JP2005120471A - High strength steel sheet manufacturing method - Google Patents

High strength steel sheet manufacturing method Download PDF

Info

Publication number
JP2005120471A
JP2005120471A JP2004277938A JP2004277938A JP2005120471A JP 2005120471 A JP2005120471 A JP 2005120471A JP 2004277938 A JP2004277938 A JP 2004277938A JP 2004277938 A JP2004277938 A JP 2004277938A JP 2005120471 A JP2005120471 A JP 2005120471A
Authority
JP
Japan
Prior art keywords
cold
hot
mass
value
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277938A
Other languages
Japanese (ja)
Other versions
JP4506380B2 (en
Inventor
Kaneharu Okuda
金晴 奥田
Hiromi Yoshida
裕美 吉田
Toshiaki Urabe
俊明 占部
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004277938A priority Critical patent/JP4506380B2/en
Publication of JP2005120471A publication Critical patent/JP2005120471A/en
Application granted granted Critical
Publication of JP4506380B2 publication Critical patent/JP4506380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel sheet manufacturing method which is useful for applications to steel sheets for cars or the like, has high tensile strength (TS) of ≥ 440 MPa with a high r-value (r-value ≥ 1.2) and with an absolute value of Δr being small as 0.3 or under. <P>SOLUTION: In this manufacturing method, a steel slab having a composition consisting of, by mass, 0.010-0.050% C, ≤ 1.0% Si, 1.0-3.0% Mn, 0.005-0.1% P, ≤ 0.01% S, 0.005-0.5% Al, ≤ 0.01% N, and 0.01-0.12% Nb while Nb content and C content satisfy a relationship of (Nb/93)/(C/12) = 0.2-0.7 is subjected to the finish hot roll at the finish rolling outlet side temperature of ≥ 800°C. The rolled steel slab is coiled at a coiling temperature of 400-720°C to form a hot-rolled sheet. The hot-rolled steel sheet is cold-rolled after the pickling to form a cold-rolled sheet. The cold-rolled sheet is annealed within a predetermined temperature range, and then, cooled at an average cooling rate of ≥ 5°C/s in the temperature range from the annealing temperature to 500°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、引張強度(TS)が440MPa以上の高強度鋼板であって、さらに自動車用鋼板等の使途に有用な、高ランクフォード値(平均r値≧1.2)を有し、しかも、r値の面内異方性(Δr)の絶対値が小さい高強度鋼板の有利な製造方法を提案しようとするものである。   The present invention is a high-strength steel sheet having a tensile strength (TS) of 440 MPa or more, and has a high Rankford value (average r value ≧ 1.2), which is useful for use in steel sheets for automobiles, and has an r value. It is an object of the present invention to propose an advantageous method for producing a high-strength steel sheet having a small absolute value of in-plane anisotropy (Δr).

近年、地球環境保全の観点から、COの排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。このように、自動車車体の軽量化と強化の双方が積極的に進められている。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, there has been a demand for improved fuel efficiency of automobiles. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centered on the collision characteristics of the automobile body. Thus, both weight reduction and reinforcement of the automobile body are being actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では高強度(高張力ともいう。)鋼板が自動車部品に積極的に使用されている。   In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to increase the strength of component materials within a range where there is no problem with rigidity and to reduce the weight by reducing the plate thickness. (Also known as high tension.) Steel plates are actively used in automotive parts.

軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)440MPa以上の鋼板を使用する動向にある。   Since the weight reduction effect increases as the strength of the steel sheet used increases, the automotive industry tends to use steel sheets having a tensile strength (TS) of 440 MPa or more as panel materials for inner and outer plates, for example.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板は優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性が大きく劣化するため、自動車の軽量化を進める上での課題として、TS≧440MPa、より好ましくはTS≧500MPa、さらに好ましくはTS≧590MPaで、しかも良好な深絞り成形性を兼ね備える鋼板の要求が高まっており、深絞り性の評価指標であるランクフォード値(以下「r値」という。)で、平均r値≧1.2の高強度鋼板が要求されている。また、r値の面内異方性の絶対値が小さくなる、例えば0.3以下になると、平均r値レベルが同じでも実プレスにおける成形性がより良好となること判ってきたため、r値の面内異方性が小さいことも要求されている。   On the other hand, since many automobile parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, the high-strength steel sheet is greatly deteriorated in formability, particularly deep drawability, as compared with a normal mild steel sheet. Therefore, TS ≧ 440 MPa, more preferably TS ≧ 500 MPa, More preferably, TS ≧ 590 MPa, and there is an increasing demand for steel sheets having good deep drawability, and the average r value is a Rankford value (hereinafter referred to as “r value”) which is an evaluation index of deep drawability. A high-strength steel sheet of ≧ 1.2 is required. Further, it has been found that when the absolute value of the in-plane anisotropy of the r value becomes small, for example 0.3 or less, the formability in the actual press becomes better even if the average r-value level is the same. A small anisotropy is also required.

高r値を有しながら高強度化する手段としては、極低炭素鋼板中に固溶する炭素や窒素を固着する量のTiとNbを添加し、IF(Interstitial atom free)化した鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加する手法があり、例えば特許文献1に開示されている方法がある。
特開昭56-139654号公報
As a means to increase the strength while having a high r value, the base is based on IF (interstitial atom free) steel added with Ti and Nb in amounts that fix carbon and nitrogen that dissolve in the ultra-low carbon steel sheet. As such, there is a method of adding a solid solution strengthening element such as Si, Mn, P or the like, for example, a method disclosed in Patent Document 1.
JP-A-56-139654

特許文献1は、C:0.002〜0.015%、Nb:C%×3〜C%×8+0.020%、Si:1.2%以下、Mn:0.04〜0.8%、P:0.03〜0.10%の組成を有する、引張強度35〜45kg/mm級(340〜440MPa級)の非時効性を有する成形性の優れた高張力冷延鋼板に関する技術である。 Patent Document 1 has a composition of C: 0.002 to 0.015%, Nb: C% x 3 to C% x 8 + 0.020%, Si: 1.2% or less, Mn: 0.04 to 0.8%, P: 0.03 to 0.10% This is a technique related to a high-tensile cold-rolled steel sheet having excellent formability and non-aging properties of a tensile strength of 35 to 45 kg / mm class 2 (340 to 440 MPa class).

しかしながら、このような極低炭素鋼を素材として固溶強化元素を添加する技術では、引張強さ(引張強さともいう。)が440MPa以上あるいはさらに500MPa以上や590MPa以上といった高強度の鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観上の問題や、めっき性の劣化、2次加工脆性の顕在化などの問題が生じてくることがわかってきた。また、多量に固溶強化成分を添加すると、r値が劣化するので、高強度化を図るほどr値の水準は低下してしまう問題があった。   However, the technology of adding solid solution strengthening elements using such ultra-low carbon steel as a raw material produces high-strength steel sheets with a tensile strength (also called tensile strength) of 440 MPa or higher, or even 500 MPa or higher and 590 MPa or higher. Attempts have been made to increase the amount of alloy elements added, resulting in problems such as surface appearance problems, deterioration of plating properties, and manifestation of secondary work brittleness. Further, when a solid solution strengthening component is added in a large amount, the r value deteriorates, so that there is a problem that the level of the r value decreases as the strength is increased.

さらに、C量を上記引用文献1に具体的に開示されているような0.010%未満という極低炭素域まで低減するためには製鋼工程で真空脱ガスを行なわなければならず、すなわち、これは製造過程でCOを多量に発生することになり、地球環境保全の観点からも好ましい技術とは言い難い。 Further, in order to reduce the amount of C to an extremely low carbon region of less than 0.010% as specifically disclosed in the above cited reference 1, vacuum degassing must be performed in the steelmaking process, that is, A large amount of CO 2 is generated in the manufacturing process, and it is difficult to say that this technique is preferable from the viewpoint of global environmental conservation.

鋼板の高強度化の方法として、前述のような固溶強化法以外に組織強化法がある。例えば、軟質なフェライト相と硬質なマルテンサイト相からなる複合組織鋼板であるDP(Dual-Phase)鋼板がある。DP鋼板は、一般的に延性については概ね良好であり、優れた強度−延性バランス(TS×El)を有し、そして降伏比が低いという特徴、すなわち、引張強度の割に降伏応力が低く、プレス成形時の形状凍結性に優れるという特徴があるが、r値が低く深絞り性に劣る。これは、マルテンサイト形成に必須である固溶Cが、高r値化に有効な{111}再結晶集合組織の形成を阻害するからと言われている。   As a method for increasing the strength of a steel sheet, there is a structure strengthening method other than the solid solution strengthening method as described above. For example, there is a DP (Dual-Phase) steel sheet, which is a composite structure steel sheet composed of a soft ferrite phase and a hard martensite phase. DP steel sheet is generally good in terms of ductility, has an excellent strength-ductility balance (TS × El), and has a low yield ratio, that is, yield stress is low for tensile strength, Although it is characterized by excellent shape freezing properties during press molding, it has a low r value and inferior deep drawability. This is said to be because solute C, which is essential for martensite formation, inhibits the formation of {111} recrystallized texture effective for increasing the r value.

このような複合組織鋼板のr値を改善する試みとして、例えば、特許文献2あるいは特許文献3の技術がある。   As an attempt to improve the r value of such a composite structure steel plate, for example, there is a technique of Patent Document 2 or Patent Document 3.

特許文献2には、冷間圧延後、再結晶温度〜Ac変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入焼戻しを行なう方法が開示されている。しかしながら、この方法では、連続焼鈍時に焼入焼戻しを行なうため、製造コストが問題となる。また、箱焼鈍は、連続焼鈍に比べて処理時間や効率の面で劣る。
特公昭55-10650号公報 特開昭55-100934号公報
Patent Document 2 discloses a method in which after cold rolling, box annealing is performed at a temperature from the recrystallization temperature to the Ac 3 transformation point, and then heating to 700 to 800 ° C. to obtain a composite structure, followed by quenching and tempering. It is disclosed. However, in this method, since the quenching and tempering is performed at the time of continuous annealing, the manufacturing cost becomes a problem. Further, box annealing is inferior in terms of processing time and efficiency as compared to continuous annealing.
Japanese Patent Publication No.55-10650 JP 55-100934

特許文献3の技術は、高r値を得るために冷間圧延後、まず箱焼鈍を行い、この時の温度をフェライト(α)−オーステナイト(γ)の2相域とし、その後、連続焼鈍を行うものである。この技術では、箱焼鈍の均熱時にα相からγ相にMnを濃化させる。このMn濃化相は、その後の連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られるものである。しかしながら、この方法では、Mn濃化のため比較的高温で長時間の箱焼鈍が必要であり、そのため、鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上多くの問題がある。   In the technique of Patent Document 3, after cold rolling to obtain a high r value, box annealing is first performed, the temperature at this time is set to a two-phase region of ferrite (α) -austenite (γ), and then continuous annealing is performed. Is what you do. In this technique, Mn is concentrated from the α phase to the γ phase during soaking of the box annealing. This Mn-concentrated phase preferentially becomes a γ phase during the subsequent continuous annealing, and a mixed structure can be obtained even at a cooling rate of the order of a gas jet. However, this method requires a relatively high temperature and long-time box annealing to concentrate Mn, and therefore, in the manufacturing process, such as frequent adhesion between steel plates, generation of temper collar, and decrease in the life of the furnace inner cover. There are many problems.

また、特許文献4には、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%(ただし、(有効Ti)/(C+N)の原子濃度比を0.4〜0.8)含有する鋼を、熱間圧延し、冷間圧延した後、所定温度に加熱後急冷する連続焼鈍を施すことを特徴とする深絞り性及び形状凍結性に優れた複合組織型高張力冷延鋼板の製造方法が開示されており、具体的には、質量%で、0.012%C−0.32%Si−0.53%Mn−0.03%P−0.051%Tiの組成の鋼を冷間圧延後α−γの2相域である870℃に加熱後、100℃/sの平均冷却速度で冷却することにより、r値=1.61、TS=482MPaの複合組織型冷延鋼板が製造可能である旨が示されている。しかし、100℃/sという高い冷却速度を得るには水焼入設備が必要となる他、水焼入した鋼板は表面処理性の問題が顕在化するため、製造設備上および材質上の問題がある。
特公平1-35900号公報
Patent Document 4 discloses that C: 0.003-0.03%, Si: 0.2-1%, Mn: 0.3-1.5%, Ti: 0.02-0.2% (however, (effective Ti) / (C + N) atomic concentration ratio) 0.4 to 0.8), which is hot-rolled, cold-rolled, and then subjected to continuous annealing that is rapidly cooled after heating to a predetermined temperature, and is a composite structure type excellent in deep drawability and shape freezeability A method for producing a high-tensile cold-rolled steel sheet is disclosed. Specifically, a steel having a composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti in cold mass is cold-rolled. After heating to 870 ° C, which is a two-phase region of α-γ, and then cooling at an average cooling rate of 100 ° C / s, a composite structure type cold rolled steel sheet with r value = 1.61 and TS = 482 MPa can be manufactured. The effect is shown. However, in order to obtain a high cooling rate of 100 ° C / s, water quenching equipment is required, and water-quenched steel sheets have surface treatment problems, so there are problems with manufacturing equipment and materials. is there.
Japanese Patent Publication No. 1-35900

さらに、特許文献5には、C含有量との関係でV含有量の適正化を図ることで複合組織鋼板のr値を改善する技術が開示されている。これは、再結晶焼鈍前には鋼中のCをV系炭化物として析出させて固溶C量を極力低減させて高r値を図り、引き続きα−γの2相域で加熱することにより、V系炭化物を溶解させてγ中にCを濃化させてその後の冷却過程でマルテンサイト相を生成させるものである。しかしながら、Vの添加は、高価であるためコストの上昇を招くこと、さらに熱延板中に析出したVCは、冷間圧延時の変形抵抗を高くするため、実施例に開示されているような圧下率70%での冷間圧延は、ロールへの負荷を大きくしてトラブル発生の危険性を増大させるとともに、生産性の低下が懸念されるなどの製造上の問題がある。また、微細析出物の影響で再結晶挙動が変化し、r値の面内異方性が大きくなるという問題も懸念される。
特開2002-226941号公報
Furthermore, Patent Document 5 discloses a technique for improving the r value of a composite structure steel sheet by optimizing the V content in relation to the C content. This is because by precipitating C in the steel as V-type carbides before recrystallization annealing to reduce the amount of dissolved C as much as possible to achieve a high r value, and subsequently heating in the two-phase region of α-γ, V-type carbides are dissolved to concentrate C in γ, and a martensite phase is generated in the subsequent cooling process. However, the addition of V causes an increase in cost because it is expensive, and VC precipitated in the hot-rolled sheet increases the deformation resistance during cold rolling, so that it is disclosed in the examples. Cold rolling at a rolling reduction of 70% has a manufacturing problem such as increasing the load on the rolls to increase the risk of trouble occurrence and concern about a decrease in productivity. There is also a concern that the recrystallization behavior changes due to the influence of fine precipitates and the in-plane anisotropy of the r value increases.
Japanese Patent Laid-Open No. 2002-226941

