JPH09162235A - Method for packaging ic chip and member for connecting ic chip - Google Patents

Method for packaging ic chip and member for connecting ic chip

Info

Publication number
JPH09162235A
JPH09162235A JP31620995A JP31620995A JPH09162235A JP H09162235 A JPH09162235 A JP H09162235A JP 31620995 A JP31620995 A JP 31620995A JP 31620995 A JP31620995 A JP 31620995A JP H09162235 A JPH09162235 A JP H09162235A
Authority
JP
Japan
Prior art keywords
chip
connection
curing
adhesive
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31620995A
Other languages
Japanese (ja)
Inventor
Itsuo Watanabe
伊津夫 渡辺
Kenzo Takemura
賢三 竹村
Naoyuki Shiozawa
直行 塩沢
Osamu Watanabe
治 渡辺
Kazuyoshi Kojima
和良 小島
Tomohisa Ota
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31620995A priority Critical patent/JPH09162235A/en
Publication of JPH09162235A publication Critical patent/JPH09162235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To facilitate the inspection/replacement of IC chip while intending the effective recycling of the liquid crystal panel. SOLUTION: Within this packaging method comprising conductive particles and thermomelting adhesive, after the connection by heating pressurizing steps, an IC chip is tack set connected to a substrate using a connecting member having the conductivity in the pressurizing direction and after inspection step the IC chip is regularly connected to the substrate at the setting temperature of said thermomelting adhesive. At this time, the IC chip is tack set connected in the set reaction rate not exceeding 20% and at the temperature in the melt viscosity not exceeding 5000 poise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はICチップの実装方
法及びその方法に使用する接続部材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IC chip mounting method and a connecting member used in the method.

【0002】[0002]

【従来の技術】導電粒子と熱溶融性接着剤からなる接続
部材、すなわち異方導電接着剤を用いたICチップの実
装技術は、例えば液晶パネルの実装分野において小型
化,コスト低減化が図れる実装方式(COG方式)とし
て注目されている。
2. Description of the Related Art The mounting technology of a connecting member composed of conductive particles and a heat-melting adhesive, that is, an IC chip using an anisotropic conductive adhesive, can be reduced in size and cost in a mounting field of a liquid crystal panel, for example. It is receiving attention as a method (COG method).

【0003】このCOGプロセスでは高価な液晶パネル
を再利用し、チップのみ交換できるリペア性が重要であ
るが、異方導電接着剤は、一般に熱硬化性樹脂を主成分
としているため、本接続後のリペアは原理的に極めて困
難であるという問題点があった。
In this COG process, it is important to repair the expensive liquid crystal panel and replace only the chip. However, since the anisotropic conductive adhesive generally contains a thermosetting resin as a main component, after the main connection is made. However, there was a problem that the repair was extremely difficult in principle.

【0004】このため、特開平4−62946号公報で
は、接続用樹脂を半硬化の仮接続状態(電気的導通状態
にある)でICチップを検査し、チップの動作状態を確
認後、前記樹脂の硬化温度で本接続状態にして実装する
ので、もし、チップが正常に作動しない場合は、仮硬化
接続の状態で取り外して交換できるという実装方法を提
案している。
Therefore, in Japanese Patent Laid-Open No. 4-62946, an IC chip is inspected in a semi-hardened temporary connection state (in an electrically conductive state) with a connection resin, and after confirming the operation state of the chip, the resin is Since it is mounted in the main connection state at the curing temperature of 1, the mounting method is proposed in which if the chip does not operate normally, it can be removed and replaced in the temporary curing connection state.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、接続用樹脂を構成している樹脂の特性について
詳細な開示がないため、仮硬化接続状態でチップを検査
する場合、本接続の硬化反応に悪影響を与えないよう、
前記接続用樹脂を低温,短時間で仮硬化すると電気的導
通状態がとれにくくなり、チップの検査ができないとい
う不具合があった。
However, in this method, since there is no detailed disclosure of the characteristics of the resin constituting the connecting resin, when the chip is inspected in the temporarily cured connection state, the curing reaction of the main connection is performed. Not to adversely affect
If the connection resin is temporarily cured at a low temperature for a short time, it becomes difficult to establish an electrical conduction state, and there is a problem that the chip cannot be inspected.

【0006】一方、電気的導通状態をとりやすくしよう
と高温で仮硬化するとチップの剥離が困難になり、本接
続時に悪影響を及ぼすという問題点があった。
[0006] On the other hand, there is a problem that if the chips are temporarily cured at a high temperature in order to easily establish an electrical conduction state, it becomes difficult to peel off the chips, which adversely affects the main connection.

【0007】本発明は、このような事情に鑑みてなされ
たもので、仮硬化接続時のチップ検査を容易に行うこと
ができ、かつ、チップ不良時のチップ交換をやりやすく
したICチップの実装方法及びその方法に使用する接続
部材を提供することを目的としている。
The present invention has been made in view of the above circumstances, and mounting of an IC chip which facilitates chip inspection at the time of temporary curing connection and facilitates chip replacement at the time of chip failure. It is an object to provide a method and a connecting member used in the method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、導電粒子と熱溶融性接着剤からなり、加
熱,加圧による接続後、加圧方向に導電性を有する接続
部材を用いて、ICチップを基板に仮硬化接続によって
ICチップを検査した後で前記ICチップを前記接続部
材の硬化温度で基板に本接続するICチップの実装方法
において、前記熱溶融性接着剤が少なくともフェノキシ
樹脂,エポキシ樹脂および潜在性硬化剤を含有し、該熱
溶融性接着剤の硬化反応率が20%以下でかつ溶融粘度
が5000ポイズ以下の温度で仮硬化接続することを特
徴とする。
In order to achieve the above object, the present invention provides a connecting member which is composed of conductive particles and a thermofusible adhesive and has conductivity in the pressing direction after connection by heating and pressing. In the mounting method of an IC chip, the IC chip is inspected by a temporary curing connection to the substrate and then the IC chip is permanently connected to the substrate at a curing temperature of the connecting member. It is characterized by containing a phenoxy resin, an epoxy resin and a latent curing agent, and performing temporary curing connection at a temperature at which the curing reaction rate of the hot-melt adhesive is 20% or less and the melt viscosity is 5000 poise or less.

【0009】本発明において導電粒子は例えばAu,A
g,Cu,はんだ等の金属粒子、あるいは、ポリスチレ
ン等の高分子の球状の核材の表面にNi,Cu,Au,
はんだ等の導電層を設けたものがより好ましい。
In the present invention, the conductive particles are, for example, Au, A
g, Cu, solder, or other metal particles, or polystyrene, or other polymeric spherical core material with Ni, Cu, Au,
It is more preferable to provide a conductive layer such as solder.

【0010】さらに導電性の粒子の表面にSn,Au,
はんだ等の表面層を形成することもできる。粒径は基板
の電極の最小の間隔よりも小さいことが必要で、電極の
高さがばらつきがある場合、高さばらつきよりも大きい
ことが好ましく、また微少電極上に導電性の粒子を分散
させ電極にめり込ませるには小さいほうが好ましく、1
μm〜10μmが好ましい。
Further, Sn, Au,
It is also possible to form a surface layer of solder or the like. The particle size must be smaller than the minimum distance between the electrodes on the substrate, and if there are variations in the height of the electrodes, it is preferably larger than the variations in height. Smaller size is preferable to fit in the electrode. 1
μm to 10 μm is preferable.

【0011】また、接着剤に分散される導電粒子量は、
0.1〜30体積%であり、好ましくは0.2〜15体
積%である。
The amount of conductive particles dispersed in the adhesive is
It is 0.1 to 30% by volume, preferably 0.2 to 15% by volume.

【0012】本発明において用いられるエポキシ樹脂に
は、高分子量のエポキシ,固形エポキシ,液状エポキシ
やアクリルゴム,ウレタン,ポリエステル,ナイロン等
で変成したエポキシを主成分とし、硬化剤,硬化促進
剤,カップリング剤,充填剤などを添加してなるものが
一般的に用いられる。本発明のフェノキシ樹脂には、ビ
スフェノールA型,F型,AD型のものが用いられ、エ
ポキシ樹脂と構造が類似しているため、エポキシ樹脂と
の相溶性,接着性に優れるなどの特徴を有する。更に、
これらフェノキシ樹脂は、その高い凝集力によって仮硬
化接続後2から3日経過後においても接続部で充分な圧
接力を保持しているため、安定な電気的導通状態が得ら
れる特徴を有する。
The epoxy resin used in the present invention is mainly composed of high molecular weight epoxy, solid epoxy, liquid epoxy, epoxy modified with acrylic rubber, urethane, polyester, nylon and the like, a curing agent, a curing accelerator, a cup. A material obtained by adding a ring agent, a filler, etc. is generally used. As the phenoxy resin of the present invention, bisphenol A-type, F-type, and AD-type resins are used. Since the phenoxy resin has a structure similar to that of the epoxy resin, it has characteristics such as excellent compatibility and adhesiveness with the epoxy resin. . Furthermore,
Due to their high cohesive force, these phenoxy resins retain a sufficient pressure contact force at the connecting portion even after a lapse of 2 to 3 days after the temporary curing connection, and thus have a characteristic that a stable electrical conduction state can be obtained.

【0013】また、潜在性硬化剤には、イミダゾール
系,ヒドラジド系,三フッ化ホウ素−アミン錯体,スル
ホニウム塩,アミンイミド,ポリアミンの塩,ジシアン
ジアミド等、およびこれらの変成物があり、これら単独
又は2種以上の混合体として使用できる。これらは、ア
ニオンまたはカチオン重合型等のいわゆる触媒型硬化剤
であり、速硬化性を得やすい。また、硬化剤としては、
その他にポリアミン類,ポリメルカプタン,ポリフェノ
ール,酸無水物等の重付加型の適用や前記触媒型硬化剤
との併用も可能である。
The latent curing agents include imidazole type, hydrazide type, boron trifluoride-amine complex, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and modified compounds thereof, which may be used alone or in admixture. It can be used as a mixture of two or more species. These are so-called catalyst type curing agents such as anionic or cationic polymerization type, and are easy to obtain fast curing property. Also, as a curing agent,
In addition, polyamines, polymercaptans, polyphenols, acid anhydrides, and other polyaddition types can be applied and the catalyst type curing agents can be used in combination.

【0014】本発明の接続部材は、これら少なくともエ
ポキシ樹脂,フェノキシ樹脂,潜在性硬化剤からなる接
着組成物と導電粒子を有機溶剤に溶解あるいは分散によ
り液状化して、剥離性基材上に塗布し、硬化剤の活性温
度以下で溶剤を除去することによりフィルム状として作
製される。この時用いる溶剤は、芳香族炭化水素系と含
酸素系の混合溶剤が材料の溶解性を向上させるため好ま
しい。
In the connection member of the present invention, the adhesive composition comprising at least an epoxy resin, a phenoxy resin and a latent curing agent and conductive particles are liquefied by dissolving or dispersing in an organic solvent and applied on a peelable substrate. It is produced as a film by removing the solvent below the activation temperature of the curing agent. As the solvent used at this time, a mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type is preferable because the solubility of the material is improved.

【0015】また、接続するチップの電極ピッチが小さ
い場合は、導電粒子を含むフィルムと含まないフィルム
を積層した接続部材を用い、基板側に導電粒子を含むフ
ィルム側を配置するとチップ側からの加圧,加熱による
接続中、導電粒子を効率良く電極上に補捉できるため、
電極間の導電粒子数が減少し、結果として微少接続ピッ
チにおいてもショートがない接続を行なうことができる
ため有利である。導電粒子を含むフィルムと含まないフ
ィルムを積層する方法としては、それぞれのフィルムを
作製した後、ラミネートしたり、どちらかのフィルムを
作製した後、順次接着組成物を塗工する方法がある。接
続部材の硬化反応率はDSC測定で測定される。
When the electrode pitch of the chips to be connected is small, a connecting member formed by laminating a film containing conductive particles and a film not containing conductive particles is used, and if the film side containing conductive particles is arranged on the substrate side, it is added from the chip side. Since the conductive particles can be efficiently captured on the electrode during connection by pressure and heating,
This is advantageous because the number of conductive particles between the electrodes is reduced, and as a result, a connection without a short circuit can be performed even at a minute connection pitch. As a method for laminating a film containing conductive particles and a film not containing conductive particles, there is a method in which each film is prepared and then laminated, or one of the films is prepared, and then the adhesive composition is sequentially applied. The curing reaction rate of the connection member is measured by DSC measurement.

【0016】すなわち、前記熱溶融性接着剤をアルミフ
ォイルに包み、密封し、所定温度に設定したオイルバス
に所定時間浸漬処理した後、この接着剤の発熱量をDS
Cを用いて測定し、(1)式に従って硬化反応率を算出
した。 硬化反応率=[(Q0 −QT )/Q0 ]×100(%)………(1) ここで、Q0 は未処理の発熱量(J/g)、QT は処理
後の発熱量(J/g)を表わす。
That is, the heat-melting adhesive is wrapped in aluminum foil, sealed, and immersed in an oil bath set to a predetermined temperature for a predetermined time.
It was measured using C, and the curing reaction rate was calculated according to the equation (1). Curing reaction rate = [(Q 0 −Q T ) / Q 0 ] × 100 (%) (1) where Q 0 is the untreated heat value (J / g) and Q T is the value after treatment. Indicates the amount of heat generation (J / g).

【0017】硬化反応率が20%以下でかつ、溶融粘度
が5000ポイズ以下の温度で仮硬化接続することがで
きる。なお、溶融粘度は、回転式粘度計を使用して測定
できるが、熱溶融性接着剤の成分に熱硬化性樹脂が配合
されている場合は、硬化剤を除去したモデル配合での測
定値が用いられる。もし、硬化反応率が20%を越える
と硬化反応が進みすぎ、チップが不良の場合は、チップ
が剥離できないといった問題を生じる。また、溶融粘度
が5000ポイズを越える場合は、仮硬化接続時に接着
剤が接続電極間から排除されず導電粒子と接続電極との
電気的接続(一般に、20Ω以下の接続抵抗)がとれ
ず、チップ検査ができないという問題が生じる。
Temporary curing connection can be performed at a temperature where the curing reaction rate is 20% or less and the melt viscosity is 5000 poise or less. The melt viscosity can be measured using a rotary viscometer, but when a thermosetting resin is blended in the components of the hot-melt adhesive, the measured value in the model formulation without the curing agent is Used. If the curing reaction rate exceeds 20%, the curing reaction proceeds too much, and if the chip is defective, the chip cannot be peeled off. When the melt viscosity exceeds 5000 poise, the adhesive is not removed from between the connection electrodes during the temporary curing connection, and the electrical connection between the conductive particles and the connection electrodes (generally, the connection resistance of 20Ω or less) cannot be obtained, and The problem arises that inspection is not possible.

【0018】本発明によれば、導電粒子と少なくともフ
ェノキシ樹脂,エポキシ樹脂,潜在性硬化剤を含有した
接続部材を用い、接続部材の硬化反応率が20%以下で
かつ溶融粘度が5000ポイズ以下の温度で仮硬化接続
するため、仮硬化接続時のチップ検査を容易に行なうこ
とができ、チップ不良時のチップ交換ができるため、高
価な液晶パネルを再利用できることから、液晶表示パネ
ルの製造コストを大幅に削減できる。
According to the present invention, a connecting member containing conductive particles and at least a phenoxy resin, an epoxy resin, and a latent curing agent is used, and the curing reaction rate of the connecting member is 20% or less and the melt viscosity is 5000 poise or less. Since the temporary curing connection is performed at a temperature, the chip inspection at the time of the temporary curing connection can be easily performed, and the chip can be replaced when the chip is defective, so that an expensive liquid crystal panel can be reused, which reduces the manufacturing cost of the liquid crystal display panel. It can be greatly reduced.

【0019】[0019]

【発明の実施の形態】以下、本発明に係るICチップの
実装方法及び接続部材の実施形態について、具体的に
《実施例1》〜《実施例4》並びに《比較例1》〜《比
較例3》を基に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an IC chip mounting method and a connecting member according to the present invention will be specifically described below with reference to << Example 1 >> to << Example 4 >> and << Comparative Example 1 >> to << Comparative Example. 3 >>.

【0020】《実施例1》フェノキシ樹脂(高分子量エ
ポキシ)35部、マイクロカプセル型潜在性硬化剤を含
有する液状エポキシ(エポキシ当量185)65部を酢
酸エチルに溶解し、30%溶液を得た。この溶液にポリ
スチレン系核体(直径:5μm)の表面にAu層を形成
した導電粒子を5vol%分散した。この分散液をセパ
レータ(シリコーン処理したポリエチレンテレフタレー
トフィルム、厚み40μm)にロールコータで塗布し、
100℃、10分乾燥し厚み25μmの接続部材1を作
製した。この接着剤のDSCで測定した硬化反応率は、
120℃、2秒間の加熱で4%、接着剤から硬化剤を除
去したモデル配合の120℃の溶融粘度は300ポイズ
であった。
Example 1 35 parts of a phenoxy resin (high molecular weight epoxy) and 65 parts of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent were dissolved in ethyl acetate to obtain a 30% solution. . In this solution, 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed. This dispersion is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater,
It was dried at 100 ° C. for 10 minutes to prepare a connection member 1 having a thickness of 25 μm. The curing reaction rate of this adhesive measured by DSC is
The melt viscosity at 120 ° C. of the model formulation obtained by removing the curing agent from the adhesive was 4% by heating at 120 ° C. for 2 seconds, and was 300 poise.

【0021】次に作製した接続部材1を用いて金バンプ
(面積:70μm×70μm、高さ:15μm)付チッ
プ(2mm×10mm)とITO電極付ガラス基板の仮
硬化接続を以下に示すように行った。この異方導電フィ
ルム(3mm幅)をITO電極付ガラス基板に80℃、
10kgf/cm2 で貼り付けた後、セパレータを剥離
し、チップのバンプとITO電極の位置あわせを行っ
た。ついで、120℃、30g/バンプの圧力でチップ
上方から加熱,加圧を2秒間行い、仮硬化接続を行っ
た。仮硬化接続後の接続抵抗は、1バンプあたり1.3
Ωであり、チップの検査が行えるのに十分な導通を有し
ていた。また、不良チップは、容易に取り外しができ
た。表1にこの接続部材1の仮硬化接続温度(接続時
間:2S)での特性を示す。この表1から接続部材の硬
化反応率が20%以下で、かつ溶融粘度が5000ポイ
ズ以下の条件で仮硬化接続することにより、チップの検
査及び交換が行える仮硬化接続特性に優れていることが
わかる。
Next, using the connection member 1 thus produced, a chip (2 mm × 10 mm) with a gold bump (area: 70 μm × 70 μm, height: 15 μm) and a glass substrate with an ITO electrode are preliminarily cured as shown below. went. This anisotropic conductive film (3 mm width) is applied to a glass substrate with an ITO electrode at 80 ° C,
After sticking at 10 kgf / cm 2 , the separator was peeled off, and the bump of the chip and the ITO electrode were aligned. Next, heating and pressurization were performed from above the chip for 2 seconds at 120 ° C. and a pressure of 30 g / bump, and temporary curing connection was performed. The connection resistance after temporary curing connection is 1.3 per bump.
It was Ω, and had sufficient conduction to allow the inspection of the chip. The defective chip could be easily removed. Table 1 shows the characteristics of the connection member 1 at the temporary curing connection temperature (connection time: 2S). From Table 1, it can be seen that the provisional curing connection property that enables the inspection and replacement of the chip is excellent by performing the provisional curing connection under the condition that the curing reaction rate of the connecting member is 20% or less and the melt viscosity is 5000 poise or less. Recognize.

【0022】[0022]

【表1】 [Table 1]

【0023】仮硬化接続によるチップ検査後、170
℃、50g/バンプ、20秒の条件でチップ上方から加
熱,加圧を行い、本接続を行った。本接続後の接続抵抗
は、1バンプあたり最高で0.6Ω、平均で0.2Ω、
絶縁抵抗は108 以上であり、これらの値は85℃/8
5%RH1000時間処理後においてもほとんど変化が
なく、良好な接続信頼性を示した。
After chip inspection by temporary curing connection, 170
The main connection was performed by heating and pressurizing from above the chip under the conditions of ° C, 50 g / bump, and 20 seconds. The connection resistance after this connection is 0.6Ω per bump, 0.2Ω on average,
Insulation resistance is more than 10 8 and these values are 85 ℃ / 8
There was almost no change even after 1000% RH treatment for 5 hours, showing good connection reliability.

【0024】《実施例2》フェノキシ樹脂(高分子量エ
ポキシ)45部、マイクロカプセル型潜在性硬化剤を含
有する液状エポキシ(エポキシ当量185)55部を酢
酸エチルに溶解し、30%溶液を得た。この溶液にポリ
スチレン系核体(直径:5μm)の表面にAu層を形成
した導電粒子を5vol%分散した。この分散液をセパ
レータ(シリコーン処理したポリエチレンテレフタレー
トフィルム、厚み40μm)にロールコータで塗布し、
100℃、10分乾燥し厚み25μmの接続部材2を作
製した。この接着剤のDSCで測定した硬化反応率は、
120℃、2秒間の加熱で4%、接着剤から硬化剤を除
去したモデル配合の120℃の溶融粘度は1000ポイ
ズであった。
Example 2 45 parts of a phenoxy resin (high molecular weight epoxy) and 55 parts of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent were dissolved in ethyl acetate to obtain a 30% solution. . In this solution, 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed. This dispersion is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater,
It was dried at 100 ° C. for 10 minutes to prepare a connection member 2 having a thickness of 25 μm. The curing reaction rate of this adhesive measured by DSC is
The melt viscosity at 120 ° C. of the model formulation obtained by removing the curing agent from the adhesive was 4% by heating at 120 ° C. for 2 seconds, and was 1000 poise.

【0025】次に作製した接続部材2を用いて金バンプ
(面積:70μm×70μm、高さ:15μm)付チッ
プ(2mm×10mm)とITO電極付ガラス基板の仮
硬化接続を以下に示すように行った。この異方導電フィ
ルム(3mm幅)をITO電極付ガラス基板に80℃、
10kgf/cm2 で貼り付けた後、セパレータを剥離
し、チップのバンプとITOの電極の位置あわせを行っ
た。ついで、120℃、30g/バンプの圧力でチップ
上方から加熱,加圧を2秒間行い、仮硬化接続を行っ
た。仮硬化接続後の接続抵抗は、1バンプあたり3Ωで
あり、チップの検査が行えるのに十分な導通を有してい
た。また、不良チップは、容易に取り外しができた。表
2にこの接続部材2の仮硬化接続温度(接続時間:2
S)での特性を示す。この表2から接続部材の硬化反応
率が20%以下で、かつ溶融粘度が5000ポイズ以下
の条件で仮硬化接続することにより、チップの検査及び
交換が行える仮硬化接続特性に優れていることがわか
る。
Next, using the connection member 2 produced as described above, the temporary curing connection of the chip (2 mm × 10 mm) with the gold bump (area: 70 μm × 70 μm, height: 15 μm) and the glass substrate with the ITO electrode is performed as shown below. went. This anisotropic conductive film (3 mm width) is applied to a glass substrate with an ITO electrode at 80 ° C,
After sticking at 10 kgf / cm 2 , the separator was peeled off, and the bump of the chip and the electrode of ITO were aligned. Next, heating and pressurization were performed from above the chip for 2 seconds at 120 ° C. and a pressure of 30 g / bump, and temporary curing connection was performed. The connection resistance after the temporary curing connection was 3Ω per bump, and the connection resistance was sufficient to inspect the chip. The defective chip could be easily removed. Table 2 shows the temporary curing connection temperature of this connection member 2 (connection time: 2
The characteristics in S) are shown. From Table 2, it can be seen that the provisional curing connection property that enables the inspection and replacement of the chip is excellent by performing the provisional curing connection under the condition that the curing reaction rate of the connecting member is 20% or less and the melt viscosity is 5000 poise or less. Recognize.

【0026】[0026]

【表2】 [Table 2]

【0027】仮硬化接続によるチップ検査後、170
℃、50g/バンプ、20秒の条件でチップ上方から加
熱,加圧を行い、本接続を行った。本接続後の接続抵抗
は、1バンプあたり最高で0.9Ω、平均で0.4Ω、
絶縁抵抗は108 Ω以上であり、これらの値は85℃/
85%RH1000時間処理後においてもほとんど変化
がなく、良好な接続信頼性を示した。
After chip inspection by temporary curing connection, 170
The main connection was performed by heating and pressurizing from above the chip under the conditions of ° C, 50 g / bump, and 20 seconds. The maximum connection resistance after this connection is 0.9Ω per bump, 0.4Ω on average,
Insulation resistance is 10 8 Ω or more, these values are 85 ℃ /
Even after the treatment of 85% RH for 1000 hours, there was almost no change and good connection reliability was shown.

【0028】《実施例3》フェノキシ樹脂(高分子量エ
ポキシ)60部、マイクロカプセル型潜在性硬化剤を含
有する液状エポキシ(エポキシ当量185)40部を酢
酸エチルに溶解し、30%溶液を得た。この溶液にポリ
スチレン系核体(直径:5μm)の表面にAu層を形成
した導電粒子を5vol%分散した。この分散液をセパ
レータ(シリコーン処理したポリエチレンテレフタレー
トフィルム、厚み40μm)にロールコータで塗布し、
100℃、10分乾燥し厚み25μmの接続部材3を作
製した。この接着剤のDSCで測定した硬化反応率は、
145℃、2秒間の加熱で14%、接着剤から硬化剤を
除去したモデル配合の145℃の溶融粘度は3000ポ
イズであった。
Example 3 60 parts of a phenoxy resin (high molecular weight epoxy) and 40 parts of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent were dissolved in ethyl acetate to obtain a 30% solution. . In this solution, 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed. This dispersion is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater,
The connection member 3 having a thickness of 25 μm was manufactured by drying at 100 ° C. for 10 minutes. The curing reaction rate of this adhesive measured by DSC is
The melt viscosity at 145 ° C. of the model formulation in which the curing agent was removed from the adhesive was 4,000 ° C. and 14% by heating for 2 seconds at 145 ° C.

【0029】次に作製した接続部材3を用いて金バンプ
(面積:70μm×70μm、高さ:15μm)付チッ
プ(2mm×10mm)とITO電極付ガラス基板の仮
硬化接続を以下に示すように行った。この異方導電フィ
ルム(3mm幅)をITO電極付ガラス基板に80℃、
10kgf/cm2 で貼り付けた後、セパレータを剥離
し、チップのバンプとITOの電極の位置あわせを行っ
た。ついで、145℃、30g/バンプの圧力でチップ
上方から加熱,加圧を2秒間行い、仮硬化接続を行っ
た。仮硬化接続後の接続抵抗は、1バンプあたり3Ωで
あり、チップの検査が行えるのに十分な導通を有してい
た。また、不良チップは、容易に取り外しができた。表
3にこの接続部材3の仮硬化接続温度(接続時間:2
S)での特性を示す。この表3から接続部材の硬化反応
率が20%以下で、かつ溶融粘度が5000ポイズ以下
の条件で仮硬化接続することにより、チップの検査及び
交換が行える仮硬化接続特性に優れていることがわか
る。
Next, using the connection member 3 thus prepared, a temporary curing connection of a chip (2 mm × 10 mm) with a gold bump (area: 70 μm × 70 μm, height: 15 μm) and a glass substrate with an ITO electrode is performed as shown below. went. This anisotropic conductive film (3 mm width) is applied to a glass substrate with an ITO electrode at 80 ° C,
After sticking at 10 kgf / cm 2 , the separator was peeled off, and the bump of the chip and the electrode of ITO were aligned. Then, heating and pressurization were performed from above the chip for 2 seconds at 145 ° C. and a pressure of 30 g / bump for temporary curing connection. The connection resistance after the temporary curing connection was 3Ω per bump, and the connection resistance was sufficient to inspect the chip. The defective chip could be easily removed. Table 3 shows the temporary curing connection temperature of this connection member 3 (connection time: 2
The characteristics in S) are shown. It can be seen from Table 3 that the provisional curing connection characteristic that enables the inspection and replacement of the chip is excellent by performing the provisional curing connection under the condition that the curing reaction rate of the connecting member is 20% or less and the melt viscosity is 5000 poise or less. Recognize.

【0030】[0030]

【表3】 [Table 3]

【0031】仮硬化接続によるチップ検査後、170
℃、50g/バンプ、20秒の条件でチップ上方から加
熱,加圧を行い、本接続を行った。本接続後の接続抵抗
は、1バンプあたり最高で1.2Ω、平均で0.6Ω、
絶縁抵抗は108 Ω以上であり、これらの値は85℃/
85%RH1000時間処理後においてもほとんど変化
がなく、良好な接続信頼性を示した。
After the chip inspection by the temporary curing connection, 170
The main connection was performed by heating and pressurizing from above the chip under the conditions of ° C, 50 g / bump, and 20 seconds. The connection resistance after this connection is 1.2Ω per bump, 0.6Ω on average,
Insulation resistance is 10 8 Ω or more, these values are 85 ℃ /
Even after the treatment of 85% RH for 1000 hours, there was almost no change and good connection reliability was shown.

【0032】《実施例4》フェノキシ樹脂(高分子量エ
ポキシ)60部、マイクロカプセル型潜在性硬化剤を含
有する液状エポキシ(エポキシ当量185)40部を酢
酸エチルに溶解し、30%溶液を得た。この分散液をセ
パレータ(シリコーン処理したポリエチレンテレフタレ
ートフィルム、厚み40μm)にロールコータで塗布
し、100℃、10分乾燥し厚み15μmのフィルム1
を作製した。ついで、フェノキシ樹脂35部、マイクロ
カプセル型潜在性硬化剤を含有する液状エポキシ(エポ
キシ当量185)65部を酢酸エチルに溶解し、30%
溶液を得た。この溶液にポリスチレン系核体(直径:5
μm)の表面にAu層を形成した導電粒子を5vol%
分散した。この分散液をセパレータ(シリコーン処理し
たポリエチレンテレフタレートフィルム、厚み40μ
m)にロールコータで塗布し、100℃10分乾燥し厚
み10μmのフィルム2を作製した。作製したフィルム
1及び2をラミネートして接続部材4を作製した。この
接続部材4のDSCで測定した硬化反応率は、145
℃、2秒間の加熱で13%、接続部材4から硬化剤を除
去したモデル配合の145℃の溶融粘度は2800ポイ
ズであった。
Example 4 60 parts of a phenoxy resin (high molecular weight epoxy) and 40 parts of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent were dissolved in ethyl acetate to obtain a 30% solution. . This dispersion was applied to a separator (polyethylene terephthalate film treated with silicone, thickness 40 μm) with a roll coater, dried at 100 ° C. for 10 minutes, and film 1 having a thickness of 15 μm was applied.
Was prepared. Then, 35 parts of a phenoxy resin and 65 parts of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent are dissolved in ethyl acetate to give 30%.
A solution was obtained. Polystyrene-based nuclide (diameter: 5
5% by volume of conductive particles having an Au layer formed on the surface of
Dispersed. This dispersion is used as a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm
m) was coated with a roll coater and dried at 100 ° C. for 10 minutes to prepare a film 2 having a thickness of 10 μm. The produced films 1 and 2 were laminated to produce a connecting member 4. The curing reaction rate of this connecting member 4 measured by DSC is 145.
The melt viscosity at 145 ° C. of the model formulation obtained by removing the curing agent from the connecting member 4 was 2800 poise at 13 ° C. by heating at 2 ° C. for 2 seconds.

【0033】次に作製した接続部材4を用いて金バンプ
(面積:70μm×70μm、高さ:15μm)付チッ
プ(2mm×10mm)とITO電極付ガラス基板の仮
硬化接続を以下に示すように行った。この異方導電フィ
ルム(3mm幅)をITO電極付ガラス基板に80℃、
10kgf/cm2 で貼り付けた後、セパレータを剥離
し、チップのバンプとITOの電極の位置あわせを行っ
た。ついで、145℃、30g/バンプの圧力でチップ
上方から加熱,加圧を2秒間行い、仮硬化接続を行っ
た。仮硬化接続後の接続抵抗は、1バンプあたり2.1
Ωであり、4日経過後でもチップの検査が行えるのに十
分な導通を有していた。また、不良チップは、容易に取
り外しができた。
Next, using the connection member 4 thus produced, a temporary curing connection of a chip (2 mm × 10 mm) with a gold bump (area: 70 μm × 70 μm, height: 15 μm) and a glass substrate with an ITO electrode is performed as shown below. went. This anisotropic conductive film (3 mm width) is applied to a glass substrate with an ITO electrode at 80 ° C,
After sticking at 10 kgf / cm 2 , the separator was peeled off, and the bump of the chip and the electrode of ITO were aligned. Then, heating and pressurization were performed from above the chip for 2 seconds at 145 ° C. and a pressure of 30 g / bump for temporary curing connection. The connection resistance after temporary curing connection is 2.1 per bump.
Ω, and there was sufficient conduction so that the chip could be inspected even after 4 days. The defective chip could be easily removed.

【0034】仮硬化接続によるチップ検査後、170
℃、50g/バンプ、20秒の条件でチップ上方から加
熱,加圧を行い、本接続を行った。本接続後の接続抵抗
は、1バンプあたり最高で1.2Ω、平均で0.6Ω、
絶縁抵抗は108 Ω以上であり、これらの値は85℃/
85%RH1000時間処理後においてもほとんど変化
がなく、良好な接続信頼性を示した。
After chip inspection by temporary curing connection, 170
The main connection was performed by heating and pressurizing from above the chip under the conditions of ° C, 50 g / bump, and 20 seconds. The connection resistance after this connection is 1.2Ω per bump, 0.6Ω on average,
Insulation resistance is 10 8 Ω or more, these values are 85 ℃ /
Even after the treatment of 85% RH for 1000 hours, there was almost no change and good connection reliability was shown.

【0035】《比較例1》実施例3と同様な方法で厚み
25μmの接続部材3を作製した。この接着剤のDSC
で測定した硬化反応率は、120℃、2秒間の加熱で4
%、接着剤から硬化剤を除去したモデル配合の120℃
の溶融粘度は9000ポイズであった。
Comparative Example 1 A connecting member 3 having a thickness of 25 μm was produced in the same manner as in Example 3. DSC of this adhesive
The curing reaction rate measured by 4 is 4 by heating at 120 ° C for 2 seconds.
%, 120 ° C of model formulation with the curing agent removed from the adhesive
Had a melt viscosity of 9000 poise.

【0036】次に作製した接続部材3を実施例1,2と
同様に120℃、30g/バンプの圧力でチップ上方か
ら加熱,加圧を2秒間行い、仮硬化接続を行った。仮硬
化接続後の接続抵抗は、導通不良のため、チップの検査
が行えなかった。
Then, the connection member 3 produced was heated and pressed from above the chip for 2 seconds at 120 ° C. and a pressure of 30 g / bump in the same manner as in Examples 1 and 2 to perform temporary curing connection. The connection resistance after the temporary curing connection could not be inspected for the chip due to poor conduction.

【0037】《比較例2》実施例3と同様な方法で厚み
25μmの接続部材3を作製した。この接着剤DSCで
測定した硬化反応率は、160℃、2秒間の加熱で34
%、接着剤から硬化剤を除去したモデル配合の160℃
の溶融粘度は1000ポイズであった。
Comparative Example 2 A connecting member 3 having a thickness of 25 μm was produced in the same manner as in Example 3. The curing reaction rate measured by this adhesive DSC was 34 ° C when heated at 160 ° C for 2 seconds.
%, 160 ° C of model formulation with curing agent removed from adhesive
Had a melt viscosity of 1000 poise.

【0038】次に作製した接続部材3を160℃、30
g/バンプの圧力でチップ上方から加熱,加圧を2秒間
行い、仮硬化接続を行った。仮硬化接続後の接続抵抗
は、1バンプあたり2.7Ωであり、チップの検査が行
えるのに十分な導通を有していた。しかし、不良チップ
の除去は困難であり、チップの交換が行えなかった。
Next, the connecting member 3 produced was heated at 160 ° C. for 30 minutes.
Heating and pressurization were performed for 2 seconds from above the chip with a pressure of g / bump to perform temporary curing connection. The connection resistance after the temporary curing connection was 2.7Ω per bump, and the connection had sufficient conduction for chip inspection. However, it is difficult to remove the defective chip and the chip cannot be replaced.

【0039】《比較例3》実施例1でフェノキシ樹脂を
配合する代わりにビスフェノールA型の液状エポキシ樹
脂を配合する以外は、実施例1と同様な方法でマイクロ
カプセル型潜在性硬化剤を含有する液状エポキシ(エポ
キシ当量185)を酢酸エチルに溶解し、40%溶液を
得、この溶液にポリスチレン系核体(直径:5μm)の
表面にAu層を形成した導電粒子を5vol%分散し、
ペースト状の接続部材1を作製した。この接続部材のD
SCで測定した硬化反応率は、120℃、2秒間の加熱
で3%、接着剤から硬化剤を除去したモデル配合の12
0℃の溶融粘度は100ポイズであった。
Comparative Example 3 A microcapsule type latent curing agent is contained in the same manner as in Example 1 except that a liquid epoxy resin of bisphenol A type is blended instead of blending the phenoxy resin in Example 1. A liquid epoxy (epoxy equivalent 185) was dissolved in ethyl acetate to obtain a 40% solution, and 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene nucleus (diameter: 5 μm) were dispersed in this solution.
A paste-like connecting member 1 was produced. D of this connecting member
The curing reaction rate measured by SC is 3% by heating at 120 ° C. for 2 seconds, and 12% of the model composition in which the curing agent is removed from the adhesive.
The melt viscosity at 0 ° C. was 100 poise.

【0040】次に作製した接続部材1を実施例1と同様
に120℃,30g/バンプの圧力でチップ上方から加
熱,加圧を2秒間行い、仮硬化接続を行った。仮硬化接
続後の接続抵抗は、1.2Ωであったが、4時間経過後
導通不良のため、チップの検査が行えなかった。
Next, the connection member 1 produced was heated and pressed for 2 seconds from above the chip at 120 ° C. and a pressure of 30 g / bump in the same manner as in Example 1 to perform temporary curing connection. The connection resistance after the temporary curing connection was 1.2Ω, but the chip could not be inspected due to poor conduction after 4 hours.

【0041】[0041]

【発明の効果】以上説明した通り、本発明方法及び該方
法に使用する接続部材は、接続部材における熱溶融性接
着剤の硬化反応率が20%以下で、かつ溶融粘度が50
00ポイズ以下に設定されているため、仮硬化接続状態
でチップの検査をする際、電気的導通状態をとりやす
く、ICチップの検査を簡単に行うことができるととも
に、ICチップの交換も容易に行える。
As described above, the method of the present invention and the connecting member used in the method have a curing reaction rate of the hot-melt adhesive of 20% or less and a melt viscosity of 50 in the connecting member.
Since it is set to 00 poises or less, it is easy to establish an electrical conduction state when inspecting the chip in the temporary curing connection state, the IC chip can be easily inspected, and the IC chip can be easily replaced. You can do it.

【0042】従って、ICチップの検査,交換を円滑に
行えるため、液晶パネルを再利用でき、液晶表示パネル
の製造コストを大幅に削減できるという効果を有する。
Therefore, since the inspection and replacement of the IC chip can be carried out smoothly, the liquid crystal panel can be reused, and the manufacturing cost of the liquid crystal display panel can be greatly reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 治 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 小島 和良 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 太田 共久 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Watanabe 1500 Ogawa, Shimodate, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Research Laboratory (72) Inventor Kazura Kojima 1500 Ogawa, Shimodate, Ibaraki Hitachi Chemical Co., Ltd. Shimodate Research Laboratory (72) Inventor Kyokuhisa Ota 1500 Ogawa, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電粒子と熱溶融性接着剤とからなり、
加熱,加圧による接続後、加圧方向に導電性を有する接
続部材を用いて、ICチップを基板に仮硬化接続し、I
Cチップを検査した後、前記ICチップを前記熱溶融性
接着剤の硬化温度で基板に本接続するICチップの実装
方法において、 前記接続部材が少なくともフェノキシ樹脂,エポキシ樹
脂および潜在性硬化剤を含有し、接続部材の硬化反応率
が20%以下で、かつ溶融粘度が5000ポイズ以下の
温度で仮硬化接続することを特徴とするICチップの実
装方法。
1. A conductive particle and a heat-meltable adhesive,
After the connection by heating and pressurization, the IC chip is provisionally cured and connected to the substrate by using a connecting member having conductivity in the pressurizing direction.
In a method of mounting an IC chip, wherein after inspecting a C chip, the IC chip is permanently connected to a substrate at a curing temperature of the hot-melt adhesive, the connecting member contains at least a phenoxy resin, an epoxy resin, and a latent curing agent. Then, the mounting method of the IC chip is characterized in that the curing reaction rate of the connection member is 20% or less and the melt viscosity is provisionally cured at a temperature of 5000 poise or less.
【請求項2】 導電粒子と熱溶融性接着剤とからなり、
加熱,加圧による接続後、加圧方向に導電性を有する接
続部材において、 前記接続部材が少なくともフェノキシ樹脂,エポキシ樹
脂および潜在性硬化剤を含有し、仮硬化接続温度での硬
化反応率が20%以下で、かつ溶融粘度が5000ポイ
ズ以下であることを特徴とする接続部材。
2. A conductive particle and a heat-meltable adhesive,
After connection by heating and pressurization, in a connection member having conductivity in the pressurizing direction, the connection member contains at least a phenoxy resin, an epoxy resin and a latent curing agent, and the curing reaction rate at the temporary curing connection temperature is 20. % And a melt viscosity of 5000 poise or less, a connecting member.
JP31620995A 1995-12-05 1995-12-05 Method for packaging ic chip and member for connecting ic chip Pending JPH09162235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31620995A JPH09162235A (en) 1995-12-05 1995-12-05 Method for packaging ic chip and member for connecting ic chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31620995A JPH09162235A (en) 1995-12-05 1995-12-05 Method for packaging ic chip and member for connecting ic chip

Publications (1)

Publication Number Publication Date
JPH09162235A true JPH09162235A (en) 1997-06-20

Family

ID=18074522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31620995A Pending JPH09162235A (en) 1995-12-05 1995-12-05 Method for packaging ic chip and member for connecting ic chip

Country Status (1)

Country Link
JP (1) JPH09162235A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028788A1 (en) * 1996-12-24 1998-07-02 Nitto Denko Corporation Manufacture of semiconductor device
WO2000057469A1 (en) * 1999-03-23 2000-09-28 Citizen Watch Co., Ltd. Structure for mounting semiconductor device and mounting method
US6531026B1 (en) 1999-06-23 2003-03-11 Sony Chemicals Corp. Method for mounting electronic elements
JP2003204142A (en) * 2002-01-08 2003-07-18 Sumitomo Metal Micro Devices Inc Electronic component-mounting method and apparatus thereof
JP2003289089A (en) * 2002-03-28 2003-10-10 Sumitomo Bakelite Co Ltd Semiconductor device and its manufacturing method
JP2008135704A (en) * 2006-10-30 2008-06-12 Seiko Instruments Inc Manufacturing method for electronic device, and manufacturing equipment thereof
JP2016148753A (en) * 2015-02-12 2016-08-18 古河電気工業株式会社 Bare module and method of manufacturing optical module
JP2021100084A (en) * 2019-12-24 2021-07-01 株式会社鈴木 Manufacturing method and manufacturing apparatus of semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028788A1 (en) * 1996-12-24 1998-07-02 Nitto Denko Corporation Manufacture of semiconductor device
US6333206B1 (en) 1996-12-24 2001-12-25 Nitto Denko Corporation Process for the production of semiconductor device
WO2000057469A1 (en) * 1999-03-23 2000-09-28 Citizen Watch Co., Ltd. Structure for mounting semiconductor device and mounting method
US6531026B1 (en) 1999-06-23 2003-03-11 Sony Chemicals Corp. Method for mounting electronic elements
KR100600454B1 (en) * 1999-06-23 2006-07-13 소니 케미카루 가부시키가이샤 Method for mounting electronic elements
JP2003204142A (en) * 2002-01-08 2003-07-18 Sumitomo Metal Micro Devices Inc Electronic component-mounting method and apparatus thereof
JP2003289089A (en) * 2002-03-28 2003-10-10 Sumitomo Bakelite Co Ltd Semiconductor device and its manufacturing method
JP2008135704A (en) * 2006-10-30 2008-06-12 Seiko Instruments Inc Manufacturing method for electronic device, and manufacturing equipment thereof
JP2016148753A (en) * 2015-02-12 2016-08-18 古河電気工業株式会社 Bare module and method of manufacturing optical module
JP2021100084A (en) * 2019-12-24 2021-07-01 株式会社鈴木 Manufacturing method and manufacturing apparatus of semiconductor device

Similar Documents

Publication Publication Date Title
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
JP2586154B2 (en) Circuit connection composition, connection method using the same, and semiconductor chip connection structure
JP5151902B2 (en) Anisotropic conductive film
JP3885896B2 (en) Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition
JP5581576B2 (en) Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
JP3801666B2 (en) Electrode connection method and connection member used therefor
JP2001081438A (en) Connecting material
JP3852488B2 (en) Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition
JPH083081B2 (en) Adhesive composition for circuit connection
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JPH1150032A (en) Connection member for circuit and circuit board
JP3651624B2 (en) Circuit connection member
JPH09162235A (en) Method for packaging ic chip and member for connecting ic chip
JPH10226769A (en) Film adhesive and method for connection
JPH11106714A (en) Film adhesive for circuit connection
JP4031545B2 (en) adhesive
JPH10287848A (en) Adhesive for joining circuit parts
JPH10226770A (en) Adhesive for connecting circuit members to each other
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JPH02288019A (en) Anisotropic conductive film
JPH0625632A (en) Adhesive composition and laminated film
JP4339414B2 (en) Circuit connection member
JP2009161684A (en) Adhesive composition for use in circuit connection, and connection structure of circuit member and connecting method of circuit member by using the adhesive composition
JP2004328000A (en) Connection material
JP2009024149A (en) Adhesive and bonded body