JPS5819465A - Manufacture of galvanized steel plate with superior press formability - Google Patents

Manufacture of galvanized steel plate with superior press formability

Info

Publication number
JPS5819465A
JPS5819465A JP56116488A JP11648881A JPS5819465A JP S5819465 A JPS5819465 A JP S5819465A JP 56116488 A JP56116488 A JP 56116488A JP 11648881 A JP11648881 A JP 11648881A JP S5819465 A JPS5819465 A JP S5819465A
Authority
JP
Japan
Prior art keywords
steel
hot
less
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56116488A
Other languages
Japanese (ja)
Other versions
JPS6152218B2 (en
Inventor
Takayoshi Shimomura
下村 隆良
Koichi Osawa
大沢 紘一
Osamu Nozoe
野副 修
Masaru Ono
小野 賢
Masayuki Kinoshita
木下 正行
Tadao Hirono
廣野 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP56116488A priority Critical patent/JPS5819465A/en
Publication of JPS5819465A publication Critical patent/JPS5819465A/en
Publication of JPS6152218B2 publication Critical patent/JPS6152218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Abstract

PURPOSE:To efficiently manufacture the titled steel plate at a low cost by adding a very small amount of B to a low carbon steel with a restricted N content and hot rolling the steel at a specified finish temp. CONSTITUTION:A steel consisting of <=0.010% C, <=0.30% Si, 0.05-0.30% Mn, <=0.070% sol. Al, <=0.0050% N, 0.0010-0.0050% B and the balance essentially Fe or further contg. 0.001-0.100% one or more among Ti, Nb, Zr as required and V is hot rolled at 850-900 deg.C finish temp. and coiled. It is then cold rolled at >=60% draft, annealed at the recrystallization temp. -<= the A3 transformation point, and galvanized.

Description

【発明の詳細な説明】 メッキ鋼板の製造方法に関する。[Detailed description of the invention] This invention relates to a method for producing plated steel sheets.

溶融亜鉛メッキ鋼板の製造方法としては種々の方式があ
るが、センジミャ方式等のライン内焼鈍炉を有する連続
亜鉛メツキラインによる方法が好演的に有利とされ、一
般化している。しかしこのようなライン内焼鈍方式は急
速加熱、短時間均熱及び急速冷却を行うため、これによ
って得られる製品は総じてプレス成形性に劣るという問
題があり、このため、従来溶融亜鉛メッキ鋼板の用途は
プレス成形性があまり要求されない種類の本のに限られ
ていた。しかし、最近溶融亜鉛メッキ鋼板はその優れた
防錆能力が再認識され、自動車用部品等の高度にプレス
成形性が要求される用途に対しても大量に使用するとい
う要望が強まっており、このような要望の中で溶融亜鉛
メッキ鋼板に高度なプレス成形性を付与せんとする提案
が種々なされている。即ち、ライン内焼鈍方式の連続溶
融亜鉛メツキラインを使用してプレス成形性に優れた溶
融亜鉛メッキ鋼板を製造するための方法としては現在の
ところ以下のようなものがあげられる。
There are various methods for producing hot-dip galvanized steel sheets, but a method using a continuous galvanizing line having an in-line annealing furnace, such as the Sendzimir method, is considered to be advantageous and has become popular. However, since such in-line annealing methods involve rapid heating, short-time soaking, and rapid cooling, the resulting products generally have poor press formability, and for this reason, conventional hot-dip galvanized steel sheets have been used for was limited to types of books that did not require much press formability. However, recently hot-dip galvanized steel sheets have been recognized for their excellent anti-corrosion ability, and there is a growing demand for their use in large quantities in applications that require high press formability, such as automobile parts. In response to such demands, various proposals have been made to impart high press formability to hot-dip galvanized steel sheets. That is, the following methods are currently available for producing hot-dip galvanized steel sheets with excellent press formability using an in-line annealing continuous hot-dip galvanizing line.

イ)過時効処理を行う。b) Perform overage treatment.

口)前焼鈍材を素材として使う。口) Use pre-annealed material as the material.

ハ)脱ガス極低EC) −[Ti )添加鋼等の所゛謂
11m管素材として使う。
c) Degassing and ultra-low EC) - Used as a so-called 11m pipe material such as [Ti]-added steel.

上記イ)゛の方法は過飽和同断Cり析出により 加工性
(主として延性)と時効性の改善を図ることを主目的と
しているが、深絞り性の改善に対しては何ら効果がない
という問題がある。
The main purpose of method A) above is to improve workability (mainly ductility) and aging property through supersaturated co-cut carbon precipitation, but it has the problem that it has no effect on improving deep drawability. be.