また、深絞り性に優れた高強度鋼板およびその製造方法の技術として、特許文献6の技術がある。この技術は、所定のC量を含有し、平均r値が1.3以上、かつ組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有する高強度鋼板を得るものであり、その製造方法は、冷間圧延の圧下率を30〜95%とし、次いでAlとNのクラスターや析出物を形成することによって集合組織を発達させてr値を高めるための焼鈍と、引き続き組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有するようにするための熱処理を行うことを特徴とするものである。この方法では、冷間圧延後、良好なr値を得るための焼鈍と、組織を作り込むための熱処理をそれぞれ必要としており、また、焼鈍工程では、その保持時間が1時間以上という長時間保持を必要としており、工程的(時間的)に生産性が悪いという問題がある。さらに、得られる組織の第2相分率が比較的高いため、優れた強度延性バランスを安定的に確保することは難しい。
特開2003-64444号公報
Moreover, there exists a technique of patent document 6 as a technique of the high strength steel plate excellent in deep drawability, and its manufacturing method. This technique obtains a high-strength steel sheet containing a predetermined amount of C, having an average r value of 1.3 or more, and having a total of 3% or more of one or more of bainite, martensite, and austenite in the structure. The manufacturing method includes a cold rolling reduction rate of 30 to 95%, followed by annealing to increase the r value by developing a texture by forming Al and N clusters and precipitates, and subsequently in the structure. In addition, heat treatment is performed so as to have at least 3% of at least one of bainite, martensite, and austenite. In this method, after cold rolling, annealing for obtaining a good r value and heat treatment for forming a structure are required, and in the annealing process, the holding time is a long time of 1 hour or more. There is a problem that productivity is poor in terms of process (time). Furthermore, since the second phase fraction of the obtained structure is relatively high, it is difficult to stably secure an excellent strength ductility balance.
JP 2003-64444 A

深絞り性に優れる(軟)鋼板を高強度化するにあたり、従来検討されてきた固溶強化による高強度化の方法には、多量の或いは過剰な合金成分の添加が必要であり、これは、コスト的にも工程的にも、またr値の向上そのものにも課題を抱えるものであった。   In order to increase the strength of a (soft) steel sheet excellent in deep drawability, a method for increasing the strength by solid solution strengthening that has been conventionally studied requires the addition of a large amount or an excess of alloy components. In terms of cost, process, and improvement of the r value, there are problems.

また、組織強化を利用した方法では、2回焼鈍(加熱)法や高速冷却設備を必要とするため、製造工程上の問題があり、さらに、VCを活用した方法も開示されているが、高価なVの添加はコストの上昇を招く他、VCの析出は圧延時の変形抵抗を高くするため、これもまた安定した製造を困難にするものであった。   In addition, the method using the strengthening of the structure requires a two-time annealing (heating) method and a high-speed cooling facility, and thus has a problem in the manufacturing process. Further, although a method using VC is disclosed, it is expensive. Addition of V causes an increase in cost, and precipitation of VC increases deformation resistance during rolling, which also makes stable production difficult.

この発明は、このような従来技術の問題点を有利に解決した、平均r値が大きく、かつr値の面内異方性が小さい深絞り性が良好な高強度鋼板の製造方法を提案することを目的とする。   The present invention proposes a method for producing a high-strength steel sheet having a good average draw value and a good deep drawability with a small average r value and a small in-plane anisotropy of the r value. For the purpose.

この発明は、上記のような課題を解決すべく鋭意検討を進めたところ、C含有量範囲を0.010〜0.050mass%とし、このC含有量に応じたNb量を添加し、さらに冷間圧延を行った後、連続焼鈍する際に、含有成分量に応じた最適な範囲で焼鈍を行うことで、高r値でかつr値の面内異方性を小さくできることを見出した。   The present invention has been intensively studied to solve the above-mentioned problems, and the C content range is set to 0.010 to 0.050 mass%, an Nb amount corresponding to the C content is added, and cold rolling is further performed. After performing, it discovered that the in-plane anisotropy of a high r value and r value could be made small by performing annealing in the optimal range according to the amount of components.

すなわち、焼鈍温度の下限は、再結晶を行わせるため再結晶温度を変化させるNb量に応じて、T1=800+625Nbとする必要がある。   That is, the lower limit of the annealing temperature needs to be T1 = 800 + 625 Nb according to the amount of Nb that changes the recrystallization temperature in order to cause recrystallization.

また、焼鈍温度の上限には変態温度の制約が必要であり、焼鈍中の二相組織を制御しなければならない。このため、焼鈍温度の上限は変態点を変化させるMn量などに合わせた温度に適正化する必要があることを見出した。この場合、加熱時のγ分率の変化は複雑であること、変態点を正確に測定することは困難であることから、成分を変化させた鋼で焼鈍温度を変化させて平均r値およびr値の面内異方性を評価して、平均r値≧1.2、r値の面内異方性の絶対値≦0.3を達成できる焼鈍温度の上限を、含有する成分の関数として求めた。   In addition, the upper limit of the annealing temperature requires a transformation temperature constraint, and the two-phase structure during annealing must be controlled. For this reason, it discovered that it was necessary to optimize the upper limit of annealing temperature to the temperature matched with the amount of Mn etc. which change a transformation point. In this case, since the change in the γ fraction during heating is complicated and it is difficult to accurately measure the transformation point, the average r value and the r The in-plane anisotropy of the value was evaluated, and the upper limit of the annealing temperature at which the average r value ≧ 1.2 and the absolute value of the in-plane anisotropy of the r value ≦ 0.3 was obtained as a function of the component contained.

そして、このように焼鈍温度の下限および上限を定めて含有成分量に応じた最適な範囲で焼鈍を行うことで高r値でかつr値の面内異方性を小さくできることを見出した。   And it determined that the in-plane anisotropy of the high r value and the r value can be reduced by setting the lower limit and the upper limit of the annealing temperature in this way and performing the annealing within the optimum range according to the amount of the contained component.

すなわち、この発明の要旨は以下の通りである。
(I)質量%で、
C:0.010〜0.050%
Si:1.0%以下
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005〜0.5%
N:0.01%以下および
Nb:0.01〜0.12%
を含有し、かつ、Nb含有量とC含有量が、
(Nb/93)/(C/12)=0.2〜0.7
(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満たす組成になる鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取温度:400〜720℃で巻取り、熱延板とする熱間圧延工程と、該熱延板に酸洗後冷間圧延を施し、冷延板とする冷間圧延工程と、該冷延板に焼鈍温度を下記(1)式および(2)式に示すT1℃以上T2℃以下として焼鈍し、次いで焼鈍温度から500℃までの温度域での平均冷却速度:5℃/s以上として冷却する冷延板焼鈍工程とを有することを特徴とする高強度鋼板の製造方法。

T1(℃)=800+625Nb ・・・・(1)
T2(℃)=950−45(Mn−Si−5P) ・・・・(2)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
That is, the gist of the present invention is as follows.
(I) In mass%,
C: 0.010 to 0.050%
Si: 1.0% or less
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005-0.5%
N: 0.01% or less and
Nb: 0.01-0.12%
And Nb content and C content are
(Nb / 93) / (C / 12) = 0.2-0.7
(Nb and C in the formula are the contents of each element (mass%))
A steel slab having a composition satisfying the above relationship is subjected to finish rolling at a finish rolling temperature of 800 ° C or higher by hot rolling, and wound at a winding temperature of 400 to 720 ° C to form a hot rolled sheet A rolling process, a cold rolling process in which the hot-rolled sheet is pickled and cold-rolled to obtain a cold-rolled sheet, and an annealing temperature for the cold-rolled sheet is expressed by the following formulas (1) and (2) T1 A high-strength steel sheet characterized by having a cold-rolled sheet annealing step of annealing at an average cooling rate in the temperature range from the annealing temperature to 500 ° C: 5 ° C / s or more. Production method.
T1 (℃) = 800 + 625Nb ・ ・ ・ ・ (1)
T2 (° C) = 950-45 (Mn-Si-5P) (2)
Here, the element symbol in a formula shows content (mass%) of each element.

(II)質量%で、
C:0.010〜0.050%
Si:1.0%以下
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005〜0.5%
N:0.01%以下および
Nb:0.01〜0.12%
を含有し、かつ、Nb含有量とC含有量が、
(Nb/93)/(C/12)=0.2〜0.7
(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満たす組成になる鋼スラブを熱間圧延して、平均結晶粒径が8μm以下である熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し、冷延板とする冷間圧延工程と、該冷延板に焼鈍温度を下記(1)式および(2)式に示すT1℃以上T2℃以下として焼鈍し、次いで焼鈍温度から500℃までの温度域での平均冷却速度:5℃/s以上として冷却する冷延板焼鈍工程とを有することを特徴とする高強度鋼板の製造方法。

T1(℃)=800+625Nb ・・・・(1)
T2(℃)=950−45(Mn−Si−5P) ・・・・(2)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
(II)% by mass
C: 0.010 to 0.050%
Si: 1.0% or less
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005-0.5%
N: 0.01% or less and
Nb: 0.01-0.12%
And Nb content and C content are
(Nb / 93) / (C / 12) = 0.2-0.7
(Nb and C in the formula are the contents of each element (mass%))
A hot-rolling process in which a steel slab having a composition satisfying the relationship is hot-rolled to form a hot-rolled sheet having an average crystal grain size of 8 μm or less, and the hot-rolled sheet is cold-rolled, In the cold rolling process, the annealing temperature of the cold-rolled sheet is set to T1 ° C. or higher and T2 ° C. or lower as shown in the following formulas (1) and (2), and then in the temperature range from the annealing temperature to 500 ° C. A method for producing a high-strength steel sheet, comprising: an average cooling rate: a cold-rolled sheet annealing step for cooling at 5 ° C./s or more.
T1 (℃) = 800 + 625Nb ・ ・ ・ ・ (1)
T2 (° C) = 950-45 (Mn-Si-5P) (2)
Here, the element symbol in a formula shows content (mass%) of each element.

(III)鋼スラブが、上記組成に加えて、さらにMo:0.02質量%以上、Cr:0.05質量%以上、Cu:0.05質量%以上およびNi:0.05質量%以上の中から選択される1種または2種以上を合計で0.5質量%以下含有するとともに、前記焼鈍温度の上限を、前記(2)式に代えて下記(3)式に示すT2℃として焼鈍することを特徴とする上記(I)または(II)に記載の高強度鋼板の製造方法。

T2(℃)=950−45(Mn−Si−5P−0.8Mo+Cu+Ni) ・・・・(3)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
(III) In addition to the above composition, the steel slab is further selected from Mo: 0.02 mass% or more, Cr: 0.05 mass% or more, Cu: 0.05 mass% or more, and Ni: 0.05 mass% or more, or The above (I) is characterized in that it contains 0.5% by mass or less in total of two or more types, and the upper limit of the annealing temperature is annealed at T2 ° C. shown in the following formula (3) instead of the formula (2). Or the manufacturing method of the high strength steel plate as described in (II).
T2 (° C) = 950-45 (Mn-Si-5P-0.8Mo + Cu + Ni) (3)
Here, the element symbol in a formula shows content (mass%) of each element.

(IV)鋼スラブが、上記組成に加えて、さらにTi:0.1質量%以下を含有し、かつ、鋼中のTi、SおよびNの含有量が、
(Ti/48)/{(S/32)+(N/14)}≦2.0(式中のTi、S、Nは各々の元素の含有量(質量%))
なる関係を満足することを特徴とする上記(I)、(II)または(III)に記載の高強度鋼板の製造方法。
(IV) In addition to the above composition, the steel slab further contains Ti: 0.1% by mass or less, and the contents of Ti, S and N in the steel are
(Ti / 48) / {(S / 32) + (N / 14)} ≦ 2.0 (Ti, S and N in the formula are the contents of each element (mass%))
The method for producing a high-strength steel sheet according to the above (I), (II) or (III), wherein the following relationship is satisfied.

(V)上記冷延板焼鈍工程の後の鋼板表面にめっき層を形成するめっき処理工程をさらに有することを特徴とする上記(I)〜(IV)のいずれか1項に記載の高強度鋼板の製造方法。 (V) The high-strength steel plate according to any one of (I) to (IV) above, further comprising a plating treatment step of forming a plating layer on the surface of the steel plate after the cold-rolled plate annealing step. Manufacturing method.

この発明は、C含有量が0.010〜0.050質量%の範囲において、従来の極低炭素IF鋼のように深絞り性に悪影響を及ぼす固溶Cの低減を徹底せずに、マルテンサイト形成に必要な程度の固溶Cを残存させた状態下にもかかわらず、{111}再結晶集合組織を発達させて平均r値≧1.2を確保して良好な深絞り性を有するとともに、鋼組織をフェライト相と、マルテンサイト相を含む第2相とを有する複合組織とすることで、TS440MPa以上、より好ましくはTS500MPa以上の高強度化を達成したものである。さらに、この発明では、r値の面内異方性が小さくできるため、特に優れたプレス成形性が確保できる。   This invention is necessary for the formation of martensite when the C content is in the range of 0.010 to 0.050% by mass without thorough reduction of solid solution C that adversely affects deep drawability like conventional ultra-low carbon IF steels. Despite the state in which a certain amount of solute C remains, a {111} recrystallized texture is developed to secure an average r value ≧ 1.2 and good deep drawability, and the steel structure is made of ferrite. By forming a composite structure having a phase and a second phase including a martensite phase, high strength of TS440 MPa or more, more preferably TS500 MPa or more is achieved. Furthermore, in this invention, since the in-plane anisotropy of the r value can be reduced, particularly excellent press formability can be ensured.

