further solid-dissolved, and the solid solution Ti is used to develop the {111} plane during cold rolling and annealing. However, even if a large amount of Ti is added in this way, the r-value of the steel sheet rises only up to about 1.9. Further, Japanese Patent Publication No. 50-31531 discloses, as an improved method, a method aiming at improving the effect of adding Ti by removing O, which interferes with the effect of fixing C and N of Ti, with Al.
However, even in this method, the r-value of the steel sheet is about 1.9 at the highest even though Ti is added 20 to 25 times.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、この
ような状況を鑑み、加工性に優れた深絞り用鋼板の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a deep-drawing steel sheet having excellent workability in view of such a situation.

【0004】[0004]

【課題を解決するための手段】そこで、発明者らは、深
絞り性の指標であるr−値が冷間圧延時に存在する析出
物の存在形態により左右されること、析出物は熱間圧延
工程でその量、性状とも決まることに注目した。そし
て、鋭意研究を重ねることにより、CuとSを含む極低
炭素鋼板を熱間圧延する際に粗圧延後仕上げ圧延前に1
100℃〜950℃の間で一定時間保持することによ
り、析出物の性状が変化することを見出だした。
Therefore, the inventors of the present invention have found that the r-value, which is an index of deep drawability, depends on the form of the precipitates present during cold rolling. We paid attention to the fact that the process determines the quantity and properties. Then, through intensive studies, it is possible to perform 1 after rough rolling and before finish rolling when hot rolling an ultra low carbon steel sheet containing Cu and S.
It has been found that the properties of the precipitate change by holding the temperature between 100 ° C and 950 ° C for a certain period of time.

【0005】以下に本発明に係るCu、Sを含む極低炭
素鋼板における鋳造から熱延までの析出物の変化を示
す。まず、連続鋳造にて製造したスラブを1100℃以
下に冷却後、加熱炉で再加熱する場合について述べる。
The change of precipitates from casting to hot rolling in the ultra low carbon steel sheet containing Cu and S according to the present invention will be shown below. First, a case will be described in which a slab manufactured by continuous casting is cooled to 1100 ° C. or lower and then reheated in a heating furnace.

【0006】連続鋳造後、スラブが徐冷される際、まず
NがTiと結合し、粗大なTiNが析出する。このTi
Nは溶解温度が高いため、通常のスラブ加熱温度(12
50℃)では再固溶しない。次に、1100℃〜950
℃の温度範囲において、CuSが析出する。冷却速度が
極めて遅いためこの析出物は粗大に成長する。950℃
以下に温度が下がると、CuSの周りにTiやNbの炭
化物が析出開始するが、これらの炭化物はCuSと化合
し、Cu−Ti−C−S化合物、Cu−Nb−C−S化
合物、あるいはCu−Ti−Nb−C−S化合物とな
る。その結果、CuSを核としてその周りにこれらの複
合炭化物が取り囲んだ析出物となる。このとき、当然、
TiSも存在するが、CuSの方が炭化物析出の核とし
ての能力が優れているため、炭化物はCuSの方に優先
的に析出する。熱延前スラブを再加熱する際、オーステ
ナイト域まで加熱された状態では、CuSを取り囲んで
いるCu−Ti−C−Sなどの化合物はオーステナイト
への固溶度が高いため、オーステナイト中に固溶する
が、粗大な中心部のCuSは残留する。さらに加熱され
1100℃以上に加熱されるとCuSも固溶する。
After the continuous casting, when the slab is gradually cooled, N is first combined with Ti and coarse TiN is precipitated. This Ti
Since N has a high melting temperature, the normal slab heating temperature (12
It does not form a solid solution again at 50 ° C. Next, 1100 ° C to 950
CuS precipitates in the temperature range of ° C. This precipitate grows coarsely because the cooling rate is extremely slow. 950 ° C
When the temperature is lowered below, precipitation of Ti and Nb carbides around CuS starts, but these carbides combine with CuS to form a Cu-Ti-C-S compound, a Cu-Nb-C-S compound, or It becomes a Cu-Ti-Nb-C-S compound. As a result, it becomes a precipitate in which CuS serves as a nucleus and these complex carbides surround it. At this time, of course,
Although TiS is also present, since CuS has a better ability as a nucleus for carbide precipitation, carbide is preferentially precipitated in CuS. When the slab before hot rolling is reheated, the compound such as Cu-Ti-C-S surrounding CuS has a high solid solubility in austenite in the state where it is heated to the austenite region, and thus it is solid-dissolved in austenite. However, the coarse CuS in the central portion remains. When it is further heated and heated to 1100 ° C. or higher, CuS also forms a solid solution.