また口)の方法は冷延後、連続式溶融メツキラインで処
理する前に箱焼鈍を行うことをその内容とするもので、
深絞9性に優れた鋼板を製造することが可能である。し
かしながら、この方法は箱焼鈍を行うという点で能率面
での問題があり、またこのための工程を余分に必要とす
るところから、製造コストからも極めて不利であるとい
う問題がある。さらにハ)の方法は再結晶温度以上の焼
鈍温度さえ確保すればよく、このため焼鈍工程は非常に
単純となるという利点があるものの、(Ti)等の炭窒
化物形成元素を固溶〔C)、 (N)を完全に固定する
のに必要な量の数倍程度と多量に添加する必要がToシ
、素材の製造コストが非常に高くなるという問題がある
。このように、従来法は得られる鋼板の材質や製造コス
ト等の面で何らかの難点を有している。
In addition, the method described above involves box annealing after cold rolling and before processing in a continuous melt plating line.
It is possible to produce a steel plate with excellent deep drawing properties. However, this method has problems in terms of efficiency in that box annealing is performed, and since an extra step is required for this, there is a problem in that it is extremely disadvantageous in terms of manufacturing costs. Furthermore, method c) only needs to ensure an annealing temperature higher than the recrystallization temperature, and therefore has the advantage that the annealing process is very simple. ), it is necessary to add a large amount of (N), several times the amount required to completely fix it, and there is a problem that the manufacturing cost of the material becomes extremely high. As described above, the conventional method has some drawbacks in terms of the material of the steel plate obtained and the manufacturing cost.

本発明は以上のような従来の問題点を解消すぺ〈創案さ
れたもので、プレス成形性に優れた溶融亜鉛メッキ鋼板
を、能率良くしかも低コストで製造することができる方
法を提供せんとするものであり、その特徴は、〔C〕二
0.010%以下、[Si) : 0.30%以下、ロ
ー〕 =0.05〜0.30%、(SotAt’l :
 0.070X以下、[N]: 0.0050%以下、
[B]: 0.0010〜0゜0050%、残部〔F・
〕及び不可避的不純物からなる鋼を、熱間圧延段階で仕
上温度850〜900℃ で圧延し先後巻取り、次いで
圧延率60%以上で冷間圧延した後、再結晶温度以上A
s変態点以下で焼鈍し、引き続き溶融亜鉛メッキを施す
ことにある。また他の特徴は、上記成分系に加え〔Ti
) (隅) [”Zr] (V)のうち1種又は2種以
上を合計で0.001〜0.100%含有せしめること
にある。以上により、プレス成形性に優れた溶融亜鉛メ
ッキ鋼板を能率良くしかも低コストで製造することが容
品に可能となる。
The present invention has been devised to solve the above-mentioned conventional problems, and aims to provide a method for efficiently producing hot-dip galvanized steel sheets with excellent press formability at low cost. Its characteristics are: [C]: 0.010% or less, [Si]: 0.30% or less, Low] = 0.05 to 0.30%, (SotAt'l:
0.070X or less, [N]: 0.0050% or less,
[B]: 0.0010~0゜0050%, remainder [F.
] and unavoidable impurities, the steel is rolled at a finishing temperature of 850 to 900°C in the hot rolling stage, rolled before and after, and then cold rolled at a rolling reduction of 60% or more, and then rolled at a temperature of A above the recrystallization temperature.
The method involves annealing at a temperature below the s transformation point, followed by hot-dip galvanizing. In addition to the above component system, other features include [Ti
) (Corner) ["Zr] The purpose is to contain one or more of (V) in a total of 0.001 to 0.100%. As a result of the above, a hot-dip galvanized steel sheet with excellent press formability can be obtained. It becomes possible to manufacture containers efficiently and at low cost.

本発明による化学成分は次の如き範囲にシいて調整され
る。
The chemical components according to the present invention are adjusted within the following ranges.

〔C) : 0.010%以下 [81〕: 0.30%以下 〔ぬ>]:00.05〜0.30 %5otAt) : 0.070%以下[:N]:0.
0050%以下 [B]:0.0010〜0.0050%また本発明は上
記のような基本成分に対し、更に[Ti〕、 [Nb)
、 [Zr:]、 〔V)のうち1種又は2種以上を合
計でo、oot〜0.100%添加することができる。
[C): 0.010% or less [81]: 0.30% or less [nu>]: 00.05-0.30%5otAt): 0.070% or less [:N]: 0.
0050% or less [B]: 0.0010 to 0.0050% In addition, the present invention further includes [Ti], [Nb] in addition to the above basic components.
, [Zr:], and [V) in a total amount of o, oot to 0.100%.

本発明において、上記のように成分範囲を限定した理由
について説明すると以下の通りである。
In the present invention, the reason why the component range is limited as described above is as follows.

〔C〕は脱ガス処理にて0.010%以下とする。[C] is reduced to 0.010% or less by degassing treatment.

〔C〕は低い程好ましく深絞り性及び耐時効性が向上す
る。 (C:]は0.00!S%未満が好ましい範囲で
はあるが、現状の脱ガス設備能力から0、010%以下
と規定し・た。
The lower [C] is, the more preferable it is, the better the deep drawability and aging resistance will be. (C:] is preferably less than 0.00!S%, but it is defined as 0.010% or less based on the current degassing equipment capacity.

〔別〕は亜鉛メッキの密着性を害する元素であり、この
ため0.30.%’を最大とする。
[Other] is an element that impairs the adhesion of zinc plating, and therefore 0.30. %' is the maximum.