この理由については、必ずしも明らかではないが、次のように考えられる。
高r値化、すなわち{111}再結晶集合組織を発達させるためには、従来軟鋼板においては、冷間圧延および再結晶前の固溶Cを極力低減することや熱延板組織を微細化することなどが有効な手段とされてきた。一方、前述のようなDP鋼板では、マルテンサイト形成に必要な固溶Cを必要とするため、母相の再結晶集合組織が発達せずr値が低かった。しかしながら、本発明では、母相であるフェライト相の{111}再結晶集合組織発達と、マルテンサイト相の形成の双方を可能にする絶妙の好成分範囲が存在することを新たに見出した。すなわち、従来のDP鋼板(低炭素鋼レベル)よりもC量を低減しつつ、極低炭素鋼よりはC量が多いという、0.010〜0.050質量%のC含有量とし、加えて、このC含有量に合わせて適切なNb添加を行なうことで、{111}再結晶集合組織発達と、マルテンサイト相の形成の双方を同時に達成できることを新たに見出した。
Although the reason for this is not necessarily clear, it can be considered as follows.
In order to increase the r value, that is, to develop the {111} recrystallization texture, in the conventional mild steel sheet, the solute C before cold rolling and recrystallization is reduced as much as possible and the hot rolled sheet structure is refined. To do so has been an effective means. On the other hand, in the DP steel sheet as described above, since the solid solution C necessary for martensite formation is required, the recrystallization texture of the parent phase does not develop and the r value is low. However, in the present invention, it has been newly found that there is an exquisite good component range that enables both the {111} recrystallized texture development of the ferrite phase as a parent phase and the formation of the martensite phase. That is, the C content is 0.010 to 0.050% by mass, in which the C content is lower than that of the conventional DP steel sheet (low carbon steel level) and the C content is higher than that of the ultra-low carbon steel. It was newly found that by adding Nb appropriately according to the amount, both {111} recrystallization texture development and martensite phase formation can be achieved simultaneously.

従来から知られているように、Nbは再結晶遅延効果があるため、熱間圧延時の仕上温度を適切に制御することで熱延板組織を微細化することが可能であり、さらに鋼中においてNbは高い炭化物形成能を有している。   As conventionally known, since Nb has a recrystallization delay effect, it is possible to refine the hot-rolled sheet structure by appropriately controlling the finishing temperature during hot rolling. Nb has a high carbide forming ability.

本発明では、特に、熱延仕上温度を変態点直上の適正な範囲にして熱延板組織を微細化する以外に、熱間圧延後のコイル巻取温度も適正に設定することで、熱延板中にNbCを析出させ、冷間圧延前および再結晶前の固溶Cの低減を図っている。   In the present invention, in particular, the hot rolling finish temperature is set to an appropriate range immediately above the transformation point, and in addition to refining the hot rolled sheet structure, the coil winding temperature after hot rolling is also set appropriately so that hot rolling NbC is precipitated in the plate to reduce solid solution C before cold rolling and before recrystallization.

ここで、Nb含有量とC含有量が、(Nb/93)/(C/12)=0.2〜0.7を満たすように設定することで、敢えてNbCとして析出しないCを存在させている。   Here, by setting the Nb content and the C content to satisfy (Nb / 93) / (C / 12) = 0.2 to 0.7, C that does not precipitate as NbC is present.

従来このようなCの存在が{111}再結晶集合組織の発達を阻害するとされてきたが、本発明では、全C含有量をNbCとして析出固定せず、マルテンサイト相の形成に必要な固溶Cが存在しながらも高r値化を達成できる。   Conventionally, it has been said that the presence of such C inhibits the development of {111} recrystallized texture. However, in the present invention, the total C content is not precipitated and fixed as NbC, but is necessary for the formation of the martensite phase. A high r-value can be achieved while molten C is present.

この理由は定かではないが、固溶Cの存在による{111}再結晶集合組織形成に対する負の要因よりも、熱延板組織の微細化に加え、マトリックス中に微細なNbCを析出させることで冷間圧延時に粒界近傍に歪を蓄積させ粒界からの{111}再結晶粒の発生を促進するという正の要因の方が大きいためと考えられる。特にマトリックス中にNbCを析出させることの効果は、従来の極低炭素鋼程度のC含有量では有効ではなく、本発明のC含有量の適正範囲(0.010〜0.050質量%)において初めてその効果を発揮するものと推測され、このC含有量の適正範囲を見出したことが本発明の技術思想の基盤となっている。   The reason for this is not clear, but rather than a negative factor for the formation of {111} recrystallized texture due to the presence of solute C, in addition to refinement of the hot rolled sheet structure, fine NbC is precipitated in the matrix. This is probably because the positive factor of accumulating strain near the grain boundary during cold rolling and promoting the generation of {111} recrystallized grains from the grain boundary is greater. In particular, the effect of precipitating NbC in the matrix is not effective at the C content of the conventional ultra-low carbon steel, and is not effective for the first time in the proper range (0.010 to 0.050% by mass) of the C content of the present invention. It is presumed to be exhibited, and finding the appropriate range of the C content is the basis of the technical idea of the present invention.

そして、NbC以外のC、その存在形態はおそらくセメンタイト系炭化物或いは固溶Cであると推測されるが、これらNbCとして固定されなかったCの存在により、焼鈍工程における冷却時にマルテンサイト相を形成可能とし高強度化にも成功したのである。   C other than NbC and its existence form are presumed to be cementite-based carbides or solute C, but the presence of C that is not fixed as NbC can form a martensite phase during cooling in the annealing process. And succeeded in increasing the strength.

この発明の製造方法によれば、従来技術に対し、製鋼工程においては極低炭素鋼とするための脱ガス工程が不要であること、また固溶強化を利用するための過剰な合金元素の添加も不要でありコスト的にも有利である。さらに、合金コストおよび圧延荷重を高めるVのような特別な元素の添加も必要ない。   According to the manufacturing method of the present invention, compared to the prior art, a degassing step for making an ultra-low carbon steel is not necessary in the steel making step, and addition of an excessive alloy element for utilizing solid solution strengthening. Is also unnecessary and advantageous in terms of cost. Furthermore, there is no need to add a special element such as V which increases the alloy cost and rolling load.

以下に本発明を詳細に説明する。
なお、元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
まず、本発明に用いる鋼スラブの成分組成を限定した理由について説明する。
The present invention is described in detail below.
The unit of element content is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
First, the reason for limiting the component composition of the steel slab used in the present invention will be described.

C:0.010〜0.050%
Cは、後述のNbとともに本発明における重要な元素である。Cは、高強度化に有効であり、フェライト相を主相としマルテンサイト相を含む第2相を有する複合組織の形成を促進するので、本発明では複合組織形成の観点からCを0.010%以上含有する必要があり、好ましくは0.015%以上とする。一方、0.050%を超えるCの含有は良好なr値が得られなくなることから、C含有量の上限を0.050%とし、好ましくは0.030%以下とする。
C: 0.010 to 0.050%
C is an important element in the present invention together with Nb described later. C is effective for increasing the strength and promotes the formation of a composite structure having a ferrite phase as a main phase and a second phase including a martensite phase. Therefore, in the present invention, C is 0.010% or more from the viewpoint of forming a composite structure. It is necessary to contain, preferably 0.015% or more. On the other hand, if the C content exceeds 0.050%, a good r value cannot be obtained, so the upper limit of the C content is 0.050%, preferably 0.030% or less.

Si: 1.0%以下
Siは、フェライト変態を促進させ、未変態オーステナイト中のC含有量を上昇させてフェライト相とマルテンサイト相の複合組織を形成させやすくする他、固溶強化の効果があるが、Siを1.0%を超えて含有すると、熱間圧延時に赤スケールと称される表面欠陥が発生するため、鋼板とした時の表面外観を悪くする。また、溶融亜鉛めっきを施す場合には、めっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si含有量は1.0%以下とする必要があり、好ましくは0.7%以下とする。なお、Si含有量の下限値は、上記効果を得るため、0.01%とすることが好ましく、より好ましくは0.05%とする。
Si: 1.0% or less
Si promotes ferrite transformation and raises the C content in untransformed austenite, making it easier to form a composite structure of ferrite and martensite phases, and has the effect of solid solution strengthening. If the content exceeds V, surface defects called red scales are generated during hot rolling, which deteriorates the surface appearance of the steel sheet. In addition, when hot dip galvanizing is performed, the wettability of the plating is deteriorated and plating unevenness occurs, and the plating quality deteriorates. Therefore, the Si content must be 1.0% or less, preferably 0.7%. The following. In order to obtain the above effect, the lower limit of the Si content is preferably 0.01%, more preferably 0.05%.

Mn:1.0〜3.0%
Mnは、高強度化に有効であるとともに、マルテンサイト相が得られる臨界冷却速度を低くする作用があり、焼鈍後の冷却時にマルテンサイト相の形成を促すため、要求される強度レベルおよび焼鈍後の冷却速度に応じて含有するのが好ましく、また、Mnは、Sによる熱間割れを防止するのに有効な元素でもある。このような観点から、Mnは1.0%以上含有する必要があり、好ましくは1.2%以上とする。一方、3.0%を超える過度のMnを含有することは、r値および溶接性を劣化させるので、Mn含有量の上限は3.0%とする。
Mn: 1.0-3.0%
Mn is effective in increasing strength and has the effect of lowering the critical cooling rate at which a martensite phase is obtained, and promotes the formation of the martensite phase during cooling after annealing, so the required strength level and after annealing The Mn is preferably an element effective for preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained at 1.0% or more, preferably 1.2% or more. On the other hand, containing excessive Mn exceeding 3.0% degrades the r value and weldability, so the upper limit of the Mn content is 3.0%.

P:0.005〜0.1%
Pは、固溶強化の効果がある元素である。しかしながら、P含有量が0.005%未満では、その効果が現れないだけでなく、製鋼工程において脱りんコストの上昇を招く。したがって、Pは0.005%以上含有するものとし、好ましくは0.01%以上含有する。一方、0.1%を超える過剰なPの含有は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする際には、溶融亜鉛めっき後の合金化処理時に、めっき層と鋼板の界面における鋼板からめっき層へのFeの拡散を抑制し、合金化処理性を劣化させる。そのため、高温での合金化処理が必要となり、得られるめっき層は、パウダリング、チッピング等のめっき剥離が生じやすいものとなる。従って、P含有量の上限は0.1%とした。
P: 0.005-0.1%
P is an element having an effect of solid solution strengthening. However, if the P content is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steel making process. Therefore, P is contained in an amount of 0.005% or more, preferably 0.01% or more. On the other hand, if the P content exceeds 0.1%, P segregates at the grain boundaries, and the secondary work brittleness resistance and weldability deteriorate. Moreover, when it is set as the hot dip galvanized steel sheet, the diffusion of Fe from the steel sheet to the plated layer at the interface between the plated layer and the steel sheet is suppressed during the alloying process after the hot dip galvanizing, and the alloying processability is deteriorated. For this reason, an alloying treatment at a high temperature is required, and the obtained plating layer is likely to undergo plating peeling such as powdering and chipping. Therefore, the upper limit of the P content is set to 0.1%.

S:0.01%以下
Sは、不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減する必要がある。具体的には、S含有量は、0.01%までは許容できるため、0.01%以下とする。
S: 0.01% or less S is an impurity and causes hot cracking, and also exists as inclusions in steel and deteriorates various properties of the steel sheet. Therefore, it is necessary to reduce it as much as possible. Specifically, the S content is 0.01% or less because it is acceptable up to 0.01%.

Al:0.005〜0.5%
Alは、鋼の脱酸元素として有用である他、不純物として含有している固溶Nを固定して耐常温時効性を向上させる作用があり、かかる作用を発揮させるためには、Al含有量は0.005%以上とする必要がある。一方、0.5%を超えるAlの含有は、高合金コストを招き、さらに表面欠陥を誘発するので、Al含有量の上限を0.5%とする。より好ましくは0.1%以下である。
Al: 0.005-0.5%
In addition to being useful as a deoxidizing element for steel, Al has the effect of fixing solid solution N contained as an impurity to improve normal temperature aging resistance. Must be 0.005% or more. On the other hand, the Al content exceeding 0.5% causes high alloy costs and further induces surface defects, so the upper limit of Al content is set to 0.5%. More preferably, it is 0.1% or less.

N:0.01%以下
Nは、耐常温時効性を劣化させる元素であり、できるだけ低減することが好ましい元素である。N含有量が0.01%を超えると、Nによる耐常温時効性の劣化を防止するために、多量のAlやTi添加が必要となることから、N含有量の上限を0.01%とする。
N: 0.01% or less N is an element that degrades aging resistance at room temperature, and is an element that is preferably reduced as much as possible. If the N content exceeds 0.01%, a large amount of Al or Ti needs to be added to prevent deterioration of normal temperature aging resistance due to N, so the upper limit of the N content is set to 0.01%.

Nb:0.01〜0.12%、かつ(Nb/93)/(C/12)=0.2〜0.7
Nbは、本発明において最も重要な元素であり、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、高r値化に寄与する元素である。このような観点からNbは0.01%以上含有する必要があり、好ましくは0.03%以上含有させる。一方、0.12%を超える過剰のNb含有は、面内異方性の制御が困難になり、r値の面内異方性が大きくなる傾向になるため、Nb含有量の上限を0.12%とする。
Nb: 0.01 to 0.12% and (Nb / 93) / (C / 12) = 0.2 to 0.7
Nb is the most important element in the present invention, and has the effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and contributes to increasing the r value. From such a viewpoint, Nb needs to be contained in an amount of 0.01% or more, preferably 0.03% or more. On the other hand, excessive Nb content exceeding 0.12% makes it difficult to control the in-plane anisotropy and tends to increase the in-plane anisotropy of the r value, so the upper limit of the Nb content is set to 0.12%. .

また、Nb含有の効果を奏するには、特にNb含有量(質量%)とC含有量(質量%)を、(Nb/93)/(C/12)=0.2〜0.7の関係式を満足させる範囲とすることが必要である。なお、ここで式中の元素記号(Nb、C)は、各々の元素の含有量(質量%)を示している。また、(Nb/93)/(C/12)はNbとCの原子濃度比を表している。(Nb/93)/(C/12)が0.2未満では、固溶Cの存在量が多く、高r値化に有効な{111}再結晶集合組織の形成を阻害することになる。また、(Nb/93)/(C/12)が0.7を超えると、マルテンサイト相を形成するのに必要なC量を鋼中に存在させることを妨げるので、最終的にマルテンサイト相を含む第2相を有する組織が得られない。したがって、Nb含有量を0.01〜0.12%とし、さらにNb含有量とC含有量を、(Nb /93)/(C/12)=0.2〜0.7を満足する範囲とする。なお、より好ましくは(Nb/93)/(C/12)=0.2〜0.5を満足する範囲とする。   In order to achieve the effect of Nb content, the Nb content (mass%) and the C content (mass%) should satisfy the relational expression of (Nb / 93) / (C / 12) = 0.2 to 0.7. It is necessary to make it a range. Here, the element symbol (Nb, C) in the formula indicates the content (% by mass) of each element. (Nb / 93) / (C / 12) represents the atomic concentration ratio of Nb and C. When (Nb / 93) / (C / 12) is less than 0.2, the amount of solid solution C is large, and the formation of {111} recrystallized texture effective for increasing the r value is inhibited. Further, if (Nb / 93) / (C / 12) exceeds 0.7, the amount of C necessary to form the martensite phase is prevented from being present in the steel, so the martensite phase is finally included. A structure having a second phase cannot be obtained. Therefore, the Nb content is set to 0.01 to 0.12%, and the Nb content and the C content are set to satisfy the range of (Nb / 93) / (C / 12) = 0.2 to 0.7. More preferably, the range satisfies (Nb / 93) / (C / 12) = 0.2 to 0.5.

以上が本発明の高強度鋼板の基本組成である。
なお、本発明では、上記した組成に加えてさらに下記に示すMo、Cr、CuおよびNiの中から選択される1種または2種以上、および/またはTiを、必要に応じて添加してもよい。
The above is the basic composition of the high-strength steel sheet of the present invention.
In the present invention, in addition to the above-described composition, one or more selected from Mo, Cr, Cu and Ni shown below and / or Ti may be added as necessary. Good.

Mo:0.02%以上、Cr:0.05%以上、Cu:0.05%以上およびNi:0.05%以上の中から選択される1種または2種以上を合計で0.5質量%以下
Mo、Cr、CuおよびNiは、Mnと同様、マルテンサイト相が得られる臨界冷却速度を遅くする作用をもち、焼鈍後の冷却時にマルテンサイト相の形成を促す元素であり、強度レベル向上に効果がある。Mo、Cr、CuおよびNiは、鋼中に不可避的不純物としてMo:0.02%未満、Cr:0.05%未満、Cu:0.05%未満およびNi:0.05%未満の範囲で含有する場合があるが、上記効果を得るためには、Moは0.02%以上、Cr:0.05%以上、Cu:0.05%以上およびNi:0.05%以上の中から選択される1種または2種以上を合計で0.5質量%以下含有させることが好ましい。しかしながら、これらの成分の1種または2種以上の元素の合計で0.5%を超える過剰な添加は、その効果が飽和するだけでなく、高価な成分によるコストの上昇を招くことから、Mo、Cr、CuおよびNiの1種または2種以上の元素の合計含有量の上限は0.5%とすることが好ましい。なお、Mo、Cr、CuおよびNiの含有量の下限値は、より好適には、それぞれ0.05%、0.1%、0.1%および0.1%とし、Mo、Cr、CuおよびNiの各含有量の上限値は、いずれも0.5%とすることが好ましい。
Mo: 0.02% or more, Cr: 0.05% or more, Cu: 0.05% or more and Ni: 0.05% or more selected from a total of 0.5% by mass or less
Mo, Cr, Cu and Ni, like Mn, have the effect of slowing the critical cooling rate at which a martensite phase is obtained, and are elements that promote the formation of the martensite phase during cooling after annealing, and are effective in improving the strength level. There is. Mo, Cr, Cu and Ni may be contained in the steel as unavoidable impurities in the range of Mo: less than 0.02%, Cr: less than 0.05%, Cu: less than 0.05% and Ni: less than 0.05%. In order to obtain the effect, the Mo content is 0.02% or more, Cr: 0.05% or more, Cu: 0.05% or more, and Ni: 0.05% or more. It is preferable to make it. However, excessive addition exceeding 0.5% in total of one or more elements of these components not only saturates the effect but also increases the cost due to expensive components, so Mo, Cr The upper limit of the total content of one or more elements of Cu and Ni is preferably 0.5%. The lower limit values for the contents of Mo, Cr, Cu and Ni are more preferably 0.05%, 0.1%, 0.1% and 0.1%, respectively, and the upper limit values for the respective contents of Mo, Cr, Cu and Ni. Is preferably 0.5%.

Ti:0.1%以下、かつ鋼中のTiとSとNの含有量が(Ti/48)/{(S/32)+(N/14)}≦2.0
Tiは、Alと同等或いはAl以上に固溶Nの析出固定に効果がある元素であり、この効果を得るためには0.005%以上含有することが好ましい。しかしながら、0.1%を超える過剰の添加は、コストの上昇を招くばかりか、TiCの形成によりマルテンサイト相の形成に必要な固溶Cを鋼中に残すことを妨げる。したがって、Ti含有量は、0.1%以下とすることが好ましい。
Ti: 0.1% or less, and the contents of Ti, S, and N in the steel are (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2.0
Ti is an element which is equivalent to Al or more effective than Al and is effective in precipitation fixation of solute N. In order to obtain this effect, Ti is preferably contained in an amount of 0.005% or more. However, excessive addition exceeding 0.1% not only increases the cost, but also prevents the solid solution C necessary for the formation of the martensite phase from remaining in the steel due to the formation of TiC. Therefore, the Ti content is preferably 0.1% or less.

また、Tiは鋼中でSおよびNと優先的に結合し、次いでCと結合する。鋼中での介在物の形成等によるTiの歩留まり低下を考慮すると、(Ti/48)/{(S/32)+(N/14)}が2.0を超えるTi添加量では、S,Nを固定するというTi添加の効果は飽和し、かえってTiCの形成を促進して鋼中に固溶Cを残すことを妨げるという弊害が大きくなる。したがって、Ti含有量は鋼中で優先的に結合するSおよびNの含有量との関係で、(Ti/48)/{(S/32)+(N/14)}≦2.0を満足することが好ましい。なお、ここで該関係式中のTi、S、Nは各々の元素の含有量(質量%)である。   Further, Ti preferentially bonds with S and N in the steel, and then bonds with C. Considering the decrease in Ti yield due to the formation of inclusions in steel, etc., when Ti addition amount exceeds (Ti / 48) / {(S / 32) + (N / 14)} 2.0, S and N The effect of Ti addition of fixing is saturated, and on the contrary, the effect of preventing the formation of TiC and preventing the solid solution C from remaining in the steel becomes large. Therefore, the Ti content should satisfy (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2.0 in relation to the contents of S and N that are preferentially bonded in steel. Is preferred. In addition, Ti, S, and N in this relational expression here are content (mass%) of each element.

また、本発明では、上記した成分以外の残部は実質的に鉄および不可避的不純物の組成とすることが好ましい。不可避的不純物としては、例えば、前述したように、Mo:0.02%未満、Cr:0.05%未満、Cu:0.05%未満およびNi:0.05%未満の他、Ti:0.005%未満等が挙げられる。   In the present invention, the balance other than the above-described components is preferably substantially composed of iron and inevitable impurities. Inevitable impurities include, for example, Mo: less than 0.02%, Cr: less than 0.05%, Cu: less than 0.05% and Ni: less than 0.05%, and Ti: less than 0.005%, as described above.

なお、通常の鋼組成範囲内であれば、B、Ca、REM等を含有しても何ら問題はない。例えば、Bは、鋼の焼入性を向上する作用をもつ元素であり、必要に応じて含有できる。しかし、その含有量が0.003%を超えるとその効果が飽和するため、0.003%以下とすることが好ましい。   In addition, if it is in the normal steel composition range, even if it contains B, Ca, REM, etc., there is no problem. For example, B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, when the content exceeds 0.003%, the effect is saturated, and therefore it is preferably 0.003% or less.

また、CaおよびREMは、硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を超えると飽和する傾向があるので、これ以下とすることが好ましい。   Moreover, Ca and REM have the effect | action which controls the form of a sulfide type inclusion, and, thereby, prevents the deterioration of the various characteristics of a steel plate. Since such an effect tends to be saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, it is preferable to make the content less than this.

なお、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。   Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less , Co: 0.1% or less.

本発明方法によって製造した高強度鋼板は、上記成分組成および鋼組織を満足するとともに、平均r値が1.2以上を満足するものである。
ここで、「平均r値」とは、JIS Z 2254で求められる平均塑性ひずみ比を意味し、以下の式から算出される値である。
平均r値=(r0+2r45+r90)/4
なお、r0、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ0°、45°および90°方向に採取し測定した塑性ひずみ比である。
The high-strength steel sheet produced by the method of the present invention satisfies the above component composition and steel structure, and satisfies an average r value of 1.2 or more.
Here, the “average r value” means an average plastic strain ratio obtained by JIS Z 2254, and is a value calculated from the following formula.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
R 0 , r 45, and r 90 are plastic strain ratios obtained by measuring test pieces in the 0 °, 45 °, and 90 ° directions, respectively, with respect to the rolling direction of the plate surface.

また、本発明の方法によって製造した高強度鋼板は、上記成分、鋼ミクロ組織および特性を満足すると共に、集合組織として、鋼板1/4板厚位置におけるX線回折により求めた、板面に平行な(222)面、(200)面、(110)面および(310)面の各積分強度比P(222)、P(200)、P(110)、P(310)が、P(222)/{P(200)+P(110)+P(310)}≧1.5を満足することが好ましく、より好ましくはP(222)/{P(200)+P(110)+P(310)}≧2.0とする。
図1は、作製した種々の本発明鋼板と比較鋼板について、r値とP(222)/{P(200)+P(110)+P(310)}の値を算出し、これら算出した値に基づいてプロットしたときのものである。
In addition, the high-strength steel sheet produced by the method of the present invention satisfies the above-described components, steel microstructure and properties, and is parallel to the plate surface as a texture determined by X-ray diffraction at a steel plate 1/4 thickness position. The integral intensity ratios P (222) , P (200) , P (110) , and P (310) of the (222) plane, (200) plane, (110) plane, and (310) plane are P (222) / {P (200) + P (110) + P (310)} is preferable to satisfy ≧ 1.5, more preferably from P (222) / {P ( 200) + P (110) + P (310)} ≧ 2.0 .
FIG. 1 shows the calculation of the r value and the value of P (222) / {P (200) + P (110) + P (310) } for various manufactured steel sheets of the present invention and comparative steel sheets, and based on these calculated values. Is plotted.

従来、板面が{111}面に平行な集合組織をもつ場合はr値が高いが、{110}面や{100}面に平行な集合組織ではr値が低いことが知られている.
本発明鋼板におけるr値と集合組織の相関について鋭意研究を進めたところ、詳細はまだ明らかではないが、{310}面は少ないながらも{100}、{110}面同様、r値を低下させる集合組織であり、これを低減することが高r値化に寄与することを見出した。これは、詳細は明らかではないが、Nb添加により熱延時の未再結晶γ域での圧下率が高いことや、前述した微細なNbCの析出、およびNbCとして析出固定されないCの存在などが、{310}面低減に寄与していると考えられる。
Conventionally, the r value is high when the plate surface has a texture parallel to the {111} plane, but the r value is known to be low in the texture parallel to the {110} plane or the {100} plane.
As a result of diligent research on the correlation between the r value and the texture in the steel sheet of the present invention, the details are not clear yet, but the {310} face is small, but the r value is lowered as in the {100} and {110} faces. It was a texture, and it was found that reducing this contributes to a higher r-value. This is not clear in detail, but the Nb addition has a high rolling reduction in the unrecrystallized γ region during hot rolling, the fine NbC precipitation described above, and the presence of C that is not precipitated and fixed as NbC. It is thought that it contributes to {310} plane reduction.

なお、{111}集合組織とは、鋼板面垂直方向に結晶の<111>方向が向いていることを言う。結晶学およびBraggの反射条件から、体心立方構造であるα−Feの場合、{111}面の回折としては、(111)面では起こらず、(222)面で起こる為、X線回析積分強度比としては(222)面の値(P(222))を用いた。(222)面は、鋼板板面垂直方向には[222]方向が向いているので、実質<111>方向と同じ方向である。よって(222)面の強度比が高いことは、{111}集合組織が発達していることに対応する。{100}面に対しても同様の理由から、(200)面の値(P(200))を用いた。 In addition, {111} texture means that the <111> direction of the crystal is oriented in the direction perpendicular to the steel plate surface. From the crystallographic and Bragg reflection conditions, in the case of α-Fe with a body-centered cubic structure, diffraction on the {111} plane does not occur on the (111) plane but occurs on the (222) plane, so X-ray diffraction The value of (222) plane (P (222) ) was used as the integral intensity ratio. The (222) plane is substantially the same as the <111> direction because the [222] direction is oriented in the direction perpendicular to the steel plate face. Therefore, a high intensity ratio of the (222) plane corresponds to the development of {111} texture. For the same reason, the value of (200) plane (P (200) ) was used for {100} plane.

ここで、X線回折積分強度比とは、無方向性標準試料(不規則試料)のX線回折積分強度を基準としたときの相対的な強度である。X線回折は、角度分散型、エネルギー分散型のいずれでもよく、X線源は特性X線でも白色X線でもよい。測定面は、α−Feの主要回折面である(110)から(420)までの7面から10面を測定することが望ましい。また、鋼板1/4板厚位置とは、具体的には、鋼板表面から測定して、鋼板の板厚の1/8〜3/8の範囲を指し、X線回折は、この範囲の任意の面で行えばよい。   Here, the X-ray diffraction integrated intensity ratio is a relative intensity based on the X-ray diffraction integrated intensity of a non-directional standard sample (irregular sample). The X-ray diffraction may be either an angle dispersion type or an energy dispersion type, and the X-ray source may be a characteristic X-ray or a white X-ray. It is desirable to measure 7 to 10 measurement surfaces (110) to (420) which are the main diffraction surfaces of α-Fe. Moreover, the steel plate 1/4 plate thickness position specifically refers to a range of 1/8 to 3/8 of the plate thickness of the steel plate measured from the steel plate surface, and X-ray diffraction is an arbitrary value within this range. You can do it in terms of

本発明では、上記した範囲内の組成を有する鋼スラブに熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に酸洗後冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に焼鈍を施す冷延板焼鈍工程とを順次経ることにより高強度鋼板を製造できる。   In the present invention, a hot rolling process in which a steel slab having a composition in the above-described range is hot-rolled to form a hot-rolled sheet, and a cold-rolled sheet by cold-rolling the hot-rolled sheet by pickling and cold rolling. A high-strength steel sheet can be produced by sequentially performing a cold rolling process and a cold-rolled sheet annealing process for annealing the cold-rolled sheet.

本発明では、まず、鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取温度:400〜720℃で巻取り、熱延板とする(熱間圧延工程)。   In the present invention, the steel slab is first subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher by hot rolling, and wound at a winding temperature of 400 to 720 ° C. to obtain a hot rolled sheet (hot Rolling process).

本発明の製造方法で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し、熱間圧延する直送圧延、或いはわずかの保熱を行なった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。   The steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. Moreover, after manufacturing the steel slab, in addition to the conventional method of once cooling to room temperature and then heating again, the steel slab is charged directly into the heating furnace without being cooled and charged in a heating furnace. Energy-saving processes such as direct feed rolling and direct rolling, in which hot rolling is performed immediately after heat insulation, can also be applied without problems.

ここで、スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が1000℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大するので、スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることが好適である。   Here, the slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 1000 ° C., the rolling load increases and the risk of trouble during hot rolling increases, so the slab heating temperature is preferably 1000 ° C. or higher. Note that the upper limit of the slab heating temperature is preferably set to 1300 ° C. because of an increase in scale loss accompanying an increase in oxidized weight.

上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行なえばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点からは、シートバーを加熱する、所謂シートバーヒーターを活用することが好ましい。   The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be determined according to a conventional method. From the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, it is preferable to use a so-called sheet bar heater that heats the sheet bar.

次いで、シートバーを仕上圧延して熱延板とする。このとき、仕上圧延出側温度(FT)は800℃以上とする。これは、冷間圧延および焼鈍後に優れた深絞り性が得られる熱延板組織を得るためである。FTが800℃未満では、組織が加工組織を有し、冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。従って、仕上圧延出側温度(FT)は、800℃以上とする。なお、FTが980℃を超えると、組織が粗大化し、これもまた冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げ、高r値を得る上で不利となるため、FTの上限は980℃とすることが好ましい。   Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet. At this time, the finish rolling outlet temperature (FT) is 800 ° C. or higher. This is to obtain a hot-rolled sheet structure capable of obtaining excellent deep drawability after cold rolling and annealing. If the FT is less than 800 ° C., the structure has a processed structure, and not only the {111} texture does not develop after cold rolling annealing, but also the rolling load during hot rolling becomes high. Therefore, the finish rolling outlet temperature (FT) is 800 ° C. or higher. When FT exceeds 980 ° C., the structure becomes coarse, which also prevents formation and development of {111} recrystallized texture after cold rolling annealing, which is disadvantageous in obtaining a high r value. The upper limit is preferably 980 ° C.

また、熱間圧延時の圧延荷重を低減するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行なうことは、鋼板形状の均一化や材質の均質化の観点から有効である。潤滑圧延の際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Lubrication rolling is effective from the viewpoint of uniform steel plate shape and uniform material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined and finish-rolled continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

コイル巻取温度(CT)は、400〜720℃の範囲とする。この温度範囲が熱延板中にNbCを析出させるのに適正な温度範囲である。CTが720℃を超えると、結晶粒が粗大化し、冷延焼鈍後の高r値化を妨げることになる。また、CTが400℃未満になると、NbCの析出が起こりにくくなり、高r値化に不利となる。なお、コイル巻取温度(CT)は、好ましくは550〜680℃とする。   The coil winding temperature (CT) is in the range of 400 to 720 ° C. This temperature range is an appropriate temperature range for depositing NbC in the hot-rolled sheet. When CT exceeds 720 ° C., the crystal grains become coarse and hinders the increase in r value after cold rolling annealing. On the other hand, when the CT is lower than 400 ° C., the precipitation of NbC is difficult to occur, which is disadvantageous for increasing the r value. The coil winding temperature (CT) is preferably 550 to 680 ° C.

上記の熱間圧延工程を施すことにより平均結晶粒径が8μm以下である熱延鋼板とすることができる。すなわち、本発明の高強度鋼板は、上記した範囲内の組成を有し、平均結晶粒径が8μm以下である熱延板を素材とし、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に再結晶と複合組織化を達成する冷延板焼鈍工程とを順次経ることにより製造できる。
従来軟鋼板においては、熱延板の結晶粒径を微細化するほど、r値を高める効果があることが知られている。
By performing the hot rolling step, a hot rolled steel sheet having an average crystal grain size of 8 μm or less can be obtained. That is, the high-strength steel sheet of the present invention is a hot-rolled sheet having a composition within the above-described range and having an average crystal grain size of 8 μm or less, and cold-rolled by subjecting the hot-rolled sheet to cold rolling. It can manufacture by passing through the cold-rolling process to perform, and the cold-rolled sheet annealing process which achieves recrystallization and composite organization to this cold-rolled sheet sequentially.
In conventional mild steel sheets, it is known that the r value increases as the crystal grain size of the hot-rolled sheet is refined.

図2(a)、(b)および図3(a)、(b)は、ナイタール腐食させた熱延鋼板の光学顕微鏡写真である。ナイタール液は3%硝酸アルコール溶液(3%HNO3−C2H50H)であり、10〜15s腐食した。 2 (a), 2 (b), 3 (a), and 3 (b) are optical micrographs of a hot rolled steel sheet that has undergone nital corrosion. Nital solution is 3% nitric acid alcohol solution (3% HNO 3 -C 2 H 5 0H), was 10~15s corrosion.

ここで、図2(a)は、0.033%CでNb無添加であり、熱延板の平均結晶粒径:8.9μm、冷延焼鈍して得られた鋼板の平均r値:0.9、図2(b)は、0.035%C−0.015%Nb{(Nb/93)/(C/12)}=0.06}であり、熱延板の平均結晶粒径:5.9μm、冷延焼鈍して得られた鋼板の平均r値:1.0、図3(a)は、0.035%C−0.083%Nb{(Nb/93)/(C/12)}=0.31}であり、熱延板の平均結晶粒径:5.6μm、冷延焼鈍して得られた鋼板の平均r値:1.3、図3(b)は、0.035%C−0.072%Nb{(Nb/93)/(C/12)}=0.27}であり、熱延板の平均結晶粒径:2.8μm、冷延焼鈍して得られた鋼板の平均r値:1.5であり、図3(a)および(b)が本発明範囲の成分組成の熱延鋼板である。   Here, FIG. 2 (a) is 0.033% C and Nb-free, the average crystal grain size of the hot rolled sheet: 8.9 μm, the average r value of the steel sheet obtained by cold rolling annealing: 0.9, FIG. (B) is 0.035% C-0.015% Nb {(Nb / 93) / (C / 12)} = 0.06}, obtained by subjecting the hot rolled sheet to an average crystal grain size of 5.9 μm and cold rolling annealing. The average r value of the steel sheet: 1.0, FIG. 3 (a) is 0.035% C-0.083% Nb {(Nb / 93) / (C / 12)} = 0.31}, and the average grain size of the hot rolled sheet : 5.6 μm, average r value of steel sheet obtained by cold rolling annealing: 1.3, FIG. 3B is 0.035% C−0.072% Nb {(Nb / 93) / (C / 12)} = 0.27} The average crystal grain size of the hot-rolled sheet is 2.8 μm, the average r value of the steel sheet obtained by cold-rolling annealing is 1.5, and FIGS. 3A and 3B show the component composition within the range of the present invention. It is a hot-rolled steel sheet.

図2(a)は、成分的に本発明鋼を外れるNb無添加鋼で、熱延板の平均結晶粒径が8μm以上となっており、r値も低い。図2(b)は、Nb添加により熱延板組織が微細化されているものの、(Nb/93)/(C/12)の値が本発明の範囲から外れているため、効果が発揮されず、r値が低い。図3(a)および(b)は、(Nb/93)/(C/12)の値が本発明の範囲にあり、熱延板組織が微細化し、高r値化している。   FIG. 2 (a) shows Nb-free steel that deviates from the steel of the present invention in terms of the components. The hot rolled sheet has an average crystal grain size of 8 μm or more and a low r value. In FIG. 2 (b), although the hot-rolled sheet structure is refined by adding Nb, the value of (Nb / 93) / (C / 12) is out of the scope of the present invention, so the effect is exhibited. The r value is low. In FIGS. 3A and 3B, the value of (Nb / 93) / (C / 12) is within the range of the present invention, the hot-rolled sheet structure is refined, and the r value is increased.

熱延板組織は、Nb添加により、粒界としてはナイタール液により通常通り深く腐食される線(1)とともに、腐食が浅い線(2)も存在するようになる。
本発明では、粒径を測定する際、上記の線(1)と線(2)を粒界として結晶粒径を測定した。
In the hot-rolled sheet structure, Nb addition causes a line (1) that is deeply corroded by the nital liquid as a grain boundary as well as a line (2) that is shallowly corroded.
In the present invention, when measuring the grain size, the crystal grain size was measured using the above-mentioned lines (1) and (2) as grain boundaries.

結晶粒径は一般に傾角が15°以上を、所謂、大傾角粒界、傾角15°未満を、所謂小傾角粒界と呼ぶことが多い。上記腐食が浅い線(2)をEBSP(Electron Back Scatter Diffraction Pattern)解析したところ、この腐食が浅い線(2)は、傾角が15°未満のいわゆる小傾角粒界であることがわかった。本発明においては、熱延板中にこの傾角15°未満の、所謂、小傾角粒界、すなわち上記の線(2)が多数存在することが特徴的であり、この上記線(1)および線(2)の双方を粒界として粒径を測定した結果、その平均結晶粒径が8μm超えでは、本発明の目的とする高強度鋼板の高r値化への効果が現れず、平均結晶粒径を8μm以下に微細化することで、平均r値1.2以上という高r値化に効果が現れることが判った。したがって熱延板の平均結晶粒径は8μm以下とする。   In general, the crystal grain size is often referred to as a so-called large-angle grain boundary having an inclination of 15 ° or more and a so-called small-angle grain boundary having a tilt angle of less than 15 °. As a result of EBSP (Electron Back Scatter Diffraction Pattern) analysis of the shallow-corrosion line (2), it was found that the shallow-corrosion line (2) is a so-called small-angle grain boundary with an inclination of less than 15 °. In the present invention, the hot-rolled sheet is characterized by a large number of so-called small-inclined grain boundaries, that is, the above-described line (2), which has an inclination of less than 15 °. As a result of measuring the grain size with both of (2) as the grain boundary, when the average crystal grain size exceeds 8 μm, the effect of increasing the r value of the high strength steel sheet of the present invention does not appear, and the average grain size It has been found that by reducing the diameter to 8 μm or less, an effect can be obtained in increasing the r value to an average r value of 1.2 or more. Therefore, the average crystal grain size of the hot-rolled sheet is 8 μm or less.

なお、本発明鋼の組織をEBSP解析したところ、上記の線(1)と線(2)を粒界として結晶粒径を測定するということは、5°以上の傾角をもつ結晶粒境界を粒界と見なして粒径測定することに相当することを確認した。
また、このことから、詳細は定かではないが、本発明における粒界からの深絞り成形性に好ましい再結晶核発生の促進には、5°以上の傾角が有効であることが推測される。
As a result of EBSP analysis of the structure of the steel of the present invention, the measurement of the crystal grain size using the above-mentioned lines (1) and (2) as grain boundaries means that the grain boundaries having an inclination of 5 ° or more are grain boundaries. It was confirmed that this was equivalent to measuring the particle size as a boundary.
Further, from this, although details are not clear, it is presumed that an inclination angle of 5 ° or more is effective in promoting the generation of recrystallization nuclei preferable for deep drawability from the grain boundary in the present invention.

なお、結晶粒径の測定方法としては、圧延方向に平行な板厚断面(L断面)について光学顕微鏡を用いて微視組織を撮像し、JIS G 0552或いはASTMに準じた切断法により試料面上での結晶粒の平均の切片長さl(μm)を求め、(ASTM)公称粒径dn=1.13×lとして平均結晶粒径を求めればよく、この他EBSP 等の装置を用いて求めてもよい。 As a method for measuring the crystal grain size, a microscopic structure is imaged using an optical microscope for a plate thickness cross section (L cross section) parallel to the rolling direction, and a cutting method according to JIS G 0552 or ASTM is performed on the sample surface. The average intercept length l (μm) of the crystal grain at (ASTM) nominal grain diameter d n = 1.13 × l may be found, and the average grain diameter may be obtained using a device such as EBSP. Also good.

なお、本発明では上記平均粒径の切片長さは、圧延方向に平行な板厚断面について、光学顕微鏡で微視組織を撮像し、JISG0552に準じた切断法により求めた。すなわち、撮像した微視組織写真を用い、JISG0552に準じて圧延方向およびこれに垂直方向に対してそれぞれ一定長さの線分で切断されるフェライト結晶粒の数を測定し、線分の長さをその線分で切断されるフェライト結晶粒の数で除した値をそれぞれの方向の切片長さとして求め、これらの平均(相加平均)値をここでの結晶粒の平均の切片長さl(μm)とした。   In the present invention, the section length of the average particle diameter was obtained by cutting a microstructure according to JISG0552 on a cross section of the plate thickness parallel to the rolling direction by imaging the microstructure with an optical microscope. That is, using the microscopic microstructure photographed, the number of ferrite crystal grains cut at a certain length of the line segment in the rolling direction and the direction perpendicular to the rolling direction according to JISG0552 is measured, and the length of the line segment is measured. Is divided by the number of ferrite crystal grains to be cut by the line segment, and is obtained as an intercept length in each direction, and an average (arithmetic mean) value of these values is obtained as an average intercept length l of the crystal grains here. (Μm).

また、上記のように、成分組成および熱間圧延条件を調整することにより、熱延板段階でC含有量全体の15%以上をNbCとして析出固定することができ、すなわち、NbCとして析出固定されるC量が鋼中の全C量に占める割合を15%以上とすることができ、高r値化に有利となる。   Further, as described above, by adjusting the component composition and hot rolling conditions, 15% or more of the total C content can be precipitated and fixed as NbC in the hot-rolled sheet stage, that is, precipitated and fixed as NbC. The ratio of the C content to the total C content in the steel can be 15% or more, which is advantageous for increasing the r value.

NbCとして析出固定されるC量が鋼中の全C量に占める割合(以下、単に「析出固定されるC量の割合」という。)とは、熱延板を化学分析(抽出分析)して得られる析出Nb量から次式にて算出される値である。
[C]fix=100×12×([Nb]/93)/[C]total
ここで、鋼中にTiを含有しない場合、NbはNbNを形成するため、
[Nb]=[Nb]−(93[N]/14)、[Nb]>0
一方、鋼中にTiを含有する場合、Nは優先的にTiNを形成するので
[Nb]=[Nb]−(93[N]/14)
なお、式中、
[N]=[N]−(14[Ti]/48)、[N]>0
[Ti]=[Ti]−(48[S]/32)、[Ti]>0
[C]fixは析出固定されるC量の割合(%)、
[C]totalは、鋼中の全C含有量(質量%)、
[Nb]、[N]、[Ti]、[S]は、それぞれ析出Nb、析出N、析出Ti、析出S量(質量%)である。
The ratio of the amount of C that is precipitated and fixed as NbC to the total amount of C in the steel (hereinafter simply referred to as “the ratio of the amount of C that is fixed and fixed”) refers to the chemical analysis (extraction analysis) of the hot-rolled sheet. It is a value calculated by the following formula from the amount of precipitated Nb obtained.
[C] fix = 100 x 12 x ([Nb * ] / 93) / [C] total
Here, when Ti is not contained in the steel, Nb forms NbN,
[Nb * ] = [Nb] − (93 [N] / 14), [Nb * ]> 0
On the other hand, when Ti is contained in the steel, N preferentially forms TiN, so [Nb * ] = [Nb] − (93 [N * ] / 14)
In the formula,
[N * ] = [N] − (14 [Ti * ] / 48), [N * ]> 0
[Ti * ] = [Ti] − (48 [S] / 32), [Ti * ]> 0
[C] fix is the ratio (%) of the amount of C fixed by precipitation,
[C] total is the total C content (mass%) in the steel,
[Nb], [N], [Ti], and [S] are precipitation Nb, precipitation N, precipitation Ti, and precipitation S amount (mass%), respectively.

冷間圧延および再結晶前の段階で固溶Cを低減することは、高r値化のために有効であり、NbCとして析出固定されるC量が全体のC含有量が15%以上、より好ましくは20%以上でその効果が現れ、本発明の製造方法とすることにより、これを達成できる。   Reducing solute C at the stage before cold rolling and recrystallization is effective for increasing the r value, and the amount of C precipitated and fixed as NbC is 15% or more of the total C content. The effect appears preferably at 20% or more, and this can be achieved by the production method of the present invention.

次いで、該熱延板に冷間圧延を施し冷延板とする(冷間圧延工程)。ここで熱延板はスケールを除去するために冷間圧延前に酸洗を行なうことが好ましい。酸洗条件としては通常の条件にて行なえばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は少なくとも40%以上とすることが好ましく、より望ましくは50%以上とする。高r値化には高冷延圧下率が一般に有効であり、圧下率が40%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる。一方、この発明では冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を超えるとその効果が飽和するばかりでなく、冷間圧延時のロールへの負荷も高まるため、上限を90%とすることが好ましい。   Next, the hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet (cold-rolling step). Here, the hot-rolled sheet is preferably pickled before cold rolling in order to remove scale. What is necessary is just to carry out on normal conditions as pickling conditions. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably at least 40%, more preferably 50% or more. And A high cold rolling reduction ratio is generally effective for increasing the r value. If the reduction ratio is less than 40%, a {111} recrystallized texture does not develop, and it becomes difficult to obtain excellent deep drawability. On the other hand, in this invention, the r value increases as the cold rolling reduction is increased in the range up to 90%, but when it exceeds 90%, not only the effect is saturated, but also the load on the roll during cold rolling is increased. Therefore, the upper limit is preferably 90%.

次に、上記冷延板に焼鈍温度を下記に示すT1℃以上T2℃以下として焼鈍し、次いで焼鈍温度から500℃までの温度域での平均冷却速度:5℃/s以上として冷却する(冷延板焼鈍工程)。

T1(℃)=800+625Nb
T2(℃)=950−45(Mn−Si−5P)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
但し、鋼スラブに、Mo、Cr、Cu、Niの1種以上を添加し、すなわち、Mo:0.02質量%以上、Cr:0.05質量%以上、Cu:0.05質量%以上およびNi:0.05質量%以上の中から選択される1種または2種以上を含有させた場合には、前記焼鈍温度の上限を、前記(2)式に代えて下記(3)式に示すT2℃とする。

T2(℃)=950−45(Mn−Si−5P−0.8Mo+Cu+Ni) ・・・・(3)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
Next, the cold rolled sheet is annealed at an annealing temperature of T1 ° C. or higher and T2 ° C. or lower as shown below, and then cooled at an average cooling rate in the temperature range from the annealing temperature to 500 ° C .: 5 ° C./s or higher (cool Sheet annealing process).
T1 (℃) = 800 + 625Nb
T2 (° C) = 950-45 (Mn-Si-5P)
Here, the element symbol in a formula shows content (mass%) of each element.
However, one or more of Mo, Cr, Cu, and Ni are added to the steel slab, that is, Mo: 0.02 mass% or more, Cr: 0.05 mass% or more, Cu: 0.05 mass% or more, and Ni: 0.05 mass% or more In the case of containing one or more selected from the above, the upper limit of the annealing temperature is set to T2 ° C. shown in the following formula (3) instead of the formula (2).
T2 (° C) = 950-45 (Mn-Si-5P-0.8Mo + Cu + Ni) (3)
Here, the element symbol in a formula shows content (mass%) of each element.

上記冷延板焼鈍工程は、本発明で必要とする冷却速度を確保するため連続焼鈍ライン(CAL)あるいは連続溶融亜鉛めっきライン(CGL)で行なうことが好ましい。   The cold-rolled sheet annealing step is preferably performed in a continuous annealing line (CAL) or a continuous hot-dip galvanizing line (CGL) in order to ensure the cooling rate required in the present invention.

焼鈍温度がT1(℃)未満では、第2相のマルテンサイト相が十分形成できるほど炭化物の溶解が起こらず、結果として充分な強度伸びバランスが得られない。また、Nbを添加しているため、焼鈍温度がT1(℃)未満では、再結晶しても圧延方向に伸びた結晶粒であり、r値の面内異方性および伸びを劣化させる。よって、焼鈍温度をT1(℃)以上とすることにより、炭化物を十分溶解できるとともに、結晶粒をr値の面内異方性および伸びに好ましい形状とすることができる。   When the annealing temperature is lower than T1 (° C.), the carbide does not dissolve so that the second martensite phase can be sufficiently formed, and as a result, a sufficient balance between strength and elongation cannot be obtained. Further, since Nb is added, if the annealing temperature is less than T1 (° C.), the crystal grains are elongated in the rolling direction even after recrystallization, and the r-value in-plane anisotropy and elongation are deteriorated. Therefore, by setting the annealing temperature to T1 (° C.) or higher, the carbide can be sufficiently dissolved, and the crystal grains can have a shape preferable for the in-plane anisotropy and elongation of the r value.

一方、焼鈍温度がT2(℃)を超える高温では、結晶粒が粗大化し、{111}再結晶集合組織が発達しにくく深絞り性が劣化する傾向にあるとともに、また、原因は不明であるが、r値の面内異方性が悪くなる。さらに、第2相のマルテンサイト相が過剰となり、強度伸びバランス特性が著しく劣化する。なお、T2(℃)は、先に述べたように、平衡変態点だけでなく、成分を変化させた鋼で連続焼鈍を模した熱処理で種々の実験を行い、平均r値およびr値の面内異方性を調査した結果をもとに、平均r値≧1.2、かつr値の面内異方性の絶対値を0.3以下とできる焼鈍温度の上限を成分の関数として表したものである。   On the other hand, when the annealing temperature is higher than T2 (° C), the crystal grains become coarse, the {111} recrystallized texture does not easily develop, and the deep drawability tends to deteriorate, and the cause is unknown. The in-plane anisotropy of the r value becomes worse. Furthermore, the martensite phase of the second phase becomes excessive, and the strength-elongation balance characteristic is remarkably deteriorated. In addition, as described above, T2 (° C.) is not only an equilibrium transformation point, but various experiments were conducted by heat treatment simulating continuous annealing with steels having different components. The upper limit of the annealing temperature at which the average r value ≧ 1.2 and the absolute value of the in-plane anisotropy of the r value can be 0.3 or less is expressed as a function of the component based on the result of investigation of the internal anisotropy. .

上記焼鈍後の冷却速度は、マルテンサイト相の形成の観点から、焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上として冷却する必要がある。該温度域の平均冷却速度が5℃/s未満だとマルテンサイト相が形成されにくくフェライト単相組織となり組織強化が不足することになる。   From the viewpoint of forming a martensite phase, the cooling rate after the annealing needs to be cooled by setting the average cooling rate in the temperature range from the annealing temperature to 500 ° C. to 5 ° C./s or more. If the average cooling rate in the temperature range is less than 5 ° C./s, the martensite phase is difficult to form and a ferrite single phase structure is formed, resulting in insufficient structure strengthening.

本発明で製造する鋼板は、マルテンサイト相を含む第2相を形成することが好ましく、500℃までの平均冷却速度が臨界冷却速度以上であることが必要であり、これを達成するためには焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上とすることで満足される。500℃未満での冷却については、特に限定しないが、引き続き、望ましくは300℃まで5℃/s以上の平均冷却速度で冷却することが好ましく、過時効処理を施す場合は、過時効処理温度までを平均冷却速度が5℃/s以上になるようにすることが好ましい。
なお、上記冷却速度は、マルテンサイト相形成の観点から、上限は特に規定する必要はなく、ロール冷却やガスジェット冷却の他、水焼入設備等を用いて冷却してもよい。
The steel sheet produced according to the present invention preferably forms a second phase including a martensite phase, and the average cooling rate up to 500 ° C. is required to be equal to or higher than the critical cooling rate. In order to achieve this, This is satisfied by setting the average cooling rate in the temperature range from the annealing temperature to 500 ° C. to 5 ° C./s or more. Although there is no particular limitation on cooling at less than 500 ° C, it is preferable to continue cooling to 300 ° C at an average cooling rate of 5 ° C / s or higher, and when overaging is performed, up to the overaging temperature. The average cooling rate is preferably 5 ° C./s or more.
Note that the upper limit of the cooling rate is not particularly required from the viewpoint of martensite phase formation, and cooling may be performed using water quenching equipment or the like in addition to roll cooling or gas jet cooling.

また、上記冷延板焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などの表面処理を施し、鋼板表面にめっき層を形成しても良い。   Moreover, after the said cold-rolled sheet annealing process, surface treatments, such as an electroplating process or a hot dipping process, may be given and a plating layer may be formed in the steel plate surface.

例えば、めっき処理として、自動車用鋼板に多く用いられる溶融亜鉛めっき処理を行う際には、上記冷延板焼鈍工程を連続溶融めっきラインにて行い、焼鈍後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成すればよく、この場合、溶融亜鉛めっき溶から出た後、300℃までの平均冷却速度が5℃/s以上になるように冷却することが好ましい。また、焼鈍後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成した後、さらに合金化処理を行い、合金化溶融亜鉛めっき鋼板を製造してもよい。この場合、合金化処理した後の冷却において、300℃までの平均冷却速度が5℃/s以上になるように冷却することが好ましい。
なお、上記溶融亜鉛めっき浴から出た後、あるいは合金化処理後の冷却についても、マルテンサイト相形成の観点から、冷却速度の上限は特に規定する必要はなく、ロール冷却やガスジェット冷却の他、水焼入設備等を用いて冷却してもよい。
For example, when performing hot dip galvanizing treatment, which is often used for automotive steel sheets, as the plating treatment, the cold rolled sheet annealing step is performed in a continuous hot dip plating line, followed by cooling after the annealing in a hot dip galvanizing bath. It suffices to form a hot dip galvanized layer on the surface. In this case, after the hot dip galvanized solution is melted, it is preferably cooled so that the average cooling rate up to 300 ° C. is 5 ° C./s or more. . Moreover, after immersing in the hot dip galvanizing bath following the cooling after the annealing to form a hot dip galvanized layer on the surface, an alloying treatment may be further performed to manufacture an alloyed hot dip galvanized steel sheet. In this case, in the cooling after the alloying treatment, it is preferable that the average cooling rate up to 300 ° C. is 5 ° C./s or more.
In addition, regarding the cooling after leaving the hot dip galvanizing bath or after the alloying treatment, the upper limit of the cooling rate is not particularly required from the viewpoint of martensite phase formation. Alternatively, cooling may be performed using water quenching equipment or the like.

また、上記焼鈍後の冷却までを焼鈍ラインで行い、一旦室温まで冷却した後、別途溶融亜鉛めっきラインにて溶融亜鉛めっきを施し、或いはさらに合金化処理を行っても良い。   Further, the cooling after the annealing may be performed in the annealing line, and after cooling to room temperature, the hot dip galvanizing may be separately performed in the hot dip galvanizing line, or further alloying treatment may be performed.

ここで、めっき層は、純亜鉛および亜鉛系合金めっきに限らず、純AlおよびAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。   Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, but may of course be various plating layers conventionally applied to the steel sheet surface, such as pure Al and Al-based alloy plating.

また、上記のように製造した鋼板には、形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。0.2%未満では、形状矯正、粗度調整の所期の目的が達成できないおそれがあり、一方、15%を超えると、顕著な延性低下をもたらす傾向があるため好ましくない。なお、調質圧延とレベラー加工では、加工形式が相違するが、その効果は、両者で大きな差がないことを確認している。調質圧延、レベラー加工はめっき処理後でも有効である。   Further, the steel sheet produced as described above may be subjected to temper rolling or leveler processing for the purpose of adjusting the shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment may not be achieved. On the other hand, if it exceeds 15%, it tends to cause a significant decrease in ductility. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference in the effect between the two. Temper rolling and leveler processing are effective even after plating.

上述した本発明の製造方法によって製造した高強度鋼板は、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、平均r値が1.2以上と高r値であるとともに、r値の面内異方性の絶対値が0.3以下と小さい。   The high-strength steel plate manufactured by the manufacturing method of the present invention described above has a steel structure including a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more, and an average r value of 1.2 or more. In addition, the absolute value of the in-plane anisotropy of the r value is as small as 0.3 or less.

ここで、「平均r値」とは、JIS Z 2254で求められる平均塑性ひずみ比を意味し、以下の式から算出される値である。
平均r値=(r0+2r45+r90)/4
Here, the “average r value” means an average plastic strain ratio obtained by JIS Z 2254, and is a value calculated from the following formula.
Average r value = (r 0 + 2r 45 + r 90 ) / 4

なお、r0、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ0°、45°および90°方向に採取し測定した塑性ひずみ比である。 R 0 , r 45, and r 90 are plastic strain ratios obtained by measuring test pieces in the 0 °, 45 °, and 90 ° directions, respectively, with respect to the rolling direction of the plate surface.

また、r値の面内異方性とは、同じくJIS Z 2254で求められる面内異方性を意味し、以下の式から算出される値である。
面内異方性Δr=(r0−2r45+r90)/2
Further, the in-plane anisotropy of the r value means the in-plane anisotropy similarly obtained by JIS Z 2254, and is a value calculated from the following formula.
In-plane anisotropy Δr = (r 0 −2r 45 + r 90 ) / 2

以下に、本発明の製造方法によって得られる高強度鋼板の鋼組織について説明する。   Below, the steel structure of the high strength steel plate obtained by the manufacturing method of this invention is demonstrated.

(1)面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有すること
本発明の製造方法によって得られる高強度鋼板は、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有する複合組織鋼板とすることが好ましい。ここで、50%以上の面積率を占めるフェライト相の{111}再結晶集合組織を発達させたものであり、平均r値≧1.2を達成している。
(1) Having a steel structure containing a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more The high-strength steel sheet obtained by the production method of the present invention has an area ratio of 50% or more. It is preferable to use a composite structure steel plate having a steel structure including a ferrite phase of 1% and a martensite phase with an area ratio of 1% or more. Here, a {111} recrystallization texture of the ferrite phase occupying an area ratio of 50% or more is developed, and an average r value ≧ 1.2 is achieved.

かかる高強度鋼板は、良好な深絞り性を有し、引張強さ≧440MPaの鋼板とするために、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有する。フェライト相が少なくなり、面積率で50%未満となると、良好な深絞り性を確保することが困難となり、プレス成形性が低下する傾向がある。なお、フェライト相は、面積率で70%以上とすることが好ましく、また、複合組織の利点を利用するため、フェライト相は面積率で99%以下とするのが好ましい。   Such a high-strength steel sheet has a good deep drawability and includes a ferrite phase having an area ratio of 50% or more and a martensite phase having an area ratio of 1% or more in order to obtain a steel sheet having a tensile strength ≧ 440 MPa. Has a steel structure. When the ferrite phase is reduced and the area ratio is less than 50%, it becomes difficult to ensure good deep drawability, and the press formability tends to decrease. The ferrite phase is preferably 70% or more in terms of area ratio, and in order to utilize the advantages of the composite structure, the ferrite phase is preferably 99% or less in area ratio.

なお、ここで「フェライト相」とは、ポリゴナルフェライト相のほか、オーステナイト相から変態した転位密度の高いベイニチックフェライト相を含む。   Here, the “ferrite phase” includes a bainitic ferrite phase having a high dislocation density transformed from an austenite phase in addition to a polygonal ferrite phase.

また、本発明では、マルテンサイト相が存在することが必要であり、マルテンサイト相を面積率で1%以上含有する。マルテンサイト相が1%未満では、良好な強度延性バランスを得ることが難しい。さらに、マルテンサイト相は、3%以上とすることが好ましい。なお、マルテンサイト相は、γ値を良好とする上で30%以下とすることが好ましい。   In the present invention, it is necessary that a martensite phase is present, and the martensite phase is contained in an area ratio of 1% or more. When the martensite phase is less than 1%, it is difficult to obtain a good strength ductility balance. Furthermore, the martensite phase is preferably 3% or more. The martensite phase is preferably 30% or less in order to improve the γ value.

加えて、上記したフェライト相、マルテンサイト相の他に、パーライト相、ベイナイト相あるいは残留オーステナイト(γ)相などを含んだ組織としてもよい。さらに、上記したフェライト相とマルテンサイト相の効果を十分得るためには、フェライト相の面積率とマルテンサイト相の面積率の合計を80%以上とすることが好ましい。なお、フェライト相およびマルテンサイト相は、走査型電子顕微鏡での観察により同定すればよく、面積率は走査型電子顕微鏡により微視組織を撮像して求めればよい。   In addition, a structure including a pearlite phase, a bainite phase, or a retained austenite (γ) phase in addition to the above-described ferrite phase and martensite phase may be used. Furthermore, in order to sufficiently obtain the effects of the ferrite phase and the martensite phase, it is preferable that the total of the area ratio of the ferrite phase and the area ratio of the martensite phase is 80% or more. The ferrite phase and the martensite phase may be identified by observation with a scanning electron microscope, and the area ratio may be obtained by imaging a microscopic structure with a scanning electron microscope.

(2)平均r値が1.2以上でかつΔrの絶対値が0.3以下であること
本発明の高強度鋼板は、上記鋼スラブと同様の成分組成および鋼組織と、平均r値≧1.2を満足するとともに、r値の面内異方性Δrの絶対値を0.3以下を満足するものである。本発明では、上記成分組成に調整し、鋼組織として、フェライト相とマルテンサイト相を含む鋼組織となるように製造するもので、初めて平均r値が1.2以上でかつΔrの絶対値が0.3以下を達成することができた。
(2) The average r value is 1.2 or more and the absolute value of Δr is 0.3 or less. The high-strength steel sheet of the present invention satisfies the same component composition and steel structure as the steel slab and the average r value ≧ 1.2. In addition, the absolute value of the in-plane anisotropy Δr of the r value satisfies 0.3 or less. In the present invention, the composition is adjusted to the above component composition, and the steel structure is manufactured so as to have a steel structure containing a ferrite phase and a martensite phase. For the first time, the average r value is 1.2 or more and the absolute value of Δr is 0.3 or less. Could be achieved.

本発明の製造方法で得られた高強度鋼板は、冷延鋼板をはじめ、電気めっきあるいは溶融亜鉛めっきなどの表面処理を施してめっき層を有する鋼板、いわゆるめっき鋼板をも含むものである。ここで、「めっき」とは、純亜鉛の他、亜鉛を主成分として合金元素を添加した亜鉛系合金めっき、あるいは純Alの他、Alを主成分として合金元素を添加したAl系合金めっきなど、従来鋼板表面に施されているめっき層も含む。   The high-strength steel plate obtained by the production method of the present invention includes a cold-rolled steel plate, a steel plate having a plating layer after being subjected to surface treatment such as electroplating or hot dip galvanizing, so-called plated steel plate. Here, “plating” refers to pure zinc, zinc-based alloy plating in which zinc is the main component and alloy elements are added, or in addition to pure Al, Al-based alloy plating in which Al is the main component and alloy elements are added. In addition, a plating layer conventionally applied to the surface of a steel sheet is also included.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで、表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗後に圧下率65%の冷間圧延を施す冷間圧延工程により冷延板とした。引き続き、これら冷延板に、連続焼鈍ライン(CAL)にて、表2に示す条件で連続焼鈍を行ない、冷延鋼板(冷延焼鈍板ともいう)とした。また、一部の冷延板については、連続焼鈍ラインに代えて連続溶融亜鉛めっきライン(CGL)にて、表2に示す条件で連続焼鈍を行なった。なお、連続溶融亜鉛めっきラインにて冷延板焼鈍工程を施した鋼板については、その後引き続きインラインで溶融亜鉛めっき(めっき浴温:480℃)を施した。さらに、得られた冷延焼鈍板あるいは溶融亜鉛めっき鋼板に伸び率0.5%の調質圧延を施した。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, and then hot-rolled sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed. These hot-rolled sheets were made into cold-rolled sheets by a cold rolling process in which cold rolling with a rolling reduction of 65% was performed after pickling. Subsequently, these cold-rolled sheets were subjected to continuous annealing under the conditions shown in Table 2 in a continuous annealing line (CAL) to obtain cold-rolled steel sheets (also referred to as cold-rolled annealed sheets). Moreover, about some cold rolled sheets, it replaced with the continuous annealing line, and performed continuous annealing on the conditions shown in Table 2 in the continuous hot-dip galvanizing line (CGL). In addition, about the steel plate which performed the cold rolled sheet annealing process in the continuous hot dip galvanizing line, hot dip galvanization (plating bath temperature: 480 degreeC) was performed in-line continuously after that. Further, the obtained cold-rolled annealed sheet or hot-dip galvanized steel sheet was subjected to temper rolling with an elongation of 0.5%.

上記熱間圧延後の熱延板について、NbCとして析出固定されるC量の割合を、また、最終的に得られた冷延焼鈍板の、微視組織、引張特性およびr値について調査した結果を表2に示す。
調査方法は下記の通りである。
About the hot-rolled sheet after the hot rolling, the ratio of the amount of C deposited and fixed as NbC, and the results of investigation on the microstructure, tensile properties and r-value of the finally obtained cold-rolled annealed sheet Is shown in Table 2.
The survey method is as follows.

(i)熱延板中のNbCとして析出固定されるC量の割合
前述のように抽出分析により析出Nb、析出Ti、析出N、析出S量を定量し、下記式で求めた。
[C]fix=100×12×([Nb]/93)/[C]total
ここで、鋼中にTiを含有しない場合、
[Nb]=[Nb]−(93[N]/14)、[Nb]>0
Tiを含有する場合、
[Nb]=[Nb]−(93[N]/14)
なお、式中、
[N]=[N]−(14[Ti]/48)、[N]>0
[Ti]=[Ti]−(48[S]/32)、[Ti]>0
[C]fixは析出固定されるC量の割合(%)、
[C]totalは、鋼中の全C含有量(質量%)、
[Nb]、[N]、[Ti]、[S]はそれぞれ析出Nb、析出N、析出Ti、析出S量(質量%)である。
なお、抽出分析の方法は、10%マレイン酸系電解液を用いて電解抽出した残渣をアルカリ融解し、融成物を酸溶解した後、ICP発光分光法で定量した。
(i) Ratio of C amount deposited and fixed as NbC in hot-rolled sheet As described above, the amount of precipitated Nb, precipitated Ti, precipitated N, and precipitated S was quantified by extraction analysis, and determined by the following formula.
[C] fix = 100 x 12 x ([Nb * ] / 93) / [C] total
Here, when Ti is not contained in the steel,
[Nb * ] = [Nb] − (93 [N] / 14), [Nb * ]> 0
When containing Ti,
[Nb * ] = [Nb] − (93 [N * ] / 14)
In the formula,
[N * ] = [N] − (14 [Ti * ] / 48), [N * ]> 0
[Ti * ] = [Ti] − (48 [S] / 32), [Ti * ]> 0
[C] fix is the ratio (%) of the amount of C fixed by precipitation,
[C] total is the total C content (mass%) in the steel,
[Nb], [N], [Ti], and [S] are precipitation Nb, precipitation N, precipitation Ti, and precipitation S amount (mass%), respectively.
The extraction analysis was performed by ICP emission spectrometry after the residue obtained by electrolytic extraction using a 10% maleic acid electrolyte was alkali-melted and the melt was dissolved in acid.

(ii)熱延板の結晶粒径
ナイタール腐食した圧延方向に平行な板厚断面(L断面)を光学顕微鏡で撮像し、JIS G 0552に準じた切断法により、前述のように平均結晶粒の切片長さl(μm)を求め、(ASTM)公称粒径dn=1.13×lとして表記した。粒界としては、先述したように、ナイタール液により腐食し、通常通り深く腐食される線および腐食が浅い線の双方を粒界としてカウントした。また、このようにして測定した平均結晶粒径の値は、傾角5°以上の結晶粒境界を結晶粒界とみなして測定した値に相当することをEBSP解析により確認した。ここでナイタール液は、3%硝酸アルコール溶液(3%HNO3−C2H5OH)を用い、10〜15秒間腐食した。
(Ii) Crystal grain size of hot-rolled sheet An image of a plate thickness section (L section) parallel to the rolling direction corroded with nital is imaged with an optical microscope, and the average grain size of the average grain is as described above by a cutting method according to JIS G 0552. The section length l (μm) was determined and expressed as (ASTM) nominal particle diameter d n = 1.13 × l. As described above, as described above, both the lines corroded by the nital solution and deeply corroded as usual and the shallowly corroded lines were counted as grain boundaries. Further, it was confirmed by EBSP analysis that the value of the average grain size measured in this way corresponds to a value measured by regarding a grain boundary having an inclination angle of 5 ° or more as a grain boundary. Here, a 3% nitric acid alcohol solution (3% HNO 3 —C 2 H 5 OH) was used as the nital solution and was corroded for 10 to 15 seconds.

(iii)冷延焼鈍板の微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面(L断面)について、走査型電子顕微鏡を用いて1000〜3000倍で微視組織を撮像し、相の種類を観察するとともに、各相の面積を解析し、フェライト相の面積率とマルテンサイト相の面積率を求めた。
(iii) Microstructure of cold-rolled annealed plates Specimens were taken from each cold-rolled annealed plate, and the plate thickness cross section (L cross section) parallel to the rolling direction was fined at 1000 to 3000 times using a scanning electron microscope. The visual tissue was imaged, the types of phases were observed, the area of each phase was analyzed, and the area ratio of the ferrite phase and the area ratio of the martensite phase were determined.

(iv)引張特性
得られた各冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、降伏応力(YS)、引張強度(TS)および伸び(El)を求めた。
(iv) Tensile properties JIS No. 5 tensile test specimens were taken from each of the obtained cold-rolled annealed plates in a direction 90 ° (C direction) with respect to the rolling direction, and the crosshead speed was 10 mm / in accordance with the provisions of JIS Z 2241. A tensile test was performed at min, and yield stress (YS), tensile strength (TS), and elongation (El) were determined.

(v)平均r値
得られた各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を測定し、これらの測定値を用い、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を算出し、これをr値とした。また、JIS Z 2254の規定に準拠してr値の面内異方性(Δr)を算出した。
(v) Average r value JIS No. 5 tensile test from the rolling direction (L direction) of each obtained cold rolled annealed sheet, 45 ° direction (D direction) with respect to the rolling direction, and 90 ° direction (C direction) with respect to the rolling direction. Pieces were collected. Measure the width strain and plate thickness strain of each specimen when 10% uniaxial tensile strain was applied to these specimens, and use these measurements to determine the average r value in accordance with JIS Z 2254 regulations. (Average plastic strain ratio) was calculated and used as the r value. Further, the in-plane anisotropy (Δr) of the r value was calculated in accordance with the provisions of JIS Z 2254.

(vi)集合組織
得られた各冷延焼鈍板の鋼板1/4板厚位置にて、白色X線を用いたエネルギー分散型X線回折を行った。測定面は、α-Feの主要回折面である(110)面、(200)面、(211)面、(220)面、(310)面、(222)面、(321)面、(400)面、(411)面、(420)面の計10面について測定し、無方向性標準試料との相対強度比で各面のX線回折積分強度比を求め、求めた(222)面、(200)面、(110)面および(310)面のX線回折積分強度比P(222)、P(200)、P(110)およびP(310)を下記式の右辺各項に代入し、左辺項Aを算出した。
A=P(222)/{P(200)+P(110)+P(310)
(Vi) Texture The energy dispersive X-ray diffraction using white X-rays was performed at the steel plate 1/4 position of each cold-rolled annealed plate. The measurement plane is the main diffraction plane of α-Fe (110) plane, (200) plane, (211) plane, (220) plane, (310) plane, (222) plane, (321) plane, (400 ) Surface, (411) surface, (420) surface, a total of 10 surfaces, the relative intensity ratio with the non-directional standard sample to determine the X-ray diffraction integrated intensity ratio of each surface, (222) surface, Substituting the X-ray diffraction integrated intensity ratios P (222) , P (200) , P (110) and P (310) for the (200) plane, (110) plane and (310) plane into the terms on the right side of the following equation The left side term A was calculated.
A = P (222) / {P (200) + P (110) + P (310) }

表2に示す調査結果より明らかなように、本発明例では、いずれもTS440MPa以上であり、かつ、平均r値が1.2以上と高いr値を有し、しかも、面内異方性の絶対値が0.3以下、すなわち、Δr=−0.3〜+0.3の範囲にあり、小さい値となっている。これに対し、本発明の範囲を外れる条件で製造した比較例では、強度が不足しているか、r値が1.2未満と低下しているか、あるいはΔrの絶対値が0.3よりも大きい。   As is clear from the investigation results shown in Table 2, all of the examples of the present invention have a high r value of TS440 MPa or higher, an average r value of 1.2 or higher, and the absolute value of in-plane anisotropy. Is 0.3 or less, that is, Δr = −0.3 to +0.3, which is a small value. On the other hand, in the comparative example manufactured under conditions outside the scope of the present invention, the strength is insufficient, the r value is reduced to less than 1.2, or the absolute value of Δr is greater than 0.3.

本発明によれば、TS440MPa以上でありかつ平均r値が1.2以上と高いr値を有し、しかも、Δrの絶対値が0.3以下と小さい高強度鋼板を安価にかつ安定して製造することが可能となり、産業上格段の効果を奏する。例えば、本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位も高強度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また、自動車部品に限らず、家電部品やパイプ用素材としても適用可能である。   According to the present invention, a high-strength steel sheet having a high r value of TS440 MPa or more and an average r value of 1.2 or more and a small Δr absolute value of 0.3 or less can be produced inexpensively and stably. It becomes possible and has a remarkable effect on the industry. For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of an automobile body. is there. Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.

本発明の方法で作製した種々の本発明鋼板と、比較鋼板について、平均r値とP(222)/{P(200)+P(110)+P(310)}の値を算出し、これら算出した値に基づいてプロットした図である。The average r value and the value of P (222) / {P (200) + P (110) + P (310) } were calculated for various inventive steel plates produced by the method of the present invention and comparative steel plates, and these were calculated. It is the figure plotted based on the value. (a)および(b)は、熱延板をナイタール液に浸漬して表面を腐食させたときの光学顕微鏡写真であって、いずれも(Nb/93)/(C/12)の値が本発明の適正範囲を満たさない例である。(A) and (b) are optical micrographs obtained by immersing a hot-rolled sheet in a nital solution to corrode the surface, and both of these values are (Nb / 93) / (C / 12). This is an example that does not satisfy the proper scope of the invention. (a)および(b)は、熱延板をナイタール液に浸漬して表面を腐食させたときの光学顕微鏡写真であって、いずれも(Nb/93)/(C/12)の値が本発明の適正範囲を満たす例である。(A) and (b) are optical micrographs obtained by immersing a hot-rolled sheet in a nital solution to corrode the surface, and both of these values are (Nb / 93) / (C / 12). It is an example satisfying the appropriate range of the invention.

Claims (5)

質量%で、
C:0.010〜0.050%
Si:1.0%以下
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005〜0.5%
N:0.01%以下および
Nb:0.01〜0.12%
を含有し、かつ、Nb含有量とC含有量が、
(Nb/93)/(C/12)=0.2〜0.7
(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満たす組成になる鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取温度:400〜720℃で巻取り、熱延板とする熱間圧延工程と、該熱延板に酸洗後冷間圧延を施し、冷延板とする冷間圧延工程と、該冷延板に焼鈍温度を下記(1)式および(2)式に示すT1℃以上T2℃以下として焼鈍し、次いで焼鈍温度から500℃までの温度域での平均冷却速度:5℃/s以上として冷却する冷延板焼鈍工程とを有することを特徴とする高強度鋼板の製造方法。

T1(℃)=800+625Nb ・・・・(1)
T2(℃)=950−45(Mn−Si−5P) ・・・・(2)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
% By mass
C: 0.010 to 0.050%
Si: 1.0% or less
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005-0.5%
N: 0.01% or less and
Nb: 0.01-0.12%
And Nb content and C content are
(Nb / 93) / (C / 12) = 0.2-0.7
(Nb and C in the formula are the contents of each element (mass%))
A steel slab having a composition satisfying the above relationship is subjected to finish rolling at a finish rolling temperature of 800 ° C or higher by hot rolling, and wound at a winding temperature of 400 to 720 ° C to form a hot rolled sheet A rolling process, a cold rolling process in which the hot-rolled sheet is pickled and cold-rolled to obtain a cold-rolled sheet, and an annealing temperature for the cold-rolled sheet is expressed by the following formulas (1) and (2) T1 A high-strength steel sheet characterized by having a cold-rolled sheet annealing step of annealing at an average cooling rate in the temperature range from the annealing temperature to 500 ° C: 5 ° C / s or more. Production method.
T1 (℃) = 800 + 625Nb ・ ・ ・ ・ (1)
T2 (° C) = 950-45 (Mn-Si-5P) (2)
Here, the element symbol in a formula shows content (mass%) of each element.
質量%で、
C:0.010〜0.050%
Si:1.0%以下
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005〜0.5%
N:0.01%以下および
Nb:0.01〜0.12%
を含有し、かつ、Nb含有量とC含有量が、
(Nb/93)/(C/12)=0.2〜0.7
(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満たす組成になる鋼スラブを熱間圧延して、平均結晶粒径が8μm以下である熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し、冷延板とする冷間圧延工程と、該冷延板に焼鈍温度を下記(1)式および(2)式に示すT1℃以上T2℃以下として焼鈍し、次いで焼鈍温度から500℃までの温度域での平均冷却速度:5℃/s以上として冷却する冷延板焼鈍工程とを有することを特徴とする高強度鋼板の製造方法。

T1(℃)=800+625Nb ・・・・(1)
T2(℃)=950−45(Mn−Si−5P) ・・・・(2)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
% By mass
C: 0.010 to 0.050%
Si: 1.0% or less
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005-0.5%
N: 0.01% or less and
Nb: 0.01-0.12%
And Nb content and C content are
(Nb / 93) / (C / 12) = 0.2-0.7
(Nb and C in the formula are the contents of each element (mass%))
A hot-rolling process in which a steel slab having a composition satisfying the relationship is hot-rolled to form a hot-rolled sheet having an average crystal grain size of 8 μm or less, and the hot-rolled sheet is cold-rolled, In the cold rolling process, the annealing temperature of the cold-rolled sheet is set to T1 ° C. or higher and T2 ° C. or lower as shown in the following formulas (1) and (2), and then in the temperature range from the annealing temperature to 500 ° C. A method for producing a high-strength steel sheet, comprising: an average cooling rate: a cold-rolled sheet annealing step for cooling at 5 ° C./s or more.
T1 (℃) = 800 + 625Nb ・ ・ ・ ・ (1)
T2 (° C) = 950-45 (Mn-Si-5P) (2)
Here, the element symbol in a formula shows content (mass%) of each element.
鋼スラブが、上記組成に加えて、さらにMo:0.02質量%以上、Cr:0.05質量%以上、Cu:0.05質量%以上およびNi:0.05質量%以上の中から選択される1種または2種以上を合計で0.5質量%以下含有するとともに、前記焼鈍温度の上限を、前記(2)式に代えて下記(3)式に示すT2℃として焼鈍することを特徴とする請求項1または2に記載の高強度鋼板の製造方法。

T2(℃)=950−45(Mn−Si−5P−0.8Mo+Cu+Ni) ・・・・(3)
ここで、式中の元素記号は各元素の含有量(質量%)を示す。
In addition to the above composition, the steel slab is one or more selected from Mo: 0.02% by mass or more, Cr: 0.05% by mass or more, Cu: 0.05% by mass or more, and Ni: 0.05% by mass or more. 3 or less in total, and the upper limit of the annealing temperature is T2 ° C. shown in the following formula (3) instead of the above formula (2), and annealing is performed. Manufacturing method of high strength steel sheet.
T2 (° C) = 950-45 (Mn-Si-5P-0.8Mo + Cu + Ni) (3)
Here, the element symbol in a formula shows content (mass%) of each element.
鋼スラブが、上記組成に加えて、さらにTi:0.1質量%以下を含有し、かつ、鋼中のTi、SおよびNの含有量が、
(Ti/48)/{(S/32)+(N/14)}≦2.0(式中のTi、S、Nは各々の元素の含有量(質量%))
なる関係を満足することを特徴とする請求項1、2または3に記載の高強度鋼板の製造方法。
In addition to the above composition, the steel slab further contains Ti: 0.1% by mass or less, and the contents of Ti, S and N in the steel are
(Ti / 48) / {(S / 32) + (N / 14)} ≦ 2.0 (Ti, S and N in the formula are the contents of each element (mass%))
The method for producing a high-strength steel sheet according to claim 1, 2 or 3, wherein the following relationship is satisfied.
上記冷延板焼鈍工程の後の鋼板表面にめっき層を形成するめっき処理工程をさらに有することを特徴とする請求項1〜4のいずれか1項に記載の高強度鋼板の製造方法。

The method for producing a high-strength steel sheet according to any one of claims 1 to 4, further comprising a plating treatment step of forming a plating layer on the surface of the steel plate after the cold-rolled sheet annealing step.

JP2004277938A 2003-09-26 2004-09-24 Manufacturing method of high-strength steel sheet Expired - Fee Related JP4506380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277938A JP4506380B2 (en) 2003-09-26 2004-09-24 Manufacturing method of high-strength steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003335887 2003-09-26
JP2004277938A JP4506380B2 (en) 2003-09-26 2004-09-24 Manufacturing method of high-strength steel sheet

Publications (2)

Publication Number Publication Date
JP2005120471A true JP2005120471A (en) 2005-05-12
JP4506380B2 JP4506380B2 (en) 2010-07-21

Family

ID=34622098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277938A Expired - Fee Related JP4506380B2 (en) 2003-09-26 2004-09-24 Manufacturing method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP4506380B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
JP2010533788A (en) * 2007-07-19 2010-10-28 コラス・スタール・ベー・ブイ Method for annealing steel strips of varying thickness in the length direction
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
JP2014058745A (en) * 2013-12-12 2014-04-03 Nippon Steel & Sumitomo Metal Method of manufacturing cold rolled steel sheet
JP2014098210A (en) * 2013-12-12 2014-05-29 Nippon Steel & Sumitomo Metal Structural member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226942A (en) * 2000-11-28 2002-08-14 Kawasaki Steel Corp Composite structure type high-tensile hot-dip galvanized steel sheet having excellent deep drawability, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226942A (en) * 2000-11-28 2002-08-14 Kawasaki Steel Corp Composite structure type high-tensile hot-dip galvanized steel sheet having excellent deep drawability, and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533788A (en) * 2007-07-19 2010-10-28 コラス・スタール・ベー・ブイ Method for annealing steel strips of varying thickness in the length direction
US8864921B2 (en) 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
JP2014058745A (en) * 2013-12-12 2014-04-03 Nippon Steel & Sumitomo Metal Method of manufacturing cold rolled steel sheet
JP2014098210A (en) * 2013-12-12 2014-05-29 Nippon Steel & Sumitomo Metal Structural member

Also Published As

Publication number Publication date
JP4506380B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
US10472697B2 (en) High-strength steel sheet and production method therefor
US20180023160A1 (en) High-strength steel sheet and production method therefor
WO2012043420A1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
US20180016656A1 (en) High-strength steel sheet and production method therefor
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP5327301B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP4858004B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4985494B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent deep drawability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees