JP2674388B2 - Method for producing hot-dip galvanized steel sheet with high formability - Google Patents

Method for producing hot-dip galvanized steel sheet with high formability

Info

Publication number
JP2674388B2
JP2674388B2 JP28828891A JP28828891A JP2674388B2 JP 2674388 B2 JP2674388 B2 JP 2674388B2 JP 28828891 A JP28828891 A JP 28828891A JP 28828891 A JP28828891 A JP 28828891A JP 2674388 B2 JP2674388 B2 JP 2674388B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
less
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28828891A
Other languages
Japanese (ja)
Other versions
JPH05125449A (en
Inventor
朗人 松井
満告 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28828891A priority Critical patent/JP2674388B2/en
Publication of JPH05125449A publication Critical patent/JPH05125449A/en
Application granted granted Critical
Publication of JP2674388B2 publication Critical patent/JP2674388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車部品等に利用さ
れる高強度(抗張力41kg/mm2 以上)高成形性溶融亜鉛
メッキ鋼板の製造方法に関し、詳しくは、熱延直送溶融
亜鉛メッキまたは合金化溶融亜鉛メッキ鋼板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength (tensile strength 41 kg / mm 2 or more) high formability hot-dip galvanized steel sheet used for automobile parts and the like, and more specifically, hot-rolled direct hot-dip galvanizing or The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet.

【0002】[0002]

【従来の技術】近年の自動車用鋼板の軽量化ための高強
度鋼板の要求には著しいものがある。
2. Description of the Related Art In recent years, there has been a significant demand for high strength steel sheets for reducing the weight of automobile steel sheets.

【0003】この要求に応えるために、特開昭63−1493
21号公報などの提案がある。
In order to meet this demand, JP-A-63-1493
There is a proposal such as No. 21 bulletin.

【0004】従来、この種の高強度鋼板の製造に際し
て、合金鋼を熱間圧延ままで使用する場合には、制御圧
延により、低温巻取等を実施し、ベイナイトあるいは細
かいフェライト・パーライト組織にし、強度(抗張力)
向上、成形性向上を図っている。
Conventionally, in the production of this kind of high strength steel sheet, when the alloy steel is used as it is in hot rolling, low temperature winding or the like is carried out by controlled rolling to obtain a bainite or fine ferrite / pearlite structure. Strength (tensile strength)
We are working to improve and improve moldability.

【0005】ところが、抗張力41Kg/mm2級の合金化溶
融亜鉛処理鋼板を製造する際には、合金化処理の再加熱
が行われるため、低温巻取制御を行うことができず、こ
のため抗張力低下、成形性劣化を防止するために、成分
の調整だけで高強度を保証し、高成形性を維持してき
た。
However, when the alloyed molten zinc-treated steel sheet having a tensile strength of 41 kg / mm 2 is produced, the alloying treatment is reheated, so that the low-temperature winding control cannot be performed, and therefore the tensile strength is increased. In order to prevent deterioration and deterioration of moldability, high strength has been guaranteed and high moldability has been maintained simply by adjusting the components.

【0006】[0006]

【発明が解決しようとする課題】かかる成分調整におい
て、C含有量を高めると、溶接性が悪くなり、Mn含有量
を高くするとコスト高となる。Siを多量に添加するとス
ケール疵の問題、さらに合金化が遅れやすい。さらにNb
を多量に添加すると強度が上昇しすぎ、プレス時に不具
合を生じる。このように成分の調整のみにより強度保証
をした場合には、各種不具合を生じ、特に溶接性、成形
性において完全に満足できる成品を得ることはできな
い。
In the above component adjustment, if the C content is increased, the weldability deteriorates, and if the Mn content is increased, the cost increases. If a large amount of Si is added, the problem of scale defects and alloying are likely to be delayed. Furthermore Nb
If a large amount of is added, the strength will increase too much, causing problems during pressing. When the strength is guaranteed only by adjusting the components as described above, various problems occur, and it is impossible to obtain a product which is completely satisfactory in terms of weldability and formability.

【0007】一方、前記公報には、後述する本発明と近
似する技術が開示されているが、仕上りから巻取まであ
る一定の冷却速度で冷却しているために、Pによる焼き
もどし脆性が発生し、プレス割れ、さらに強度低下など
を起こす危険性がきわめて高くなる。
On the other hand, the above-mentioned publication discloses a technique similar to the present invention to be described later. However, since cooling is performed at a constant cooling rate from finishing to winding, temper brittleness due to P occurs. However, there is an extremely high risk of press cracking and further deterioration of strength.