【0007】1100℃以上に加熱しCuSを完全に固
溶した状態から、通常の1100℃〜950℃の温度範
囲を70秒未満の短時間で通過する熱間圧延を行った場
合、CuSの析出はなく、本発明のような効果は得られ
ない。一方、熱間圧延中に1100℃〜950℃の温度
範囲に70秒以上保持することにより、微細なCuSが
析出する。この微細に多数析出したCuSはスラブの徐
冷時と同様に炭化物の析出核となり、炭化物はCuSと
化合し、Cu−Ti−C−S化合物、Cu−Nb−C−
S化合物、あるいはCu−Ti−Nb−C−S化合物と
なる。このような微細なCu−Ti−C−S化合物など
を含む熱延板を冷間圧延した場合、理由は定かではない
が、これらの析出物の周りには、再結晶時に板面に平行
な{111}を形成する結晶粒の核が、通常の析出物よ
りも増加する。その結果、これら析出物の存在する冷延
焼鈍板は、通常の製造方法による冷延鋼板よりも板面に
平行な{111}面が多くなることにより、良好なr−
値を示す。ここで、熱間圧延前にCuSを一旦固溶させ
ることが本発明においては重要となる。スラブ再加熱温
度が1100℃未満では前記したようにCuSを取り囲
んでいるCu−Ti−C−Sなどの複合析出物などは固
溶するものの、中心部の粗大なCuSは未固溶のまま残
存する。この場合、炭化物の核生成サイトの数が過小と
なり、続く熱間圧延時にCuSを中心としたCu−Ti
−C−S等の微細析出が不十分となるため、r−値の向
上は期待できない。
When CuS is completely melted by heating to 1100 ° C. or higher and hot rolling is carried out by passing it through a normal temperature range of 1100 ° C. to 950 ° C. in a short time of less than 70 seconds, precipitation of CuS occurs. Therefore, the effect of the present invention cannot be obtained. On the other hand, fine CuS is precipitated by maintaining the temperature range of 1100 ° C to 950 ° C for 70 seconds or more during hot rolling. The CuS deposited in large numbers become precipitation nuclei of carbides as in the case of slow cooling of the slab, and the carbides combine with CuS to form Cu-Ti-C-S compounds, Cu-Nb-C-
It becomes an S compound or a Cu-Ti-Nb-C-S compound. When a hot-rolled sheet containing such a fine Cu—Ti—C—S compound is cold-rolled, the reason is not clear, but the surroundings of these precipitates are parallel to the sheet surface during recrystallization. The nuclei of the crystal grains forming {111} are increased more than in ordinary precipitates. As a result, the cold-rolled annealed sheet containing these precipitates has a larger number of {111} planes parallel to the sheet surface than that of the cold-rolled steel sheet produced by the usual manufacturing method, which results in good r
Indicates a value. Here, it is important in the present invention to once solid-dissolve CuS before hot rolling. When the slab reheating temperature is less than 1100 ° C., the complex precipitates such as Cu—Ti—C—S surrounding CuS are solid-dissolved as described above, but the coarse CuS in the center remains undissolved. To do. In this case, the number of nucleation sites of carbides becomes too small, and CuS mainly CuS-Ti during the subsequent hot rolling.
Since fine precipitation of —C—S and the like becomes insufficient, improvement of r-value cannot be expected.

【0008】なお、連続鋳造スラブをそのまま熱間圧延
する直送圧延においては、熱間圧延前にCuSの析出が
ないことから、1100℃〜950℃の温度範囲に70
秒以上保持する条件で熱間圧延時することにより、微細
なCuSを析出する。
[0008] In the direct rolling in which the continuous cast slab is hot-rolled as it is, since there is no CuS precipitation before hot-rolling, the temperature range of 1100 ° C to 950 ° C is 70%.
Fine CuS is deposited by hot rolling under the condition of holding for at least seconds.

【0009】本発明者は、以上のような現象を利用して
深絞り用軟質鋼板の製造方法を発明するに至った。すな
わち第一の発明は、重量%で、C:0.005%以下、
S:0.001〜0.020%、Cu:0.005〜
0.1%、Ti:0.01〜0.2%、N:0.005
%以下を含み、若しくは更にNb:0.005〜0.1
%含む鋼板の製造方法において、連続鋳造にて製造した
CuSが固溶しているスラブを、1100℃〜950℃
の温度範囲に存在する合計時間が70秒以上となる条件
で熱間圧延した後、巻取り、しかる後冷間圧延すること
を特徴とする深絞り用冷延鋼板の製造方法であり、その
巻取温度は、550℃〜750℃とする。
The inventor of the present invention has invented a method of manufacturing a soft steel sheet for deep drawing by utilizing the above phenomenon. That is, the first invention is, by weight%, C: 0.005% or less,
S: 0.001-0.020%, Cu: 0.005-
0.1%, Ti: 0.01 to 0.2%, N: 0.005
% Or less, or Nb: 0.005 to 0.1
%, The slab in which CuS manufactured by continuous casting is in solid solution is 1100 ° C. to 950 ° C.
Is a method for producing a cold-rolled steel sheet for deep drawing, which comprises hot rolling under the condition that the total time existing in the temperature range is 70 seconds or more, winding, and then cold rolling. The taking temperature is 550 ° C to 750 ° C.

【0010】第二の発明は、重量%で、C:0.005
%以下、S:0.001〜0.020%、Cu:0.0
05〜0.1%、Nb:0.005〜0.1%、Al:
0.01〜0.07%、N:0.005%以下を含む鋼
板の製造方法において、連続鋳造にて製造したCuSが
固溶しているスラブを、1100℃〜950℃の温度範
囲に存在する合計時間が70秒以上となる条件で熱間圧
延した後、巻取り、しかる後冷間圧延することを特徴と
する深絞り用冷延鋼板の製造方法であり、巻取温度は、
600℃〜750℃とする。
The second invention is C: 0.005 by weight.
% Or less, S: 0.001 to 0.020%, Cu: 0.0
05-0.1%, Nb: 0.005-0.1%, Al:
In a method for producing a steel sheet containing 0.01 to 0.07% and N: 0.005% or less, a slab in which CuS produced by continuous casting is in solid solution exists in a temperature range of 1100 ° C to 950 ° C. It is a method for producing a cold-rolled steel sheet for deep drawing, which comprises hot rolling under the condition that the total time is 70 seconds or more, winding, and then cold rolling.
It is set to 600 ° C to 750 ° C.

【0011】CuSが固溶しているスラブを得るために
は、連続鋳造にて製造したスラブをそのままもしくは保
温処理をする、或いは一旦1100℃以下に冷却後、1
100℃以上に再加熱するなど、熱間圧延前に1100
℃以上に加熱、保持することによりなされる。
In order to obtain a slab in which CuS forms a solid solution, the slab manufactured by continuous casting is subjected to heat treatment as it is or after cooling once to below 1100 ° C.
1100 before hot rolling, such as reheating to 100 ° C or higher
It is made by heating and holding at a temperature of ℃ or more.