[Mn)は0.30%を超えると深絞り性の劣化が着し
い。〔胤〕は深絞り住改善の見地、5−らは低い程好ま
しいが、泰両性状や熱間脆性の問題を考慮して下限を0
.05%とする。
When [Mn) exceeds 0.30%, deep drawability deteriorates rapidly. [Seed] From the viewpoint of deep drawing housing improvement, the lower the 5- is, the better, but considering the problems of steel properties and hot embrittlement, the lower limit is set to 0.
.. 05%.

(8oAAj)は脱酸を図るため、また[”B]/[N
)〈1の場合に(B)で固定し切れない固溶[N)をA
tNとして固定すゐために添加するもので、0.070
%を上限とする。これ以上の添加はコスト高とな9好ま
しくない。
(8oAAj) is used for deoxidation, and [”B]/[N
)〈In the case of 1, the solid solution [N] that cannot be fixed in (B) is
It is added to fix it as tN, 0.070
The upper limit is %. Adding more than this is not preferable because it increases the cost.

[N]は必然的に混入するものであるが、低い程好まし
くo、ooso%を上限とする0〔N〕量は後述する〔
B〕添加量とも密接に関係するが、〔N〕が0.005
0%を超えると多量の窒化物が生成し、これにより焼鈍
時のフェライト粒の成長が阻害されて加工性が劣化する
。また[N)が多いと固溶[N)固定のための添加元素
量が増す喪めコスト的に吃不利となる。
[N] is inevitably mixed, but the lower the better, the upper limit is o, ooso%, and the amount of 0 [N] will be described later [
B] Although it is closely related to the amount added, [N] is 0.005
If it exceeds 0%, a large amount of nitrides will be produced, which will inhibit the growth of ferrite grains during annealing and deteriorate workability. Moreover, if the amount of [N) is large, the amount of added elements for fixing [N] in solid solution increases, which is disadvantageous in terms of costs.

CB)は本発明の最も重要な添加元素である0〔B〕は
〔N〕との親和力の強い元素であり、〔N〕と結合して
BNを形成し、耐時効性を改善する効果があることは既
に知られている。本発明者等は、このCB)の微量添加
鋼と特定の熱間圧延仕上温度とを組み合せることによシ
、連続焼鈍の如き急速加熱焼鈍においても深絞り性の優
れた鋼板が得られることを知見したものである。[”B
]添加及び特定の熱延仕上温度の2条件の組み合せに゛
より得られる上記効果についての詳細は後述するが、熱
延のオーステナイト粒径の調整作用に基づくものと考え
られる。本発明で規定するCB)量は0.0010〜o
、ooso%である。〔N〕固定を目的としてCB)を
単独添加する場合は、(BE/[N]≧10条件を満す
必要があるが、逆圧この比が大きくなり過ぎると固溶[
B)が残存して製品のプレス成形性に悪影響を及ぼす。
CB) is the most important additive element in the present invention.0 [B] is an element that has a strong affinity with [N], and combines with [N] to form BN, which has the effect of improving aging resistance. Some things are already known. The present inventors have discovered that by combining this steel with a small amount of CB) and a specific hot rolling finishing temperature, a steel plate with excellent deep drawability can be obtained even in rapid heating annealing such as continuous annealing. This is what we discovered. [”B
] The above effect obtained by the combination of the two conditions of addition and specific hot rolling finishing temperature will be described in detail later, but it is thought to be based on the effect of adjusting the austenite grain size of hot rolling. The amount of CB specified in the present invention is 0.0010 to o
, ooso%. When CB) is added alone for the purpose of fixing [N], it is necessary to satisfy the condition (BE/[N]≧10; however, if the reverse pressure ratio becomes too large, solid solution [
B) remains and has an adverse effect on the press formability of the product.

本発明では熱延の粒調整効果ひいては冷延焼鈍後の深絞
り住改善効果を得る九め(B)を添加するものであり、
[:Bl/[:N)が当量である必要はない。固溶(N
)の固定に関しては(SojAt) (Tl)等の添加
でその目的が十分達せられる。ただ固溶CB)によるプ
レス成形性の劣化は避ける必要がTo夛、この意味でC
B)の上限を〔N〕の上限との関係でo、ooio%と
じた。また[B]が0゜oosoXt−超えるとスラブ
のエツジ割れを生じ島いという問題もある。CB)の下
限は0.0010%であり、これ以下ではCB)添加の
効果が得られない。
In the present invention, nine (B) is added to obtain the effect of grain adjustment during hot rolling and the effect of improving deep drawing properties after cold rolling annealing.
[:Bl/[:N) need not be equivalent. Solid solution (N
), the purpose can be sufficiently achieved by adding (SojAt) (Tl) or the like. However, it is necessary to avoid deterioration of press formability due to solid solution CB, and in this sense, C
The upper limit of B) was set to o, ooio% in relation to the upper limit of [N]. Further, if [B] exceeds 0°oosoXt-, there is a problem that edge cracking of the slab occurs and the slab becomes rough. The lower limit of CB) is 0.0010%, and below this, the effect of adding CB) cannot be obtained.

[Ti) (怖] [Zr’l (V)については、こ
れらのものは縦置化物形成元素であシ、これらを単独或
いは複合添加して固溶〔N〕の完全固定と固溶〔C〕の
一部又は全量固定を図る0これらの元素を十分添加すれ
ば、固溶(C) (N)が完全に固定された所謂1.F
、鋼となり、焼鈍後の製品は非時効性となる。しかし、
この非時効性を目的とした過去の例では、添加元素量が
固溶〔C〕〔N〕を完全に固定するのに必要な量の数倍
程度必要となり、コスト面で非常に不利となることは前
述した通りであるOそζで本発明はコスト面に主眼を置
き、固溶(N)は完全固定するが、固溶〔C〕は一部な
いし全量固定するのに必要な最低限度の量を添加すゐこ
ととし、上限を単独又は複合添加の合計で0.100%
とした。また合計で0.001%を下回ると、その添加
効果が得られず、このため下限をこのように規定した。
[Ti) (Scary) Regarding [Zr'l (V)], these elements are vertical compound forming elements, and these can be added singly or in combination to completely fix solid solution [N] and solid solution [C]. ] If these elements are added sufficiently, so-called 1.F in which the solid solution (C) (N) is completely fixed.
, the product becomes steel, and the product after annealing becomes non-aging. but,
In past examples aimed at achieving this non-aging property, the amount of added elements was required to be several times the amount required to completely fix the solid solution [C][N], which was extremely disadvantageous in terms of cost. As mentioned above, the main focus of the present invention is on cost, and the solid solution (N) is completely fixed, but the solid solution [C] is limited to the minimum amount necessary to partially or completely fix the solid solution [C]. The upper limit shall be 0.100% for the total of individual or combined additions.
And so. Further, if the total amount is less than 0.001%, the effect of the addition cannot be obtained, and therefore the lower limit was defined as above.

なお、上記成分に加え製品の強度レベルを調整する目的
で必要に応じてCP)が添加される。この(Plはプレ
ス成形性をtりtp損わず強度を上昇させるのに有効な
元素であり、必要に応じo、o a O〜0.1 s 
o X添加される。0.030%未満では強度上昇効果
が期待できず、また0、150%を超えるとメッキ密着
性を害するほか、溶接性や加工性の劣化を招くので好ま
しくない。
In addition to the above components, CP) is added as necessary for the purpose of adjusting the strength level of the product. This (Pl) is an effective element for increasing strength without impairing press formability, and if necessary o, o a O ~ 0.1 s
o X is added. If it is less than 0.030%, no strength-increasing effect can be expected, and if it exceeds 0.150%, it impairs plating adhesion and causes deterioration in weldability and workability, which is not preferable.

このような成分からなる鋼の製造条件として、本発明で
は熱延段階に督いて仕上温度850〜900℃の範囲で
仕上圧延を行うもので、これが本発明の大きな%徴の1
つであり、この熱処理と上記成分系特に〔B〕との組み
合せにより好適表プレス成形性が得られる。これは前述
した如く熱延のオーステナイト粒径に基づくものと思わ
れる。第1図にCB)添加材(B : o、ooss、
%、巻取温度:660℃)の熱延仕上温度と熱延板フェ
ライト粒径との関係を示す。この第111に示されるよ
うに・、熱延仕上温度が5ooct超えるとなると急激
に熱延板の7工フイト粒径が大きくなる。ヒの原因は明
確ではないが、固溶(B)が変態時の被発生頻度を低下
させること、及び極低(C)鋼のためにフェライト粒径
自体が大無いこと等が原因であると考えられる。仕上温
度が850〜900℃(図中斜線部分)では適正な7工
ライト粒径を呈するが、これは温度の低下によりBNが
析出して固溶(B)が減少し、上記したような変態時の
被発生頻度低下作用がなくなること、及び析出し九BN
等の析出物によシ粒成長阻−書作用を生じ、ることか原
因であると推定される。また仕上温度が850℃未満で
は低温仕上層が現出しはじめるために平均フェライト粒
径は大きくなる。第2図は第1図と同様CB)添加材(
[B) : o、o o s s%、  巻取温度二6
60℃、焼鈍温度:yso℃)  の熱延仕上温度とメ
ッキ鋼板の深絞り性に値)及びYP値との関係を示すも
のであるが、これからも判るように熱延板のフェライト
粒径が大きくな9過ぎると、製品の深絞シ性は適正粒径
(図中斜線部分)のものに較べかなり劣ったものとなっ
ており、これは仕上温度が900℃超では冷延前粒径が
極めて大きいことが、また仕上温度が850℃未満では
低温仕上組織が出現してしまう仁とが原因であると考え
られる。
In the present invention, as a manufacturing condition for steel made of such components, finish rolling is performed at a finishing temperature in the range of 850 to 900°C after the hot rolling stage, and this is one of the major characteristics of the present invention.
By combining this heat treatment with the above component system, especially [B], suitable surface press formability can be obtained. This seems to be based on the austenite grain size of hot rolling as mentioned above. Figure 1 shows CB) additives (B: o, ooss,
%, coiling temperature: 660°C) and the relationship between the hot-rolled sheet ferrite grain size and the hot-rolling finishing temperature. As shown in No. 111, when the hot-rolling finishing temperature exceeds 50oct, the grain size of the hot-rolled sheet suddenly increases. The cause of this is not clear, but it is believed that the solid solution (B) reduces the frequency of occurrence during transformation, and that the ferrite grain size itself is not large due to the extremely low (C) steel. Conceivable. At a finishing temperature of 850 to 900°C (shaded area in the figure), the appropriate 7-item grain size is exhibited, but this is because BN precipitates due to the temperature drop and the solid solution (B) decreases, resulting in the above-mentioned transformation. Elimination of the effect of reducing the frequency of occurrence and precipitation of 9BN
It is presumed that this is caused by the presence of precipitates that inhibit grain growth. Furthermore, when the finishing temperature is lower than 850°C, a low temperature finishing layer begins to appear, so the average ferrite grain size becomes large. Figure 2 is the same as Figure 1, with CB) additives (
[B): o, o o s s%, coiling temperature 26
60℃, annealing temperature: yso℃), and the relationship between the hot-rolling finishing temperature (deep drawability value) and YP value of the plated steel sheet.As can be seen from this, the ferrite grain size of the hot-rolled sheet When the temperature exceeds 9, the deep drawing properties of the product are considerably inferior to those of the appropriate grain size (the shaded area in the figure). This is thought to be due to the extremely large grain size and the appearance of a low-temperature finish structure at a finishing temperature of less than 850°C.

以上のような仕上温度で仕上圧延された鋼板は、コイル
に巻取られるが、この巻取温度KIIしては41に限定
はされない。即ちsso〜720℃程度の低温ないし高
温壱堆が行われる。
The steel plate finish-rolled at the finishing temperature as described above is wound into a coil, but the winding temperature KII is not limited to 41. That is, low-temperature to high-temperature deposition of about sso to 720° C. is performed.

次いで鋼板は脱スケール処理後、圧延率60〜90Xの
通常の冷間圧延が行われ、引き続きライン内焼鈍方式の
連続溶融亜鉛メツキラインに送られ、焼鈍及び溶融亜鉛
メッキが施される。焼鈍温度は再結晶温度以上ん変態点
以下とする。この温度範囲内では高温儒程フェライト粒
成長が進み深絞り性に優れた製品が得られるが、70o
c@度の焼鈍でもAtキルド鋼を箱焼鈍した冷延鋼板に
匹敵するような良好な材質が得られるO本発明は極低〔
C〕鋼をその対象としている丸め、その効果は焼鈍後の
冷却条件には依存せず、従って冷却条件は特に規定しな
い0また本発明は以上の成分範囲及び熱処理で十分その
目的とする性質を得ることがで龜、この九め低炭素鋼で
通常必要とされる過時効処理が必要で主<、これが本発
明の大きな411P愼でもある0上記焼鈍に引き続き溶
融亜鉛メッキが施されるが、これは通常のメッキ方式と
変らないOなお、亜鉛メッキはその耐食性向上t−目的
として合金化処理が施される場合があるが、この場合で
も本発明の効果は何ら変るものではない。
Next, the steel plate is descaled, then subjected to normal cold rolling at a rolling rate of 60 to 90X, and then sent to an in-line annealing continuous hot-dip galvanizing line where it is annealed and hot-dip galvanized. The annealing temperature is above the recrystallization temperature and below the transformation point. Within this temperature range, ferrite grain growth progresses as the temperature increases and a product with excellent deep drawability can be obtained.
Even with annealing at c@ degree, a material with good quality comparable to that of a cold-rolled steel sheet obtained by box-annealing At-killed steel can be obtained.
C] The effect of rounding, which is targeted at steel, does not depend on the cooling conditions after annealing, and therefore the cooling conditions are not particularly specified.In addition, the above composition range and heat treatment are sufficient for the present invention to obtain the desired properties. In order to obtain this steel, it is necessary to undergo an over-aging treatment, which is normally required for this low carbon steel. This is the same as a normal plating method.Although zinc plating is sometimes subjected to alloying treatment for the purpose of improving its corrosion resistance, the effects of the present invention do not change in any way.

実施例 第1表に示す化学成分の鋼を溶製し、連続鋳造でスラブ
とした0表中人鋼〜E鋼が本発明鋼であり、このうち、
A鋼、B鋼が極低〔C)−CB)系、C鋼が極低[C]
 −CB) −(Ti)系、D鋼が極低(C) −CB
) −(P)系、E鋼が極低(C) −CB) −[T
i) −CP)系である。また、G鋼〜L鋼が比較鋼で
ある。
Examples Chunin Steel to E steel in Table 0 are steels of the present invention, which are made by melting steel having the chemical composition shown in Table 1 and making slabs by continuous casting.
A steel, B steel are extremely low [C)-CB) system, C steel is extremely low [C]
-CB) -(Ti) system, D steel is extremely low (C) -CB
) -(P) series, E steel has extremely low (C) -CB) -[T
i) -CP) system. Moreover, G steel to L steel are comparative steels.

上記スラグは第2表に示す種々の熱延条件で板針18箇
に熱間圧延した。次いで酸洗で脱スケール後、板厚0.
8■(圧延率71.4%)K冷間圧延した。その後、ラ
イン内焼鈍炉を有する連続溶融亜鉛メツキラインに通板
して焼鈍し、溶融亜鉛メッキを施した。
The above slag was hot rolled into 18 plate needles under various hot rolling conditions shown in Table 2. Then, after descaling by pickling, the plate thickness was reduced to 0.
8■ (rolling ratio 71.4%) K cold rolling. Thereafter, the sheet was passed through a continuous hot-dip galvanizing line having an in-line annealing furnace for annealing, and hot-dip galvanizing was applied.

焼鈍温度は760℃又は850℃であった。The annealing temperature was 760°C or 850°C.

調圧後の製品の確性結果(試験片:JISs号、圧延方
向)を表2に脅せて示す。なお、第2表中A (1)鋼
〜ム(s)鋼はA鋼を種々の熱延条件及び焼鈍条件で処
理したものであって、このうちA(2)鋼、A(4)鋼
、ム(s)第2表において、F鋼は〔C〕の含有量が高
く、G鋼線[B]の添加がなく、H#1社(Ti)が0
.017%添加されているものの、〔B〕の添加がなく
、シかも〔C〕の含有量が高く、いずれも本発明の範囲
外であって、このえめ;値が低い。さらKI鋼はCB)
の含有量が高く、J鋼は〔胤〕の含有量が高く、いずれ
も本発明の範囲外であり、これらについてもi値が低く
なっている。X鋼は[Si)の含有量が高く本発明の範
囲外であり、このためr値が低く且つメッキの密着性が
不良となっている。tたL鋼はCP)の含有量が高く上
記範囲外となっており、このため、i値、Et値ともに
低く及びメッキ密着性も不良となっている。
The accuracy results of the product after pressure adjustment (test piece: JISs number, rolling direction) are shown in Table 2. Note that A (1) steel to mu (s) steel in Table 2 are A steel processed under various hot rolling conditions and annealing conditions, and among these, A (2) steel and A (4) steel , Mu(s) Table 2, F steel has a high content of [C], no addition of G steel wire [B], and H#1 company (Ti) has a high content of [C].
.. Although 0.017% is added, there is no addition of [B], and the content of [C] is high, both of which are outside the scope of the present invention, and this value is low. Saraki steel is CB)
The content of J steel is high, and the content of [seed] is high, both of which are outside the scope of the present invention, and the i values of these are also low. Steel X has a high content of [Si], which is outside the scope of the present invention, and therefore has a low r value and poor plating adhesion. The L steel has a high content of CP (CP) which is outside the above range, and as a result, both the i value and the Et value are low and the plating adhesion is poor.

一方、B鋼及びE鋼は本発明鋼であって、いずれも良好
な機械的性質が得られている。
On the other hand, steel B and steel E are steels of the present invention, and both have good mechanical properties.

ま&A鋼のうち、本発明鋼たるA(2)鋼、A(4)鋼
及びA(5)鋼は良好な性質上水しているが、A(1)
鋼及びA(3)鋼は熱延段階での仕上温度が本発明の範
囲外(91O℃、830℃)にあり、このためi値が低
くなっている。
Among M & A steels, the invention steels A(2) steel, A(4) steel and A(5) steel have good properties, but A(1) steel has good properties.
Steel and A(3) steel have finishing temperatures outside the range of the present invention (910° C., 830° C.) in the hot rolling stage, and therefore have low i values.

C鋼及びE鋼は本願第2の発明に係る実施例であって、
と4に炭窒化物形成元素たる[Tl )を0.03ON
、0.0!13N添加したものであり、これによればi
値等の機械的性質及びメッキ密着性にかいて良好な性質
を示しているのに加え、特に時効指数に関し、他の本発
明鋼が3.0〜3.5 #/−の値を示しているのに対
し、1.0〜i、 s by/w?と比較的低い値とな
っており、他の本発明鋼に較べ適度な非時効性を得てい
ることが判る。ただ、本発明鋼を全体としてみれば、耐
時効性を評価する時効指数は1〜3.5ψ讐程度のレベ
ルにあり、この状態は少量の固溶(C)が存在し完全非
時効ではないが、時効による降伏点伸びの回復及び材質
の時効劣化量は実用上はとんど問題とならない程度で遅
時効性であるといえる。を九逆に、このように少量の固
溶〔C〕が存在することは焼付硬化性を有することを意
味し、自動車部品等の製品化後の高い降伏強度が期待で
きる。
C steel and E steel are examples according to the second invention of the present application,
and 0.03ON of [Tl), which is a carbonitride-forming element, in 4.
, 0.0!13N is added, and according to this, i
In addition to showing good properties in terms of mechanical properties such as value and plating adhesion, other steels of the present invention show values of 3.0 to 3.5 #/- especially regarding aging index. 1.0~i, s by/w? It is a relatively low value, and it can be seen that moderate aging resistance has been obtained compared to other steels of the present invention. However, when looking at the steel of the present invention as a whole, the aging index for evaluating aging resistance is at a level of about 1 to 3.5ψ, and this state is not completely non-aging due to the presence of a small amount of solid solution (C). However, the recovery of yield point elongation due to aging and the amount of aging deterioration of the material hardly poses a problem in practice, so it can be said that it has slow aging properties. Conversely, the presence of such a small amount of solid solution [C] means that it has bake hardenability, and high yield strength can be expected after it is manufactured into products such as automobile parts.

なお、本発明ではCB)を添加しているため、製品のコ
イル長手方向或いは幅方向の材質を均一なものとするこ
とができる以上述べたように、本発明によれば深絞り性
等のプレス成形性に優れた溶融亜鉛メッキ鋼板を能率良
くしかも多量の特殊元素を添加したり、或いは特別の工
程を付加したりすることなく低フストで製造することが
でき、実用的価値の極めて高い発明であるということが
できる。
In addition, in the present invention, since CB) is added, it is possible to make the material of the product uniform in the longitudinal direction or width direction of the coil. This is an invention with extremely high practical value, as hot-dip galvanized steel sheets with excellent formability can be manufactured efficiently and with low production costs without adding large amounts of special elements or special processes. It can be said that there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成分範囲による鋼板の熱延仕上温度と
熱延板フェライト粒度との関係を示すものである。第2
図は同じく本発明の成分範囲による鋼板の熱延仕上温度
と調圧俵のi値及びYP値との関係を示すものである。 第1図 熱 1缶 イ士上 温度 (0C) 第2図 麦艮 嬉イ士上う二定 (0C)
FIG. 1 shows the relationship between hot-rolling finishing temperature and hot-rolled sheet ferrite grain size of steel sheets according to the composition range of the present invention. Second
The figure also shows the relationship between the hot rolling finishing temperature of a steel sheet and the i value and YP value of the pressure bale according to the composition range of the present invention. Figure 1: Heat 1 can Temperature (0C) Figure 2: Mugien (0C)

Claims (2)

【特許請求の範囲】[Claims] (1)C: 0.010%以下、B1:o、ao%以下
、Mn : 0.0 !i 〜0.30%、5otht
 : o、 070%以下、N:0.0050%以下、
B:0.0010〜0.0050%、残部Fe及び不可
避的不純物からなる鋼を、熱間圧延段階で仕上温度85
0〜900℃で圧延した後巻取り、次いで圧延率60%
以上で冷間圧延した後、再結晶温度以上As変態点以下
で焼鈍し、引き続き溶融亜鉛メッキを施すことを特徴と
するプレス成形性に優れた溶融亜鉛メッキ鋼板の製造方
法0
(1) C: 0.010% or less, B1: o, ao% or less, Mn: 0.0! i ~0.30%, 5oth
: o, 0.070% or less, N: 0.0050% or less,
B: 0.0010 to 0.0050%, balance Fe and unavoidable impurities, the steel is heated to a finishing temperature of 85% during hot rolling.
After rolling at 0-900℃, winding, then rolling rate 60%
Method 0 for producing a hot-dip galvanized steel sheet with excellent press formability, characterized in that after cold rolling as described above, annealing is performed at a temperature above the recrystallization temperature and below the As transformation point, followed by hot-dip galvanizing.
(2)c : 0.010%以下、Si : 0.30
%以下、Mn : 0.05〜0.30%、5oLAl
 : 0.070%以下、N:0.0050%以下、B
 :0.0010〜o、ooso%、Ti * Nb@
 Zr + V ノうち1種又は2種以上が合計で0.
001〜0.100%、残部Fe及び不可避的不純物か
らガる鋼を、熱間圧延段階で仕上温度SSO〜900℃
で圧延した後巻取り、次いで圧延率60%以上で冷間圧
延した後、再結晶温度以上ん変態点以下で焼鈍し、引き
続き溶融亜鉛メッキを施すことを特徴とするプレス成形
性に優れた溶融亜鉛メッキ鋼板の製造方法。
(2) c: 0.010% or less, Si: 0.30
% or less, Mn: 0.05-0.30%, 5oLA1
: 0.070% or less, N: 0.0050% or less, B
:0.0010~o, ooso%, Ti*Nb@
One or more of Zr + V has a total of 0.
001~0.100%, the balance is Fe and unavoidable impurities, and the finishing temperature is SSO~900℃ during the hot rolling stage.
A molten metal with excellent press formability, which is characterized by being rolled, then coiled, then cold rolled at a rolling rate of 60% or more, annealed at a temperature above the recrystallization temperature and below the transformation point, and then hot-dip galvanized. Method of manufacturing galvanized steel sheet.
JP56116488A 1981-07-27 1981-07-27 Manufacture of galvanized steel plate with superior press formability Granted JPS5819465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116488A JPS5819465A (en) 1981-07-27 1981-07-27 Manufacture of galvanized steel plate with superior press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116488A JPS5819465A (en) 1981-07-27 1981-07-27 Manufacture of galvanized steel plate with superior press formability

Publications (2)

Publication Number Publication Date
JPS5819465A true JPS5819465A (en) 1983-02-04
JPS6152218B2 JPS6152218B2 (en) 1986-11-12

Family

ID=14688354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116488A Granted JPS5819465A (en) 1981-07-27 1981-07-27 Manufacture of galvanized steel plate with superior press formability

Country Status (1)

Country Link
JP (1) JPS5819465A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS6160872A (en) * 1984-08-30 1986-03-28 Kawasaki Steel Corp Hot dip zn-al alloy coating steel sheet superior in press formability and its manufacture
JPS63317649A (en) * 1987-06-19 1988-12-26 Kawasaki Steel Corp Dead-soft carbon cold-rolled steel sheet excellent in spot weldability and its production
JPH01309942A (en) * 1988-06-08 1989-12-14 Kobe Steel Ltd Cold rolled steel plate for ultra deep drawing having excellent longitudinal cracking resistance and hot dip galvanized sheet steel
JP2007287588A (en) * 2006-04-19 2007-11-01 Kawamura Electric Inc Wiring fixture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138516A (en) * 1975-05-27 1976-11-30 Nippon Steel Corp Process for producing cold rolled steel sheet having excellent pressforming properties by low temperature heating of slab
JPS53115610A (en) * 1977-03-19 1978-10-09 Nippon Steel Corp Method for manufacturing cold drawn steel strip for use in deep drawing
JPS54125117A (en) * 1978-03-24 1979-09-28 Nippon Steel Corp Steel plate for enamel
JPS5594446A (en) * 1979-01-10 1980-07-17 Nippon Steel Corp Manufacture of cold rolled steel sheet for ultra deep drawing by continuous annealing
JPS55107733A (en) * 1979-02-15 1980-08-19 Kawasaki Steel Corp Cold rolled steel plate having superior press workability
JPS55141555A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension galvanized steel sheet for press machining
JPS55145123A (en) * 1979-05-01 1980-11-12 Kawasaki Steel Corp Manufacture of cold rolled steel sheet excellent in deep-drawing property
JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138516A (en) * 1975-05-27 1976-11-30 Nippon Steel Corp Process for producing cold rolled steel sheet having excellent pressforming properties by low temperature heating of slab
JPS53115610A (en) * 1977-03-19 1978-10-09 Nippon Steel Corp Method for manufacturing cold drawn steel strip for use in deep drawing
JPS54125117A (en) * 1978-03-24 1979-09-28 Nippon Steel Corp Steel plate for enamel
JPS5594446A (en) * 1979-01-10 1980-07-17 Nippon Steel Corp Manufacture of cold rolled steel sheet for ultra deep drawing by continuous annealing
JPS55107733A (en) * 1979-02-15 1980-08-19 Kawasaki Steel Corp Cold rolled steel plate having superior press workability
JPS55141555A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension galvanized steel sheet for press machining
JPS55145123A (en) * 1979-05-01 1980-11-12 Kawasaki Steel Corp Manufacture of cold rolled steel sheet excellent in deep-drawing property
JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPH0128817B2 (en) * 1983-04-15 1989-06-06 Nippon Steel Corp
JPS6160872A (en) * 1984-08-30 1986-03-28 Kawasaki Steel Corp Hot dip zn-al alloy coating steel sheet superior in press formability and its manufacture
JPH0526863B2 (en) * 1984-08-30 1993-04-19 Kawasaki Steel Co
JPS63317649A (en) * 1987-06-19 1988-12-26 Kawasaki Steel Corp Dead-soft carbon cold-rolled steel sheet excellent in spot weldability and its production
JPH0434615B2 (en) * 1987-06-19 1992-06-08 Kawasaki Steel Co
JPH01309942A (en) * 1988-06-08 1989-12-14 Kobe Steel Ltd Cold rolled steel plate for ultra deep drawing having excellent longitudinal cracking resistance and hot dip galvanized sheet steel
JP2007287588A (en) * 2006-04-19 2007-11-01 Kawamura Electric Inc Wiring fixture

Also Published As

Publication number Publication date
JPS6152218B2 (en) 1986-11-12

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US7879160B2 (en) Cold rolled dual-phase steel sheet
JPH0379420B2 (en)
JPH024657B2 (en)
JPS6256209B2 (en)
JPS595649B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet with excellent workability
JPS5819465A (en) Manufacture of galvanized steel plate with superior press formability
JPS6111294B2 (en)
CN114207172A (en) High-strength steel sheet, high-strength member, and method for producing same
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JPH05117834A (en) Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPH0559970B2 (en)
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
RU2788613C1 (en) Cold-rolled coated steel sheet and method for production thereof
JP3293450B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JPH02145747A (en) Hot rolled steel sheet for deep drawing and its manufacture
JPS6114219B2 (en)
JP2782468B2 (en) Manufacturing method of hot-dip galvanized high-strength hot-rolled steel sheet
JP2674388B2 (en) Method for producing hot-dip galvanized steel sheet with high formability
JPH083127B2 (en) Method for producing high strength galvanized steel sheet with excellent workability
JPH06158175A (en) Production of cold rolled steel sheet for ultradeep drawing
JPH0756056B2 (en) Method for producing high strength galvanized steel sheet having high r value