【0008】したがって、本発明の課題は、高強度およ
び優れた成形性を示し、しかも合金化処理に伴う、強
度、孔拡げ性能等の熱劣化を防止でき、さらにこの種の
特性を安定的に得ることができる鋼板の製造方法を提供
することにある。
[0008] Therefore, the object of the present invention is to exhibit high strength and excellent formability, and to prevent thermal deterioration such as strength and hole expansion performance due to alloying treatment, and to stabilize this kind of characteristics. It is to provide a method of manufacturing a steel sheet that can be obtained.

【0009】[0009]

【課題を解決するための手段】上記課題は、C:0.08%
以下、Si:0.03%以下、Mn:0.50〜0.90%、P:0.
03%以上、S:0.010 %以下、ならびに残部鉄および不
可避的不純物よりなる鋼を、仕上げスタンド出口温度を
810 〜900 ℃で熱間圧延し、巻取温度400 〜450 ℃で巻
き取るとともに、前記仕上げから巻取までの冷却速度
を、第1冷却段階として仕上げから600 〜660 ℃の範囲
の中間温度まで40〜60℃/秒で冷却し、その後第2冷却
段階として前記中間温度から巻取温度までの間40℃/秒
未満〜20℃/秒で冷却し、次いで酸洗し、溶融亜鉛メッ
キまたは合金化溶融亜鉛メッキを行うことで解決でき
る。
[Means for Solving the Problems] The above problem is C: 0.08%
Below, Si: 0.03% or less, Mn: 0.50 to 0.90%, P: 0.
The steel with 03% or more, S: 0.010% or less, and the balance iron and unavoidable impurities is used for finishing stand outlet temperature.
It is hot-rolled at 810 to 900 ℃ and wound at a winding temperature of 400 to 450 ℃, and the cooling rate from finishing to winding is the first cooling step from the finish to an intermediate temperature in the range of 600 to 660 ℃. Cooling at 40-60 ° C / sec, and then as a second cooling step, cooling from less than 40 ° C / sec to 20 ° C / sec between the intermediate temperature and the coiling temperature, then pickling, hot dip galvanizing or alloying. The problem can be solved by carrying out hot dip galvanization.

【0010】[0010]

【作用】本発明では、後述するように、鋼成分、仕上げ
スタンド温度、巻取温度のほか、冷却工程を2段階に区
分して制御することで、後述のように優れた、特に前記
公報例と比較しても優れた特性の溶融亜鉛または合金化
亜鉛メッキ鋼板を得ることができる。
In the present invention, as will be described later, in addition to the steel composition, the finishing stand temperature, and the coiling temperature, the cooling process is divided into two stages and controlled, which is excellent as described below. It is possible to obtain a hot-dip galvanized or galvannealed steel sheet having excellent properties as compared with.

【0011】具体的には、仕上出口ロール温度を上記範
囲内とすることでスケール疵発生を抑制しつつ、引っ張
り特性のバラツキを少なくすることができる。また本発
明範囲であればAr3点以上で最も圧延しやすい温度域
で製造することになり、コスト面でも有利となる。
Specifically, by setting the finish outlet roll temperature within the above range, it is possible to suppress the occurrence of scale flaws and reduce variations in tensile properties. Further, within the range of the present invention, the production is carried out in a temperature range where Ar is 3 points or more and rolling is most easy, which is advantageous in terms of cost.

【0012】また、巻取温度を上記範囲内とすることに
より、焼き戻し脆性やプレス割れを防止しつつ抗張力を
増大できる。
By setting the winding temperature within the above range, the tensile strength can be increased while preventing temper embrittlement and press cracking.

【0013】さらに、冷却速度を上述のように2段に変
化させることで、成形性を向上できる。
Further, the moldability can be improved by changing the cooling rate in two steps as described above.

【0014】[0014]

【実施例】次に本発明を、特にその数値限定の理由を中
心にして具体的に説明する。
Next, the present invention will be specifically described with a particular focus on the reason for limiting the numerical values.

【0015】(鋼成分)本発明において鋼は成分的に、
C:0.08%以下、Si:0.03%以下、Mn:0.50〜0.90
%、P:0.03%以上、S:0.010 %以下、ならびに残部
鉄および不可避的不純物よりなる。 C≦0.08%:溶接性を良好にするのと、熱間圧延の制
御圧延に対応して微細なフェライト・パーライト組織と
するとともに、合金化処理中の熱の影響を考慮して、フ
ェライト・パーライト組織の粒成長(粗粒化)を鈍感に
するためのものであり、これにより低温巻取による高強
度・良成形性を持続させることができる。 P≧0.03%:高強度保証のためである。Mnの添加量
を多くして強度を高めることもできるが、この場合、M
nが高価であるためにコストアップを招くばかりでな
く、孔拡げ率(図2に示すように成形性の評価指標とな
る。なお、図2は本発明の鋼板について自動車用ホイー
ルを成形した場合の例である。)はMnの添加量を多く
して高強度化を図った場合には低下する。 Si≦0.03%が好ましい。いわゆる島状スケールを防
止して、メッキの合金化促進のためである。 Mn=0.50〜0.90%:高強度を保証するためで、0.90
%を超えると過度の強度となり、0.50%未満では強度不
足となる。 S:0.01%以下:硫化物系介在物の生成を防止し、冷
間加工性の低下を防ぐためである。 一方、抗張力および孔拡げ率(成形性の指標)と表1に
示す成分例とは、図5に示す関係があり、この面でも本
発明の鋼成分は有効である。すなわち、低C系におい
て、Mn、Nb、Ti、Vなどを添加して行くと、抗張
力は高まるものの、孔拡げ率が低下することが判明す
る。
(Steel composition) In the present invention, steel is composed of
C: 0.08% or less, Si: 0.03% or less, Mn: 0.50 to 0.90
%, P: 0.03% or more, S: 0.010% or less, and the balance iron and inevitable impurities. C ≦ 0.08%: Ferrite / pearlite has good weldability and a fine ferrite / pearlite structure corresponding to the controlled rolling of hot rolling, and the effect of heat during alloying treatment is taken into consideration. This is for making the grain growth (coarsening) of the structure insensitive, and by doing so, high strength and good formability due to low temperature winding can be maintained. P ≧ 0.03%: This is for guaranteeing high strength. Strength can be increased by increasing the amount of Mn added, but in this case, M
Since n is expensive, not only the cost is increased, but also the hole expansion ratio (an index of formability as shown in FIG. 2 is shown. In the case of increasing the Mn addition amount to increase the strength, it decreases. Si ≦ 0.03% is preferable. This is to prevent so-called island scale and promote alloying of plating. Mn = 0.50-0.90%: To ensure high strength, 0.90
%, The strength becomes excessive, and if less than 0.50%, the strength becomes insufficient. S: 0.01% or less: This is to prevent the formation of sulfide-based inclusions and prevent the deterioration of cold workability. On the other hand, the tensile strength and the hole expansion ratio (index of formability) and the composition examples shown in Table 1 have the relationship shown in FIG. 5, and the steel composition of the present invention is also effective in this respect. That is, it is found that in a low C system, when Mn, Nb, Ti, V, etc. are added, the tensile strength increases but the hole expansion ratio decreases.

【0016】[0016]

【表1】 [Table 1]

【0017】(仕上げ出口温度および巻取温度)本発明
では、仕上げスタンド出口温度を810 〜900 ℃で熱間圧
延し、巻取温度400 〜450 ℃で巻き取る。ここで、仕上
スタンド出口温度の下限を810 ℃にしているのは、Ar
3 点確保のために必要であり、上限900 ℃は、これを超
えるとスケール疵が発生しやすくなるためである。すな
わち810 ℃未満では圧延加工組織が発生してしまい、引
張特性のバラツキが大きくなる。また、810 ℃が最も圧
延し易い温度域であり、製造コストの点でも有利とな
る。逆に、900 ℃を超えるとスケール疵が発生する。さ
らに、巻取温度を400 〜450 ℃としたのは、400 ℃未満
では幅方向の強度のバラツキが顕著となり、温度制御が
難しくなるためである。450 ℃を超えると、Pによる焼
きもどし脆性が発生し、プレス割れ、特に断面での割れ
を引き起こす危険性があり、しかも強度の低下を生じ
る。図6はP=0.02%の場合において、巻取温度を変え
た場合の破面割れ長さ(引張試験を実施した場合、破面
部に発生した亀裂長さ。焼きもどし脆性による。)との
相関を示したもので、前記従来公報例の場合のように、
470 ℃以上で巻き取りを行うと、焼きもどし脆性が顕著
となることが判る。
(Finishing outlet temperature and winding temperature) In the present invention, the finishing stand outlet temperature is hot-rolled at 810 to 900 ° C and wound at a winding temperature of 400 to 450 ° C. Here, the lower limit of the finishing stand outlet temperature is set to 810 ° C. because Ar is
It is necessary to secure 3 points, and if the upper limit of 900 ℃ is exceeded, scale flaws are likely to occur. That is, if the temperature is less than 810 ° C, a rolling work structure is generated, resulting in large variations in tensile properties. Further, 810 ° C is the temperature range in which rolling is most easy, which is advantageous in terms of manufacturing cost. Conversely, if the temperature exceeds 900 ° C, scale defects will occur. Furthermore, the reason why the winding temperature is 400 to 450 ° C. is that if the temperature is less than 400 ° C., the variation in strength in the width direction becomes remarkable and the temperature control becomes difficult. If it exceeds 450 ° C, tempering brittleness due to P may occur, and there is a risk of causing press cracking, especially cracking in the cross section, and further, lowering of strength occurs. FIG. 6 shows the correlation with the fracture length of cracks when the coiling temperature is changed (when the tensile test is conducted, the crack length generated at the fracture surface. Due to temper embrittlement) when P = 0.02%. In the case of the above-mentioned conventional publication example,
It can be seen that tempering embrittlement becomes noticeable when wound at 470 ° C or higher.

【0018】(2段冷却)本発明では、特に前記仕上げ
から巻取までの冷却速度を、第1冷却段階として仕上げ
から600 〜660 ℃の範囲の中間温度まで40〜60℃/秒で
冷却し、その後第2冷却段階として前記中間温度から巻
取温度までの間40℃未満〜20℃/秒で冷却する。図3
は、中間温度を変えて引張強度および孔拡げ率の変化を
調べたもので、600 〜660 ℃の中間温度を外れる場合に
は、孔拡げ特性の低下が著しくなる。さらに、この第1
冷却段階での冷却速度としては、40〜60℃/秒とされる
が、図4に示すように、40℃/秒未満では孔拡げ率の低
下が大きくなる。また、過度に冷却速度が速くなると、
フェライト・パーライト組織が不安定となり、コイル内
特性変動が大きくなる。なお、図3および図4は、鋼成
分がC:0.07%以下、Si:0.01%以下、Mn:0.70
%、P:0.035 %以上、S:0.005 %の例である。他
方、第2冷却段階での冷却速度としては、40℃/秒未満
〜20℃/秒とされるが、図8に示すように、20℃/秒未
満ではPによる焼きもどし脆性が発生し、プレス割れを
生じ、強度の低下を生じる。また、40℃/秒以上である
と、コイル内特性変動大となる。
(Two-stage cooling) In the present invention, in particular, the cooling rate from finishing to winding is as the first cooling step, cooling from finishing to an intermediate temperature in the range of 600 to 660 ° C at 40 to 60 ° C / sec. Then, as a second cooling step, cooling is performed at less than 40 ° C to 20 ° C / sec between the intermediate temperature and the coiling temperature. FIG.
Is an investigation of changes in tensile strength and hole expansion ratio by changing the intermediate temperature. When the intermediate temperature of 600 to 660 ° C. is deviated, the hole expanding property is remarkably deteriorated. Furthermore, this first
The cooling rate in the cooling stage is set to 40 to 60 ° C./second, but as shown in FIG. 4, if the temperature is less than 40 ° C./second, the hole expansion rate decreases largely. Also, if the cooling rate becomes too fast,
The ferrite / pearlite structure becomes unstable, resulting in large fluctuations in characteristics inside the coil. 3 and 4, the steel composition is C: 0.07% or less, Si: 0.01% or less, Mn: 0.70.
%, P: 0.035% or more, S: 0.005%. On the other hand, the cooling rate in the second cooling stage is set to less than 40 ° C./sec to 20 ° C./sec, but as shown in FIG. 8, tempering brittleness due to P occurs at less than 20 ° C./sec, It causes press cracking and lowers strength. Further, when the temperature is 40 ° C / sec or more, the characteristic variation in the coil becomes large.

【0019】(代表的温度制御例)本発明の温度制御も
しくは冷却パターンの一例としては、図1に示すよう
に、仕上スタンド出口温度を例えば830 〜850 ℃とした
場合、中間温度600 〜660 ℃まで第1冷却速度を≧40℃
/秒として冷却し、中間温度600 〜660 ℃の状態を経て
第2冷却速度≧28℃/秒で冷却し、巻取温度を400 〜45
0 ℃とする。
(Example of typical temperature control) As an example of the temperature control or cooling pattern of the present invention, as shown in FIG. 1, when the finishing stand outlet temperature is, for example, 830 to 850 ° C., the intermediate temperature is 600 to 660 ° C. First cooling rate up to ≧ 40 ℃
/ Second, cooling is performed at the second cooling rate ≧ 28 ° C / second after the intermediate temperature of 600 to 660 ° C, and the winding temperature is 400 to 45 ° C.
Set to 0 ° C.

【0020】(メッキ処理)かくして得られた鋼板に対
して酸洗し、溶融亜鉛メッキまたは合金化溶融亜鉛メッ
キを行う。メッキの浴温としては、460 ℃、合金化温度
としては500 〜550℃とすることができるが、この条件
については限定されない。また、得られた鋼板を直接メ
ッキ工程に搬送して溶融亜鉛メッキおよび合金化処理す
ることができる。
(Plating treatment) The steel sheet thus obtained is subjected to pickling and hot dip galvanizing or alloying hot dip galvanizing. The plating bath temperature can be 460 ° C. and the alloying temperature can be 500 to 550 ° C., but the conditions are not limited. Further, the obtained steel sheet can be directly conveyed to a plating step and subjected to hot dip galvanizing and alloying treatment.

【0021】〔実験結果〕次に本発明を実験結果に基づ
いてさらに具体的に説明する。すなわち、鋼成分、仕上
げスタンド出口温度、中間温度、巻取温度、冷却速度を
種々変更して、引張強度、孔拡げ率、溶接性、合金化
性、および表面疵状態について調べたところ、表2およ
び表3の結果を得た。なお、下表中、合金化処理性の評
価は、○:良好、△:一部未処理、×:不良とした。ま
た、溶接性能と表面疵(島状スケール)の評価は、○:
良好、△:若干発生、×:不良とした。さらに、孔拡げ
率は、図7に示すように、鋼板に直径D(12mmφ)の穴
をポンチで開け、下から円錐ポンチで押し上げ亀裂が入
ったところでその円錐ポンチを止め、そのときの直径を
D’として、孔拡げ率=(D−D’)×100 /Dで定義
し、計算して得たものである。
[Experimental Results] Next, the present invention will be described more specifically based on the experimental results. That is, when the tensile strength, the hole expansion ratio, the weldability, the alloying property, and the surface flaw state were investigated while variously changing the steel composition, the finish stand outlet temperature, the intermediate temperature, the winding temperature, and the cooling rate, Table 2 And the results of Table 3 were obtained. In the table below, the alloying processability was evaluated as ◯: good, Δ: partially untreated, and x: poor. In addition, the welding performance and surface flaw (island scale) were evaluated by ○:
Good, Δ: Slightly generated, ×: Bad. Further, as for the hole expansion rate, as shown in FIG. 7, a hole having a diameter D (12 mmφ) is punched in the steel plate, and the cone punch is pushed up from below and the cone punch is stopped when a crack is formed. D ′ is defined by the hole expansion ratio = (DD ′) × 100 / D and is obtained by calculation.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上の通り、本発明によれば、高強度お
よび優れた成形性を示し、しかも溶融亜鉛メッキ後の合
金化処理に伴う強度、孔拡げ性能等の熱劣化を防止で
き、さらにこの種の特性を安定的に得ることができるな
どの利点がある。
As described above, according to the present invention, high strength and excellent formability are exhibited, and further, thermal deterioration such as strength and hole expansion performance due to alloying treatment after hot dip galvanization can be prevented. There is an advantage that this kind of characteristic can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷却パターンを示す図である。FIG. 1 is a diagram showing a cooling pattern of the present invention.

【図2】孔拡げ率とプレス成形割れ率との相関図であ
る。
FIG. 2 is a correlation diagram between a hole expansion ratio and a press molding cracking ratio.

【図3】中間温度と抗張力および孔拡げ率との相関図で
ある。
FIG. 3 is a correlation diagram of intermediate temperature, tensile strength and hole expansion rate.

【図4】第1冷却速度と孔拡げ率との関係図である。FIG. 4 is a relationship diagram between a first cooling rate and a hole expansion rate.

【図5】鋼成分と抗張力および孔拡げ率との関係図であ
る。
FIG. 5 is a relational diagram of steel components with respect to tensile strength and hole expansion ratio.

【図6】巻取温度と破面割れ長さとの関係図である。FIG. 6 is a relationship diagram between a winding temperature and a fracture length.

【図7】本発明における孔拡げ試験方法を説明するため
の概要図である。
FIG. 7 is a schematic diagram for explaining a hole expansion test method according to the present invention.

【図8】第2冷却速度と破面割れ長さとの関係図であ
る。
FIG. 8 is a diagram showing the relationship between the second cooling rate and the length of fracture surface cracking.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/04 C22C 38/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/04 C22C 38/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.08%以下、Si:0.03%以下、M
n:0.50〜0.90%、P:0.03%以上、S:0.010 %以
下、ならびに残部鉄および不可避的不純物よりなる鋼
を、 仕上げスタンド出口温度を810 〜900 ℃で熱間圧延し、
巻取温度400 〜450 ℃で巻き取るとともに、 前記仕上げから巻取までの冷却速度を、第1冷却段階と
して仕上げから600〜660 ℃の範囲の中間温度まで40〜6
0℃/秒で冷却し、その後第2冷却段階として前記中間
温度から巻取温度までの間40℃/秒未満〜20℃/秒で冷
却し、 次いで酸洗し、溶融亜鉛メッキまたは合金化溶融亜鉛メ
ッキを行うことを特徴とする高成形性溶融亜鉛メッキ鋼
板の製造方法。
1. C: 0.08% or less, Si: 0.03% or less, M
n: 0.50 to 0.90%, P: 0.03% or more, S: 0.010% or less, and steel consisting of balance iron and inevitable impurities are hot-rolled at a finishing stand outlet temperature of 810 to 900 ° C,
At the winding temperature of 400 to 450 ° C, the cooling rate from the finishing to the winding is 40 to 6 as the first cooling step from the finishing to the intermediate temperature in the range of 600 to 660 ° C.
Cooling at 0 ° C./sec, then as a second cooling step, cooling from less than 40 ° C./sec to 20 ° C./sec between the intermediate temperature and the coiling temperature, then pickling, hot dip galvanizing or alloying melting A method for producing a hot-dip galvanized steel sheet with high formability, which comprises performing galvanization.
JP28828891A 1991-11-05 1991-11-05 Method for producing hot-dip galvanized steel sheet with high formability Expired - Fee Related JP2674388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28828891A JP2674388B2 (en) 1991-11-05 1991-11-05 Method for producing hot-dip galvanized steel sheet with high formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28828891A JP2674388B2 (en) 1991-11-05 1991-11-05 Method for producing hot-dip galvanized steel sheet with high formability

Publications (2)

Publication Number Publication Date
JPH05125449A JPH05125449A (en) 1993-05-21
JP2674388B2 true JP2674388B2 (en) 1997-11-12

Family

ID=17728222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28828891A Expired - Fee Related JP2674388B2 (en) 1991-11-05 1991-11-05 Method for producing hot-dip galvanized steel sheet with high formability

Country Status (1)

Country Link
JP (1) JP2674388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802079A (en) * 2021-08-18 2021-12-17 马钢(合肥)板材有限责任公司 Method for producing aluminum-plated silicon steel strip with high surface quality

Also Published As

Publication number Publication date
JPH05125449A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
KR100415718B1 (en) High strength steel sheet and method for manufacturing the same
KR100382414B1 (en) High strength cold rolled steel plate and method for producing the same
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH0394018A (en) Production of high tensile hot dip galvanized steel sheet excellent in bendability
JP2674388B2 (en) Method for producing hot-dip galvanized steel sheet with high formability
CN114207172A (en) High-strength steel sheet, high-strength member, and method for producing same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPH05171293A (en) Production of cold rolled steel sheet having high strength and excellent in deep drawability
JPH0559970B2 (en)
JPH11193419A (en) Production of galvannealed high strength cold rolled steel sheet excellent in formability
JP4513434B2 (en) High-strength cold-rolled steel sheet with excellent material uniformity in the coil and manufacturing method thereof
JP2002080935A (en) High strength thin steel sheet having excellent workability and its production method
JPS5819465A (en) Manufacture of galvanized steel plate with superior press formability
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method
JP2002003997A (en) Hot rolled steel plate excellent in strain aging hardening characteristic, and its manufacturing method
JP3061218B2 (en) Manufacturing method of high tension hot rolled steel sheet
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP3096076B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing with excellent local deformability
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
KR20040037520A (en) A manufacturing method of high strength galvannealed steel sheets having excellent formability and coating adhesion
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor
JP5392223B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2001316763A (en) Hot rolled steel sheet excellent in surface property and its producing method
JPH0525949B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080718

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090718

LAPS Cancellation because of no payment of annual fees