【0012】また、1100℃〜950℃の温度範囲に
存在する合計時間が70秒以上とは、連続して70秒以
上の場合に限らず、一旦950℃未満となった後再度上
記温度範囲になる場合は、その合計時間が70秒以上あ
ればよい。一旦1100℃を越えた場合は、それ以降に
おいて、1100℃〜950℃の温度範囲に存在する合
計時間が70秒以上をいう。また、合計時間は粗圧延と
仕上圧延の両方が考慮される。
Further, the total time of 70 seconds or more existing in the temperature range of 1100 ° C. to 950 ° C. is not limited to the case of continuously 70 seconds or more, but once the temperature falls below 950 ° C., the temperature range is again set to the above temperature range. In that case, the total time may be 70 seconds or more. Once the temperature exceeds 1100 ° C., the total time existing in the temperature range of 1100 ° C. to 950 ° C. thereafter is 70 seconds or more. In addition, both rough rolling and finish rolling are considered for the total time.

【0013】[0013]

【発明の実施の形態】以下に、本発明組成の添加理由及
びその限定理由を説明する。 C:r−値向上のため粒成長性を上げるにはCは極力少
ない方が望ましい。あまり多すぎるとフェライト中に析
出する炭化物の量が多く、延性をも阻害することから、
0.005%以下とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for adding the composition of the present invention and the reasons for limiting the composition will be described below. C: In order to improve grain growth in order to improve the r-value, it is desirable that C be as small as possible. If the amount is too large, the amount of carbides precipitated in ferrite is large, which also hinders ductility.
It was set to 0.005% or less.

【0014】Cu:添加量については、あまり低いとC
uSの微細析出量が少なくなり、効果が得られないこと
から、下限を0.005%以上としたが、十分な効果を
得るためには0.01%以上が望ましい。但し、あまり
多く添加するとCu傷という表面欠陥になることから、
より良質の表面性状を得るためには0.05%以下が好
ましい。
Cu: If the added amount is too low, C
Since the fine precipitation amount of uS becomes small and the effect cannot be obtained, the lower limit was made 0.005% or more, but 0.01% or more is desirable to obtain a sufficient effect. However, if too much is added, it becomes a surface defect called Cu scratch,
In order to obtain better surface quality, 0.05% or less is preferable.

【0015】S:SはCuSの析出促進に無くてはなら
ない元素であることから、下限は0.001%である。
しかし、多量の添加は加工性を劣化させることから、上
限は0.020%とした。
S: S is an essential element for promoting the precipitation of CuS, so the lower limit is 0.001%.
However, addition of a large amount deteriorates workability, so the upper limit was made 0.020%.

【0016】N:Nは極力低減することが望ましいが、
コストの面から必ずしも0とはできない。しかし、Nは
過剰に存在すると、結晶粒が微細になり加工性が低下す
るので、その上限を0.005%とした。
N: It is desirable to reduce N as much as possible,
In terms of cost, it cannot always be 0. However, if N is present excessively, the crystal grains become fine and the workability is deteriorated, so the upper limit was made 0.005%.

【0017】本発明では、上記した成分に対して、C、
Nの固定を促進するため、さらに下記成分範囲のTiま
たはNbから選ばれた1種または2種を含む。 Ti:Tiは固溶C、Nを炭化物・窒化物の形でとら
れ、鋼板の加工性を向上させる働きがある。添加量は
0.01〜0.2%である。0.01%未満ではその効
果がなく、また、0.2%を越えると効果が飽和し、コ
スト増につながる。
In the present invention, C,
In order to promote the fixation of N, it further contains one or two selected from Ti or Nb in the following component ranges. Ti: Ti takes solid solution C and N in the form of carbide / nitride, and has the function of improving the workability of the steel sheet. The added amount is 0.01 to 0.2%. If it is less than 0.01%, the effect is not obtained, and if it exceeds 0.2%, the effect is saturated, leading to an increase in cost.

【0018】Nb:Nbは固溶Cを炭化物の形でとら
え、鋼板の加工性を向上させる働きがある。添加量は
0.005%〜0.1%である。0.005未満では効
果がなく、0.10%を越えると効果が飽和し、コスト
増につながる。なお、Nbを添加し、Tiが添加されな
い場合には、Sol.Alが必須の添加成分となる。こ
の理由は、TiはNを固定するため、Tiを添加した場
合には、Alを添加してNをAlNとする必要はない
が、Nbのみ添加したものは、Alを添加してNを固定
する必要があるためである。
Nb: Nb has the function of capturing the solid solution C in the form of carbide and improving the workability of the steel sheet. The added amount is 0.005% to 0.1%. If it is less than 0.005, there is no effect, and if it exceeds 0.10%, the effect is saturated, leading to an increase in cost. In addition, when Nb is added and Ti is not added, Sol. Al is an essential additive component. The reason for this is that Ti fixes N. Therefore, when Ti is added, it is not necessary to add Al to make N AlN, but when only Nb is added, Al is added to fix N. It is necessary to do so.

【0019】また、第二の発明の鋼板にはN固定のため
にAlを添加する必要がある。 Sol.Al:Tiが添加されない場合、Alは脱酸剤
ならびにNをAlNの形で固定するため、必要不可欠な
元素である。しかし、過剰なAlの添加は鋼中の析出物
を多量に発生させ、加工性を劣化させることから、その
上限を0.07%とした。脱酸およびAlNを固定する
効果が十分に発揮されるには、0.01%以上添加する
必要がある。なお、Tiが添加された場合、理論上Al
の添加は不要である。しかし、実際は製鋼の脱酸過程で
Alを用いるため、不可避的にAlが含有され、通常は
0.030〜0.060%程度は入れられる。
Further, it is necessary to add Al to the steel sheet of the second invention for N fixing. Sol. When Al: Ti is not added, Al is an essential element because it fixes the deoxidizer and N in the form of AlN. However, the excessive addition of Al causes a large amount of precipitates in the steel to deteriorate the workability, so the upper limit was made 0.07%. In order to fully exert the effect of deoxidizing and fixing AlN, it is necessary to add 0.01% or more. When Ti is added, theoretically Al
Is unnecessary. However, since Al is actually used in the deoxidation process of steelmaking, Al is inevitably contained, and about 0.030 to 0.060% is usually added.

【0020】本発明では、上記した成分に対して、さら
に下記の成分範囲のSi、Mn、P、B、を含むことが
できる。 Si:脱酸剤として有効な元素であるが、過剰な添加は
YPを上げ成形性を阻害するとともにスケール発生によ
り表面性状を劣化させるので、上限は0.5%とする。
In the present invention, in addition to the above-mentioned components, Si, Mn, P, B in the following component ranges can be included. Si: an element effective as a deoxidizing agent, but excessive addition thereof raises YP, hinders moldability, and deteriorates the surface properties due to scale generation, so the upper limit is made 0.5%.

【0021】Mn:一般には炭化物の析出核となるが、
本発明ではCuSが微細に析出し、炭化物のほとんどが
CuSを核として析出するため、炭化物の析出核として
の重要度は低いが、CuSとして固定されなかったSを
MnSの形で固定し、FeSによる熱間延性低下を防止
することから、0.01%以上添加することが好まし
い。ただし、過剰な添加はELを下げ、深絞り性を低下
させるため、上限を1%とした。
Mn: Generally, it becomes a precipitation nucleus of carbide,
In the present invention, CuS is finely precipitated, and most of carbides are precipitated with CuS as a nucleus. Therefore, the importance as a precipitation nucleus of carbide is low, but S not fixed as CuS is fixed in the form of MnS, and FeS In order to prevent the deterioration of hot ductility due to, it is preferable to add 0.01% or more. However, excessive addition lowers EL and lowers deep drawability, so the upper limit was made 1%.

【0022】P:過剰な添加は降伏強度を上げ、成形性
や、成型品の形状凍結性の観点から好ましくないことか
ら上限を0.15%とした。 B:Bは、耐二次加工脆性向上の効果があることから、
添加してもよい。少なすぎると効果がないことから、
0.0002%以上が望ましい。また、あまり添加しす
ぎるとr−値を低下させる傾向があることから、0.0
020%以下が好ましい。
P: An excessive addition raises the yield strength and is not preferable from the viewpoint of moldability and shape fixability of the molded product, so the upper limit was made 0.15%. B: B has the effect of improving the secondary processing brittleness resistance,
It may be added. If there is too little, there is no effect, so
0.0002% or more is desirable. Further, if too much is added, the r-value tends to decrease, so 0.0
It is preferably 020% or less.

【0023】さらに目的に応じて、種々の元素を添加す
ることも可能である。たとえば、耐食性の向上を目的と
してCr、Coを添加することがあるが、本発明の効果
にはなんら影響を及ぼさない。ただし、過剰な添加は延
性を阻害することから、上限は1%とする。また、Cu
傷を発生しにくくするために、Niを添加しても良い
が、過剰な添加はコスト増を招くことから、添加量は1
%以下が望ましい。
Further, various elements can be added according to the purpose. For example, although Cr and Co may be added for the purpose of improving the corrosion resistance, the effect of the present invention is not affected at all. However, excessive addition hinders ductility, so the upper limit is 1%. Also, Cu
Ni may be added to prevent scratches from occurring, but an excessive addition causes an increase in cost, so the addition amount is 1
% Is desirable.

【0024】Ca、Zr、Sn、V、などを添加した場
合、鋼中に析出物を生じさせるが、本発明のCuSのよ
うな効果は認められない。よって、添加しても問題はな
いが、多量の添加は析出物を悪戯に増やし延性を阻害す
ることから、これらの元素の添加量は2%以下が望まし
い。
When Ca, Zr, Sn, V, etc. are added, precipitates are formed in the steel, but the effect of CuS of the present invention is not recognized. Therefore, there is no problem even if it is added, but the addition amount of these elements is preferably 2% or less, because the addition of a large amount unnecessarily increases precipitates and hinders ductility.

【0025】次に本発明の製造条件について説明する。 CuSを固溶したスラブ:スラブを冷却し、再加熱する
場合、粗大なCuSが残留したまま熱間圧延を行うと、
CuSの分散が粗であるために、再結晶時の{111}
面生成核が少なくなる。その結果、r−値は向上しな
い。よって、本発明においては、スラブを1100℃以
下(室温も含む)に冷却した場合、スラブ冷却時に析出
した粗大なCuSを再固溶させる。そのスラブ再加熱温
度は1100℃以上とする。また、連続鋳造スラブをそ
のまま、もしくは温度低下を抑えるため保温処理して圧
延する直送圧延においては、粗大なCuSの析出がない
ため再加熱は必要ない。
Next, the manufacturing conditions of the present invention will be described. CuS solid solution slab: When the slab is cooled and reheated, hot rolling is performed with coarse CuS remaining,
Due to the coarse dispersion of CuS, {111} during recrystallization
Face generation nuclei are reduced. As a result, the r-value does not improve. Therefore, in the present invention, when the slab is cooled to 1100 ° C. or lower (including room temperature), coarse CuS precipitated during cooling of the slab is re-dissolved. The slab reheating temperature is 1100 ° C. or higher. Further, in the direct-feed rolling in which the continuous cast slab is used as it is, or subjected to a heat retention treatment to suppress the temperature decrease and rolled, there is no coarse CuS precipitation, and thus reheating is not necessary.

【0026】熱間圧延の温度保持条件:熱間圧延時に1
100℃〜950℃の加熱または保持は、CuをCuS
として析出させるために重要である。CuSの微細析出
は、1100℃〜950℃において顕著となるが、析出
開始には1100℃〜950℃の温度範囲におけるある
程度の保持が必要である。この保持とは、1100℃〜
950℃の温度範囲内にあればよいことを意味し、必ず
しも一定温度での保持でなくても良い。すなわち、この
温度範囲内にあれば、その間昇温・降温を繰り返し温度
が変化しても良い。そのため、この温度範囲での被圧延
材の加熱・保持時間の合計をある程度以上にしなければ
ならない。これについては、CuSの析出は1100℃
超え、950℃未満ではほとんど生じないため、加熱・
保持時間については、1100℃〜950℃に存在した
合計時間が重要である。途中950℃未満になっても、
その前後において1100℃〜950℃の温度範囲に存
在した合計時間にのみにCuSの析出量は依存する。た
だし、1100℃以上に加熱された場合については、一
度析出したCuSが再固溶を起こすため、それ以降に1
100〜950℃に存在した合計時間が有効となる。時
間については、あまり短いとCuSの析出が十分ではな
いことから下限を70秒とした。また、上限は特に制限
するものではないが、あまり長いと生産効率の低減を招
くことから、360秒以下が望ましい。
Temperature holding condition for hot rolling: 1 during hot rolling
For heating or holding at 100 ° C to 950 ° C, Cu is CuS
Is important for precipitating. The fine precipitation of CuS becomes remarkable at 1100 ° C to 950 ° C, but it is necessary to hold the CuS to some extent in the temperature range of 1100 ° C to 950 ° C to start the precipitation. This holding means 1100 ° C-
This means that the temperature needs to be within the temperature range of 950 ° C., and the holding at a constant temperature is not always necessary. That is, if the temperature is within this temperature range, the temperature may be changed by repeatedly raising and lowering the temperature. Therefore, the total heating and holding time of the material to be rolled in this temperature range must be set to a certain level or more. For this, the CuS precipitation is 1100 ° C.
If the temperature exceeds 950 ° C, there will be almost no occurrence.
Regarding the holding time, the total time present between 1100 ° C and 950 ° C is important. Even if it gets below 950 ° C on the way,
The precipitation amount of CuS depends only on the total time existing in the temperature range of 1100 ° C. to 950 ° C. before and after that. However, when heated to 1100 ° C. or higher, CuS once precipitated causes solid re-solution, so that 1
The total time present at 100-950 ° C is valid. Regarding the time, if the time is too short, the precipitation of CuS will not be sufficient, so the lower limit was made 70 seconds. Further, the upper limit is not particularly limited, but if it is too long, the production efficiency is reduced, so 360 seconds or less is desirable.

【0027】以下に、Cu添加と粗圧延後の保持の組み
合わせにより得られる効果の一例を示す。重量%で、
C:約0.0025%、Si:約0.02%、Mn:約
0.05%、P:約0.012、S:約0.014%、
Sol.Al:約0.045%、N:約0.0028
%、Cu:0.007〜0.8%を含み、さらにTi:
約0.012%、Nb:約0.012%を含むスラブを
一旦室温まで冷却した後、1150℃に再加熱し、熱間
圧延を行った。粗圧延後、板温が920℃となった時
に、5秒で1030℃まで昇温し、所定の時間保持後仕
上げ圧延を行った。仕上げ温度は900℃、巻取温度は
620℃とした。その後、酸洗を行った後冷圧率80%
で板厚0.75mmとし、820℃で焼鈍を行った。こ
のようにして製造した冷延鋼板のr−値を測定した。ま
た、同時にCu傷の発生も調査した。縦軸に1100℃
〜950℃に存在した時間を、横軸にCu添加量をと
り、時間とCu添加量でr−値を整理した結果を図1に
示す。図1に示すように、Cu添加量が0.005〜
0.1%でかつ1100℃〜950℃の温度範囲に存在
した時間が70秒以上とした場合にのみ、Cu傷も発生
せず良好なr−値が得られる。また、Cu添加量が0.
01〜0.1%でかつ1100℃〜950℃の温度範囲
に存在した時間が70秒以上とした場合は、Cu傷も発
生せずさらに良好なr−値が得られることが判る。
The following is an example of the effect obtained by the combination of Cu addition and holding after rough rolling. % By weight,
C: about 0.0025%, Si: about 0.02%, Mn: about 0.05%, P: about 0.012, S: about 0.014%,
Sol. Al: about 0.045%, N: about 0.0028
%, Cu: 0.007 to 0.8%, and Ti:
A slab containing about 0.012% and Nb: about 0.012% was once cooled to room temperature, then reheated to 1150 ° C., and hot rolled. After the rough rolling, when the plate temperature reached 920 ° C., the temperature was raised to 1030 ° C. in 5 seconds, and after holding for a predetermined time, finish rolling was performed. The finishing temperature was 900 ° C and the winding temperature was 620 ° C. Then, after pickling, the cold pressure rate is 80%
The plate thickness was 0.75 mm, and annealing was performed at 820 ° C. The r-value of the cold-rolled steel sheet thus manufactured was measured. At the same time, the occurrence of Cu scratch was also investigated. 1100 ° C on the vertical axis
FIG. 1 shows the result in which the amount of Cu added was plotted on the abscissa for the time existing at ˜950 ° C. and the r-value was arranged by the time and the amount of Cu added. As shown in FIG. 1, the Cu addition amount is 0.005 to
Only when the time of 0.1% and in the temperature range of 1100 ° C. to 950 ° C. is 70 seconds or more, Cu scratches do not occur and a good r-value is obtained. Further, the Cu addition amount is 0.
It can be seen that when the time in which the temperature is in the range of 01 to 0.1% and 1100 ° C. to 950 ° C. is 70 seconds or more, Cu scratches do not occur and a better r-value is obtained.

【0028】巻取温度:第一の発明の鋼板においては、
TiがNを固定するため、巻取時のN固定の必要はない
が、炭化物の析出や結晶粒成長のため、下限を550℃
とした。また、あまり高すぎると、スケールが厚く生成
し酸洗能率が低下することから、上限を700℃とし
た。一方、第二の発明の鋼板においては、Tiが必ずし
も添加されないことから、上記の理由に加えAlにより
Nを固定する必要がある。よって、あまり低い巻取温度
ではAlがNを完全に固定できないため下限を600℃
とした。上限は第一の発明での理由と同様に700℃と
した。
Winding temperature: In the steel sheet of the first invention,
Since Ti fixes N, it is not necessary to fix N at the time of winding, but the lower limit is 550 ° C because of precipitation of carbides and crystal grain growth.
And Further, if it is too high, the scale is thickly formed and the pickling efficiency is lowered, so the upper limit was set to 700 ° C. On the other hand, in the steel sheet of the second invention, Ti is not necessarily added, so it is necessary to fix N by Al in addition to the above reason. Therefore, if the coiling temperature is too low, Al cannot fix N completely, so the lower limit is 600 ° C.
And The upper limit was 700 ° C. for the same reason as in the first invention.

【0029】なお、本発明方法の対象は通常の冷延鋼板
以外に、冷延鋼板に亜鉛めっきや錫めっきなどを施した
表面処理鋼板を含む。また、鋼の溶製は転炉、電気炉の
いずれでも良い。鋳造は直送圧延以外については普通造
塊、連続鋳造のいずれでも良い。
The objects of the method of the present invention include, in addition to ordinary cold-rolled steel sheets, surface-treated steel sheets obtained by subjecting cold-rolled steel sheets to zinc plating, tin plating, or the like. The steel may be melted in either a converter or an electric furnace. The casting may be any of ordinary ingot making and continuous casting other than direct rolling.

【0030】粗圧延後の加熱については、昇温速度は本
発明の効果に影響を及ぼさない。加熱方法についてはど
のような加熱方法でも問題はなく、誘導加熱、輻射加
熱、ガスバーナーによる直火加熱でもよい。また、仕上
圧延直前に設置された加熱装置も、本発明方法の「11
00〜950℃」の加熱に適応できる。
Regarding heating after rough rolling, the rate of temperature rise does not affect the effect of the present invention. There is no problem with any heating method, and induction heating, radiant heating, or direct flame heating with a gas burner may be used. Further, the heating device installed immediately before the finish rolling is also the same as in "11" of the method of the present invention.
It can be applied to heating at "00 to 950 ° C".

【0031】冷間圧延以降の条件は、特に限定するもの
ではないが、加工性の点から冷間圧延の冷圧率は30〜
90%が望ましい。焼鈍温度は軟質化のため、700℃
以上、粗大化防止のため900℃以下が好ましい。焼鈍
方法は連続焼鈍であり、溶融亜鉛メッキラインでの連続
焼鈍であってもよい。調質圧延については、残存する降
伏点伸びを完全に消去するため、調圧率は0.1%以上
が望ましいが、高すぎると硬化してしまうため、2%以
下が望ましい。
The conditions after the cold rolling are not particularly limited, but the cold rolling reduction ratio of the cold rolling is 30 to 30 from the viewpoint of workability.
90% is desirable. The annealing temperature is 700 ° C due to softening
As described above, the temperature is preferably 900 ° C. or lower to prevent coarsening. The annealing method is continuous annealing, and may be continuous annealing in a hot dip galvanizing line. In temper rolling, the pressure regulation ratio is preferably 0.1% or more in order to completely eliminate the remaining yield point elongation, but is set to 2% or less because it is hardened if it is too high.

【0032】また、焼鈍後調質圧延を経て、電気めっ
き、有機複合被覆あるいは化成処理等の表面処理を単独
あるいは複合して施した場合であっても、本発明の効果
は損なわれることはない。
The effect of the present invention is not impaired even when surface treatment such as electroplating, organic composite coating, or chemical conversion treatment is performed through temper rolling after annealing, alone or in combination. .

【0033】[0033]

【実施例】以下に、本発明の実施例を示す。 (実施例1)表1(表1-1 ,表1-3 ,表1-5 )に示す成
分に鋼を鋳造し、表1(表1-2 ,表1-4 ,表1-6 )に示
す条件で熱間圧延を行った。熱間圧延前のスラブ加熱に
ついては、鋳造後室温まで一旦冷却した後に再加熱した
ものをA、鋳造後900℃まで一旦冷却した後に再加熱
したものをB、鋳造後、そのまま直送圧延を行ったもの
をCとした。A、Bについてはスラブの加熱温度も示し
た。熱間圧延後、酸洗による脱スケールの後に冷圧率7
5%で冷間圧延を行い、板厚1.2mmとし、850℃
で連続焼鈍を行った。このようにして製造した鋼板のr
−値と表面性状(Cu傷の発生)について調査した。
EXAMPLES Examples of the present invention will be shown below. (Example 1) Steel was cast into the components shown in Table 1 (Table 1-1, Table 1-3, Table 1-5), and then the steel was cast into Table 1 (Table 1-2, Table 1-4, Table 1-6). Hot rolling was performed under the conditions shown in. Regarding slab heating before hot rolling, A was once cooled to room temperature after casting and then reheated, B was what was once cooled to 900 ° C. and then reheated after casting, and was directly fed after casting. The thing was set to C. For A and B, the heating temperature of the slab is also shown. After hot rolling, descaling by pickling and then cold pressure ratio 7
Cold rolling at 5% to a plate thickness of 1.2 mm, 850 ° C
Was continuously annealed. R of the steel sheet manufactured in this way
The values and surface properties (generation of Cu scratches) were investigated.

【0034】表1に示すように、本発明を用いることに
より、鋼板のr−値を2.0以上とすることができる深
絞り性に優れた軟質鋼板を製造することができる。 (実施例2)表2(表2-1 ,表2-3 ,表2-5 )に示す成
分の鋼を鋳造し、表2(表2-2 ,表2-4 ,表2-6 )に示
す条件で熱間圧延を行った。熱間圧延前のスラブ加熱に
ついては、鋳造後室温まで一旦冷却した後に加熱したも
のをA、鋳造後1000℃まで一旦冷却した後に加熱し
たものをB、鋳造後温度低下を防ぐため保温処理を行っ
て直送圧延を行ったものをCとした。A、Bについては
スラブの加熱温度も示した。熱間圧延後、酸洗による脱
スケールの後に冷圧率85%で冷間圧延を行い、板厚
1.0mmとし、800℃で連続焼鈍を行った。
As shown in Table 1, by using the present invention, it is possible to manufacture a soft steel sheet having an excellent deep drawability and an r-value of 2.0 or more. (Example 2) Steels having the components shown in Table 2 (Table 2-1, Table 2-3, Table 2-5) were cast, and Table 2 (Table 2-2, Table 2-4, Table 2-6) was cast. Hot rolling was performed under the conditions shown in. Regarding heating of the slab before hot rolling, A was heated after being once cooled to room temperature after casting, A was heated after being once cooled to 1000 ° C. after casting, and heat retention treatment was performed to prevent a temperature drop after casting. C was obtained by direct rolling. For A and B, the heating temperature of the slab is also shown. After hot rolling, descaling by pickling was performed, and then cold rolling was performed at a cold pressing rate of 85% to a plate thickness of 1.0 mm, and continuous annealing was performed at 800 ° C.

【0035】表2に示すように、本発明を用いることに
より、鋼板のr−値を2.0以上とすることができる深
絞り性に優れた軟質鋼板を製造することができる。 (実施例3)表3(表3-1 ,表3-3 ,表3-5 )に示す成
分の鋼を鋳造し、表3(表3-2 ,表3-4 ,表3-6 )に示
す条件で熱間圧延を行った。熱間圧延前のスラブ加熱に
ついては、鋳造後室温まで一旦冷却した後に加熱したも
のをA、鋳造後300℃まで一旦冷却した後に加熱した
ものをB、鋳造後、そのまま直送圧延を行ったものをC
とした。A、Bについてはスラブの加熱温度も示した。
熱間圧延後、酸洗による脱スケールの後に冷圧率70%
で冷間圧延を行い、板厚0.8mmとし、連続溶融亜鉛
めっきラインにおいて、亜鉛めっきを行った。めっき前
の焼鈍温度は820℃である。
As shown in Table 2, by using the present invention, it is possible to manufacture a soft steel sheet having an excellent deep drawability and having an r-value of 2.0 or more. (Example 3) Steels having the components shown in Table 3 (Table 3-1, Table 3-3, Table 3-5) were cast, and the results are shown in Table 3 (Table 3-2, Table 3-4, Table 3-6). Hot rolling was performed under the conditions shown in. Regarding the slab heating before hot rolling, the one that was once cooled to room temperature after casting and then heated was A, the one that was once cooled to 300 ° C. after casting and then heated was B, and the one that was directly rolled after casting. C
And For A and B, the heating temperature of the slab is also shown.
After hot rolling, descaling by pickling and cold pressure ratio 70%
Cold-rolling was performed to obtain a plate thickness of 0.8 mm, and galvanization was performed in a continuous hot-dip galvanizing line. The annealing temperature before plating is 820 ° C.

【0036】表3に示すように、本発明を用いることに
より、Ti添加の効果を最大限引き出して、鋼板のr−
値を2.0以上とすることができる深絞り性に優れた軟
質鋼板を製造することができる。
As shown in Table 3, by using the present invention, the effect of adding Ti is maximized, and the r-
It is possible to manufacture a soft steel sheet having excellent deep drawability and having a value of 2.0 or more.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【表10】 [Table 10]

【0047】[0047]

【表11】 [Table 11]

【0048】[0048]

【表12】 [Table 12]

【0049】[0049]

【表13】 [Table 13]

【0050】[0050]

【表14】 [Table 14]

【0051】[0051]

【表15】 [Table 15]

【0052】[0052]

【表16】 [Table 16]

【0053】[0053]

【表17】 [Table 17]

【0054】[0054]

【表18】 [Table 18]

【0055】[0055]

【発明の効果】以上のように、本発明によれば、Cu添
加極低炭素鋼を熱間圧延する際に、粗圧延後1100℃
〜950℃の温度範囲に被圧延材が存在する時間を70
秒以上とすることにより、r値の平均値を2.0以上と
して、従来よりも深絞り性に優れた冷延鋼板を容易に製
造できる。
As described above, according to the present invention, when hot-rolling a Cu-added ultra-low carbon steel, after hot rolling at 1100 ° C.
The time during which the material to be rolled exists in the temperature range of ~ 950 ° C is 70
By setting the average value of the r value to 2.0 or more by setting the time to be at least seconds, it is possible to easily manufacture a cold-rolled steel sheet that is more excellent in deep drawability than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】時間とCu添加量でr値の平均を整理した結果
を示す図。
FIG. 1 is a diagram showing a result of arranging an average of r values by time and Cu addition amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲積 透 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山本 雅明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 江田 尚智 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 佐藤 馨 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石黒 康英 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Inazumi 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masaaki Yamamoto 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Inside the Steel Pipe Co., Ltd. (72) Inventor Naochi Eda 1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Inside Steel Pipe Co., Ltd. (72) Kaoru Sato 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Inventor Yasuhide Ishiguro 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、S:
0.001〜0.020%、Cu:0.005〜0.1
%、Ti:0.01〜0.2%、N:0.005%以下
を含む鋼板の製造方法において、CuSが固溶している
スラブを、1100℃〜950℃の温度範囲に存在する
合計時間が70秒以上となる条件で熱間圧延した後、巻
取り、しかる後冷間圧延することを特徴とする深絞り用
冷延鋼板の製造方法。
1. C: 0.005% or less by weight%, S:
0.001-0.020%, Cu: 0.005-0.1
%, Ti: 0.01 to 0.2%, N: 0.005% or less, in the method for producing a steel sheet, the total of the slabs in which CuS is in solid solution in the temperature range of 1100 ° C to 950 ° C. A method for producing a cold-rolled steel sheet for deep drawing, comprising hot rolling under conditions of a time of 70 seconds or more, winding, and then cold rolling.
【請求項2】 鋼板は、更にNb:0.005〜0.1
%含む請求項1に記載の深絞り用冷延鋼板の製造方法。
2. The steel sheet further has Nb: 0.005 to 0.1.
% Of the cold-rolled steel sheet for deep drawing according to claim 1.
【請求項3】 巻取温度は、550℃〜750℃である
請求項1又は2に記載の深絞り用冷延鋼板の製造方法。
3. The method for manufacturing a cold-rolled steel sheet for deep drawing according to claim 1, wherein the coiling temperature is 550 ° C. to 750 ° C.
【請求項4】 重量%で、C:0.005%以下、S:
0.001〜0.020%、Cu:0.005〜0.1
%、Nb:0.005〜0.1%、Al:0.01〜
0.07%、N:0.005%以下を含む鋼板の製造方
法において、CuSが固溶しているスラブを、1100
℃〜950℃の温度範囲に存在する合計時間が70秒以
上となる条件で熱間圧延した後、巻取り、しかる後冷間
圧延することを特徴とする深絞り用冷延鋼板の製造方
法。
4. C: 0.005% or less by weight%, S:
0.001-0.020%, Cu: 0.005-0.1
%, Nb: 0.005 to 0.1%, Al: 0.01 to
In the method for manufacturing a steel sheet containing 0.07% and N: 0.005% or less, a slab in which CuS is formed as a solid solution is 1100
A method for manufacturing a cold-rolled steel sheet for deep drawing, which comprises hot rolling under conditions where the total time existing in the temperature range of ℃ to 950 ℃ is 70 seconds or more, followed by winding and then cold rolling.
【請求項5】 巻取温度は、600℃〜750℃である
請求項4に記載の深絞り用冷延鋼板の製造方法。
5. The method for producing a cold-rolled steel sheet for deep drawing according to claim 4, wherein the coiling temperature is 600 ° C. to 750 ° C.
JP03970396A 1996-02-27 1996-02-27 Manufacturing method of cold-rolled steel sheet for deep drawing Expired - Fee Related JP3293450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03970396A JP3293450B2 (en) 1996-02-27 1996-02-27 Manufacturing method of cold-rolled steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03970396A JP3293450B2 (en) 1996-02-27 1996-02-27 Manufacturing method of cold-rolled steel sheet for deep drawing

Publications (2)

Publication Number Publication Date
JPH09227951A true JPH09227951A (en) 1997-09-02
JP3293450B2 JP3293450B2 (en) 2002-06-17

Family

ID=12560379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03970396A Expired - Fee Related JP3293450B2 (en) 1996-02-27 1996-02-27 Manufacturing method of cold-rolled steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JP3293450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540825A (en) * 2005-05-03 2008-11-20 ポスコ High-formability cold-rolled steel sheet and its manufacturing method.
JP2019039029A (en) * 2017-08-23 2019-03-14 新日鐵住金株式会社 Cu-CONTAINING STEEL SHEET

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540825A (en) * 2005-05-03 2008-11-20 ポスコ High-formability cold-rolled steel sheet and its manufacturing method.
JP2008540827A (en) * 2005-05-03 2008-11-20 ポスコ A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method.
JP2019039029A (en) * 2017-08-23 2019-03-14 新日鐵住金株式会社 Cu-CONTAINING STEEL SHEET

Also Published As

Publication number Publication date
JP3293450B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JPH05306430A (en) Steel sheet for galvanizing and its production
WO2016135793A1 (en) High-strength cold-rolled steel plate and method for producing same
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3293450B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH0559970B2 (en)
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPS5819465A (en) Manufacture of galvanized steel plate with superior press formability
JP2005120471A (en) High strength steel sheet manufacturing method
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP2504219B2 (en) Method for manufacturing alloyed galvanized steel sheet for drawing
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JPH06158175A (en) Production of cold rolled steel sheet for ultradeep drawing
JPH0657336A (en) Production of high strength galvannealed steel sheet for high working
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPH10130780A (en) Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production
JP3613040B2 (en) Method for producing cold-rolled steel sheet with excellent workability and surface properties after processing
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JPH08109416A (en) Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH06172871A (en) Production of high tensile strength steel sheet for deep drawing
JPH05195080A (en) Production of high strength steel sheet for deep drawing
JPH0748649A (en) Steel sheet for galvanizing and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees