JP3852488B2 - Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition - Google Patents

Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition Download PDF

Info

Publication number
JP3852488B2
JP3852488B2 JP10714896A JP10714896A JP3852488B2 JP 3852488 B2 JP3852488 B2 JP 3852488B2 JP 10714896 A JP10714896 A JP 10714896A JP 10714896 A JP10714896 A JP 10714896A JP 3852488 B2 JP3852488 B2 JP 3852488B2
Authority
JP
Japan
Prior art keywords
connection
resin
curing agent
adhesive
adhesive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10714896A
Other languages
Japanese (ja)
Other versions
JPH09291268A (en
Inventor
和也 松田
功 塚越
宏治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10714896A priority Critical patent/JP3852488B2/en
Publication of JPH09291268A publication Critical patent/JPH09291268A/en
Application granted granted Critical
Publication of JP3852488B2 publication Critical patent/JP3852488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、例えば液晶パネルやICチップ等の電子部品において2つの相対峙する電極間に形成し、両電極を接続するのに好適な補修可能な電極接続用接着剤組成物(以下、接着剤組成物という)および該接着剤組成物を含む電極接続用接続部材(以下、接続部材という)に関する。
【0002】
【従来の技術】
2つの回路基板同士を接着すると共に、これらの電極間に電気的導通を得る接着剤については、スチレン系やポリエステル系などの熱可塑性物質や、エポキシ系やシリコーン系などの熱硬化性物質が知られている。この場合、接着剤中に導電性粒子を配合し加圧により接着剤の厚み方向に電気的接続を得るもの(例えば特開昭55─104007号公報)と、導電性粒子を用いずに接続時の加圧により電極面の微細凹凸の接触により電気的接続を得るもの(例えば特開昭60─262430号公報)とがある。
【0003】
ところで、これらの接着剤による接続において、電気的に接続不良であったり接続後に電子部品や回路が不良になると、電極や回路間を機械的に剥がすなどした後、接着剤を溶剤などで除去後、再度良品を接着剤により接続(リワーク)することが行われている。この場合、微細回路や電極上の接着剤を汎用溶剤(例えばアセトン、メチルエチルケトン、トルエン、リグロイン、テトラハイドロフラン、アルコールなど)を用いて、周辺の良好部に悪影響を与えず、迅速かつ容易に除去できることが、接続作業性の向上や製造コスト低減の点から重要である。
【0004】
回路接続部の信頼性、即ち耐熱性,耐湿性などを考慮した場合、エポキシ系などの熱硬化性接着剤が有効である。しかしながら、この場合の補修方法は汎用溶剤では困難であり、エポキシ剥離剤などの強烈な溶剤を用いる必要がある。この場合、再接続部への剥離剤成分である酸やハロゲン化物の影響により、回路の腐食や電食が発生し接続部の信頼性が低下する。一方、熱可塑性接着剤の場合にはリワークが比較的容易であるが耐熱性が不足し、やはり接続部の信頼性が低下する。
【0005】
接着剤にリワーク性を付与する試みとして、特開平5─28828号公報には、シアネートエステル樹脂/熱可塑性樹脂/エポキシ樹脂/金属化合物触媒の系が示され、金属化合物触媒として有機金属化合物、金属キレート化合物、有機金属塩が例示されている。ここでシアネートエステル樹脂の金属化合物触媒としては、オクチル酸亜鉛、アセチルアセトン鉄、ジブチル錫マレート、ナフテン酸コバルトなどが既に知られている。
なお、シアネートエステルとエポキシ樹脂の反応生成物については、特公昭46─41112号公報により公知であるが、硬化に数時間が必要であり反応性に劣り、また耐熱性が不十分であった。
【0006】
特開平5─28828号公報によれば、従来に比べリワーク性は向上するものの、この系を電子部品の電極接続用とした場合、金属化合物触媒の残存により通電耐湿試験における電食が発生しやすく、また硬化時の低温化が不十分であるなどの問題点がある。
【0007】
電食は、電極間における局部電池の形成により電極材料が隣接電極間に、例えばデンドライトと呼ばれる形状で移行する現象であり、従来から銀のマイグレーション等として既知の現象であるが、最近の電極間距離の減少による高密度化により益々問題視されており、接続材料からCo、Cu、Fe等の金属類や塩素などの不純物イオンを低減する努力が続けられている。
【0008】
また硬化の低温化は、電極接続時の基板の伸びの抑制により、高密度電極の正確な位置合わせを得る点からも重要であり、本用途においては短時間接続による接続作業の高速化と合わせて低温接続が必要である。ちなみに前記公報記載の発明においては、主剤であるシアネートエステル樹脂とエポキシ樹脂を金属化合物触媒により反応を促進させ、その実施例では180℃20秒といった硬化性が可能とされている。しかしながら接続温度をさらに低温化するために触媒量を増加させると保存安定性が極端に低下してしまうため、シアネートエステル樹脂を用いた接着剤による接続温度の低温化は困難であった。
【0009】
【発明が解決しようとする課題】
本発明は、高密度電極の低温短時間接続が可能であり、接続部の信頼性が高くかつ汎用溶剤により容易に補修可能で、製品の保存安定性に優れた接着剤組成物を提供するものである。
【0010】
【課題を解決するための手段】
本発明は、シアネートエステル樹脂/エポキシ樹脂/非金属系のマイクロカプセル状潜在性硬化剤/熱可塑性樹脂/アミン化合物および/またはイソシアネート化合物を必須とする補修可能な電極接続用接着剤組成物に関し、これらの組成物100重量部に対しさらに0.1〜20体積%の導電粒子を含有してなる電極接続用接続部材に関する。
【0011】
【発明の実施の形態】
本発明で用いるシアネートエステルは、分子鎖中に少なくとも1つのシアネート基を有するモノマー、オリゴマー、およびこれらの誘導体を含む。これらの分子量は150〜2000程度が好ましい。150未満では結晶化しやすく溶解性が低下し、また接着剤系の凝集力が低下し高接着力が得にくい。2000を越えると他の成分との相溶性が低下し、また取り扱いが難しくなる。なお本発明でいう分子量は、重量平均分子量(GPC法によるスチレン換算値)である。
これらシアネートエステル樹脂を商品名やメーカと共に例示すると、2,2´─ジ(4─シアナトフェニル)プロパン…商品名スカイレックスCA200(三菱瓦斯化学)、AROCY・B─10、30、50(旭チバ)、ジ(4─シアナト3,5ジメチルフェニル)メタン…AROCY・M−10、20、ジ(4─シアナトフェニル)チオエーテル…AROCY・T−10、20、2,2´─ジ(4─シアナトフェニル)ヘキサフルオロプロパン…AROCY・F─10、ジ(4─シアナトフェニル)エタンAROCY・L─10、フェノール/ジシクロペンタジェン共重合物のシアネート…XU71787(ダウケミカル)、フェノールノボラックシアネート…PrimasterPT(Allid Signal)などがある。
【0012】
本発明に用いるエポキシ樹脂は、例えばエピクロルヒドリンとビスフェノールAやF、D等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的であり、その他グリシジルアミン、グリシジルエステル、脂環式、複素環式、ブロム化エポキシなどの1分子内に2個以上のオキシラン基を有する各種のエポキシ化合物が適用できる。これらは単独または2種以上混合して用いることが可能である。これらエポキシ樹脂は、不純物イオン(Na+ 、Cl- など)や、加水分解性塩素などを300ppm以下に低減した高純度品を用いることが、電食やエレクトロンマイグレーション防止のため好ましい。
【0013】
上記したエポキシ樹脂の中では、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性などを任意に設定できることから好ましい。中でもビスフェノールF型エポキシ樹脂は、粘度が特に低いことから流動性を広範囲に設定できることや、液状であり粘着性も得やすいことから特に好ましい。また、1分子内に3個以上のオキシラン基を有するいわゆる多官能エポキシ樹脂も組成物の架橋密度を向上し耐熱性が向上するので好ましく、溶剤による補修性を保つために組成物中に占める多官能エポキシ樹脂の割合を20%以下として使用できる。
【0014】
本発明で用いるアミン化合物は、1分子中に少なくとも1つの活性水素を有する一級および二級アミン類で、モルホリン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ジヘキシルアミン、ジベンジルアミン、ベンジルメチルアミン等がある。
【0015】
本発明で用いるイソシアネート化合物は、1分子中に少なくとも1つのイソシアネート基を有する化合物で、フェニルイソシアネート、n─ブチルイソシアネート、n─ドデカンイソシアネート、2,4─トリレンジイソシアネート、4,4─ジフェニルメタンジイソシアネート等がある。
【0016】
組成物中に占める割合は、シアネートエステルが25重量%以下、潜在性硬化剤を含むエポキシ樹脂が30重量%以上、アミン化合物および/またはイソシアネート化合物が10重量%以下である。エポキシ樹脂中の潜在性硬化剤の含量は5〜50重量%が取扱い易く好ましい。5%未満では硬化剤濃度がうすいため活性度が低く、50%を越えると分散性が低下する。
シアネートエステルの好ましい割合は1〜25重量%であり、2〜11重量%がより好ましい。この量が少ないと溶剤によるリワーク性が不足し、多いと接続部の信頼性が不足する。エポキシ樹脂は、リワーク性の許す限り多量に添加してよく、好ましい割合は30〜90重量%であり、40〜80重量%がより好ましい。この量が少ないとエポキシ樹脂の硬化に基づく耐熱性が不足し、多いとリワーク性が不足する。アミン化合物および/またはイソシアネート化合物の好ましい割合は1〜10重量%で、1〜7重量%がより好ましい。この量が少ないと保存安定性が低下し、多いと未反応のアミン化合物やイソシアネート化合物が接着剤中に残存し、接続部周辺の電子部品や回路に悪影響を与える危険がある。
【0017】
潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素─アミン錯体、アミンイミド、ポリアミンの塩、ジシアンジアミドなど、およびこれらの変性物があり、これらは単独または2種以上の混合体として使用できる。これらはアニオンまたはカチオン重合型などのいわゆるイオン重合性の触媒型硬化剤であり、速硬化性を得やすく、また化学当量的な考慮が少なくてよいことから好ましい。これの中では、イミダゾール系のものが非金属系であり、電食しにくく、また反応性や接続信頼性の点から特に好ましい。硬化剤としてはその他に、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等の適用や前記触媒型硬化剤との併用も可能である。
【0018】
長期保存性と速硬化性という矛盾した特性の両立が要求される本発明の好ましい形態としては、これらの硬化剤を核としポリウレタン系、ポリエステル系等の高分子物質や、Ni、Cu等の金属薄膜およびケイ酸カルシウム等の無機物で被覆したマイクロカプセル型であることが好ましい。カプセル型硬化剤の使用にあたって注意すべきことは、カプセルの粒径を例えばフィルム状接着剤の厚みよりも小さくして保存時のカプセル破壊を防止することや、カプセルの被覆層の材質を組成物や溶剤などに対して耐性のあるものとする。
【0019】
本発明の硬化剤の活性温度は40〜200℃が好ましい。40℃未満であると室温との温度差が少なく保存に低温が必要であり、200℃を越すと接続の他の部材に熱影響を与えるためであり、このような理由から50〜150℃がより好ましい。本発明の活性温度はDSC(示差走査熱量計)を用いて、エポキシ樹脂と硬化剤の配合物を試料として、室温から10℃/分で昇温させた時の発熱ピーク温度を示す。活性温度は低温側であると反応性に勝るが保存性が低下する傾向にあるので、これらを考慮して決定する。
【0020】
熱可塑性樹脂は、フィルム形成やリワーク性の向上を目的に必要に応じて用いるものであり、適用可能な熱可塑性樹脂としては、フェノキシ樹脂を含む高分子量エポキシ樹脂、ポリビニルアセタール、ポリスルホン、ポリエステル、ポリウレタン、ポリアミド、ポリイミド、ポリカボネート、ポリエーテル、ポリシロキサン、ポリエーテルイミド、ポリビニル、エポキシアクリレート、例えばスチレン等の各種の熱可塑性エラストマーなどがあり、これらの混合物や共重合物でもよい。これらはシアネートエステルやエポキシ樹脂との相溶性や接続部材の特性を考慮して決定される。これらの樹脂は水酸基やカルボキシル基などの極性基を含有すると、エポキシ樹脂との相溶性が向上し、均一な外観や特性を有するフィルムの得られることや、硬化時の反応促進による短時間硬化を得る点からも好ましい。
【0021】
これら熱可塑性樹脂の分子量は、2000以上がフィルム形成性の点から好ましい。また組成物中に占める割合は、フィルム形成が可能であればできるだけ少量とすべきであり、好ましくは40重量%以下である。
【0022】
これらの中で、好ましい実施態様であるフェノキシ樹脂について説明する。フェノキシ樹脂は、分子量が10,000以上の高分子量エポキシ樹脂であり、エポキシ樹脂と構造が似ていることからエポキシ樹脂と相溶性がよく、また接着性も良好な特徴を有する。分子量の大きいほどフィルム形成性が容易に得られ、また接続時の流動性に影響する溶融粘度を添加量により広範囲に設定できる。ビスフェノールAから導入された一般的なフェノキシ樹脂に比べ、ビスフェノールFからの導入品は、相溶性や流動性の制御が行いやすく、さらに好ましい。
【0023】
本発明に必要に応じて用いる粘着付与剤としては、ロジンやテルペンなどの天然物系樹脂、脂肪族、脂環族、芳香族、クマロン・インデン、スチレン系などの重合系樹脂、およびフェノールやキシレン系などの縮合系樹脂などがあり、これらの変性体や誘導体がある。これらは単独もしくは2種類以上混合して用いることができる。これらは接着剤系の凝集力を高める点から軟化点40℃以上の固形物が好ましい。
【0024】
上記で得た接着剤組成物中には、通常の添加剤などとして、例えば、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤およびフェノール樹脂やメラミン樹脂、イソシアネート類などの硬化剤や触媒などを含有することもできる。これらの中では、導電粒子やシリカなどの充填剤およびシラン、チタン、クロム、ジルコニウム、アルミニウムなどの各系のカップリング剤が特に有用である。カップリング剤としては、アミノ基やエポキシ基、およびイソシアネート基含有物が接着性の向上の点から特に好ましい。
【0025】
導電粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等があり、これらおよび非導電性のガラス、セラミック、プラスチック等に前記した導電層を被覆などにより形成したものでもよい。プラスチックを核とした場合や熱溶融金属粒子の場合、加熱加圧により変形性を有するので接続時に電極との接触面積が増加し信頼性が向上するので好ましい。導電粒子は0〜30体積%、好ましくは接着剤組成物に対し20体積%以上とすることで均一導電性とすることや、0.1〜20体積%とすることで厚み方向に導電性の異方導電性とすることも可能である。またこれらの粒子の表面に接続時に溶融する絶縁層を形成することもできる。
【0026】
本発明の接着剤組成物は一液型接着剤として、中でもフィルム状接着剤として特に有用である。この場合例えば、上記で得た接着剤組成物を溶剤あるいはエマルションの場合の分散液などとして液状化して、離形紙などの剥離性基材上に形成し、あるいは不織布等の基材に前記配合液を含浸させて剥離性基材上に形成し、硬化剤の活性温度以下で乾燥し溶剤あるいは分散液等を除去すればよい。このとき用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。ここに含酸素系溶剤のSP値は8.1〜10.7の範囲とすることが潜在性硬化剤の保護上好ましく、酢酸エステル類がより好ましい。また溶剤の沸点は150℃以下が適用できる。沸点が150℃を超すと乾燥に高温を要し、潜在性硬化剤の活性温度に近いことから潜在性の低下を招き、低温では乾燥時の作業性が低下する。このため沸点が60〜150℃が好ましく、70〜130℃がより好ましい。
【0027】
フィルム状接着剤の場合、導電粒子含有層と非含有層による複合層や、硬化性やリワーク性に差を有する複合層とするなどの機能性の分離形成も可能である。フィルム状であると、一定厚みで連続状で形成可能なため接続作業の自動化が図れるので接続作業性が向上するなどの利点を有することから好ましい。
【0028】
本発明で得た接着剤組成物を用いた回路や電極の接続について説明する。
この方法は、接着剤組成物を基板上の相対峙する電極間に形成し、加熱加圧により両電極の接触と基板間の接着を得る電極の接続方法である。電極を形成する基板としては、半導体、ガラス、セラミックなどの無機物、ポリイミド、ポリカーボネートなどの有機物、ガラス/エポキシなどのこれら複合体の各組合せが適用できる。
【0029】
本発明によれば接続時に、主成分であるエポキシ樹脂の自己重合反応が潜在性硬化剤により優先して発生し、シアネートエステル樹脂の自己重合やエポキシ樹脂との反応は比較的低位であり、エポキシ樹脂の自己重合反応熱などにより接続信頼性を維持する程度までの凝集力が発生するものとみられる。そのためシアネートエステル樹脂は溶剤に一部可溶もしくは膨潤可能な状態であるため、リワーク性を有するものと考えられる。これは接続時の温度条件が200℃以下、好ましくは175℃で数十秒程度の限られた条件下で、かつ非金属系である潜在性硬化剤との特殊な組合わせの中で見い出された現象と見られる。
【0030】
しかしながら、シアネートエステル樹脂は潜在性硬化剤および熱可塑性樹脂と併用すると接着剤の保存安定性が大幅に低下してしまう。これは熱可塑性樹脂中に含まれる水酸基がシアネートエステル樹脂の硬化触媒として作用するためである。本発明は、この保存安定性を向上させるためにアミン化合物やイソシアネート化合物の添加が効果的であることを見出した。アミン化合物はシアネートエステル基と可逆的に結合し常温での反応性を低下させ、またイソシアネート化合物は熱可塑性樹脂中の水酸基と反応し、触媒としての活性を低下させることにより保存安定性が改善されるものと考えられる。従って、アミン化合物の好ましい使用法としては、シアネートエステルとアミン化合物を室温または加温状態で1〜2時間混合前処理した後、接着剤の配合を行うとよい
。また、イソシアネート化合物の好ましい使用法としては、熱可塑性樹脂とイソシアネート化合物を加温状態で混合前処理した後、接着剤の配合を行うとよい。
【0031】
この接着剤系は接続後の硬化により、エポキシ樹脂硬化物を海とした時シアネートエステル樹脂は島状に存在するか、あるいはシアネート基やエステル基の作用で、シアネートエステル樹脂が金属や酸化金属で構成される回路類の表面に吸着形成され、表面に高濃度に傾斜的に存在するものと考えられる。そのため、硬化系内のシアネートエステル樹脂の島状もしくは傾斜部などの高濃度部は、汎用溶剤により比較的容易に膨潤または溶解し、またはこの部分がきっかけとなり硬化物を膨潤または溶解し補修可能となり、リワーク性を付与するものと考えられる。
【0032】
本発明の組成物を回路の接続部材としたとき、フィルム状物が海島状構造の場合にやや不透明性であり、回路の位置合わせ時に透過光の乱反射によりガラス回路上の透明電極の認識が容易である特徴も合わせて有する。また、接続時においてシアネートエステル樹脂は低粘度であるため、接続時の温度条件が175℃以下数十秒程度の条件で、粘度が低く、接着剤の流動による抵抗が少なく接続回路の変形を生じない。従って、回路の位置ずれを生じ難く微細回路の接続に好適である。
【0033】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。なお実施例1〜20において組成物の内容を表1に、これらの評価結果を表2に示す。
【0034】
実施例1〜3および比較例1
(1)組成物の作製
AROCY・B─30と、エピコートYL−980(ビスフェノールA型高純度液状エポキシ樹脂、加水分解性塩素イオン150ppm、油化シェルエポキシ株式会社製商品名、980と略)と、潜在性硬化剤ノバキュア3921HP(イミダゾール変性体を核とし、その表面をポリウレタン系被膜で被覆してなる平均粒径4μmのマイクロカプセル型硬化剤を、ビスフェノールF型高純度液状エポキシ樹脂に分散したマスターバッチ型硬化剤、硬化剤/エポキシ樹脂の比1/2、活性温度111℃、旭化成工業株式会社製商品名、3941と略)を、トルエン/酢酸エチル=50/50(重量比)の混合溶剤に溶解したZX−1356(ビスフェノールFより誘導されるフェノキシ樹脂、分子量50,000、水酸基含有、東都化成株式会社製商品名、ZXと略)とを、記述順に固形分比で10/10/50/30となるように混合し、固形分40%の溶液とした。
上記混合液の固形分100重量部に対し、1.0重量部のエポキシ系シランカップリング剤と、2体積部の導電粒子(平均粒径5μmのスチレン─ジビニルベンゼン共重合樹脂球の表面に金属薄層を有する、プラと略)をそれぞれ添加撹拌したものを比較例1とし、さらに1.0、3.0、7.0重量部のジヘキシルアミン(DHAと略)をそれぞれ添加したものを実施例1〜3とし、ポリテトラフルオロエチレンフィルム(セパレータ)上にロールコータを用いて塗布後、80℃10分の乾燥により、接着剤層の厚みが20μmのフィルム状物を得た。
(2)評価
このフィルム状物を用いて、ライン幅30μm、ピッチ60μm、厚み20μmの銅回路上に錫の薄層を有するフレキシブル回路板(FPC)と、全面に酸化インジウム(ITO)の薄層を有する厚み1.1mmのガラス板とを、170℃─30kg/cm2 ─20秒により、幅1.5mmで接続した。この際、あらかじめガラス板の接続部ITO上に、フィルム状物を貼付後90℃─10kg/cm2 ─5sec の仮接続を行い、次いでセパレーターを剥離してFPCとの接続を行った。
【0035】
【表1】

Figure 0003852488
【0036】
評価結果を表2に示す。
表2において、リワーク性は上記接続部のFPCをITOから剥離し、ITO上に残存する一定面積(20×2mm)の接着剤をアセトンを浸漬した綿棒で拭き取るのに要した時間を、30秒以内を(○)、2分以上を(×)で表した。
信頼性は初期抵抗に対する85℃85%RH─1000h後の接続抵抗値の上昇倍率であり、FPCの隣接回路の抵抗200点のx+3σの処理前後の比率が2倍以内を(○)、4倍以上を(×)で示した。
電食性は、前記FPCを櫛形回路とし、隣接電極に50Vの電位差を設け、85℃85%RH─500h後の外観を200倍の金属顕微鏡で観察し、異常の有(×)無(○)をみた。
不純物イオンは、硬化後の組成物を純水中で100℃20h抽出し、抽出水をイオンクロマトグラフで測定するもので、本発明では塩素イオン(Cl- )濃度が10ppm以下を(○)、20ppm以上を(×)で示した。
保存安定性は作成したフィルム状物を40℃で5日間エージング処理した後に接続試験を行い、接続抵抗が1Ω以下を(◎)、1Ω〜2Ωを(○)、2Ω〜5Ωを(△)、5Ω以上を(×)で示した。
結果を表2に示すが、比較例1はリワーク性、信頼性、電食性いずれも良好であったが、保存安定性が悪く40℃エージング24時間で接続不能となった。それに対して実施例1〜3は保存安定性が改善されており、特に実施例2で保存安定性は最も向上していた。
【0037】
実施例4、5
実施例1〜3と同様であるが、ジヘキシルアミンを用いずに、3.0重量部のジベンジルアミン(DBAと略)、N−メチルベンジルアミン(NBAと略)をそれぞれ添加したものを実施例4、5とした。
結果を表2に示すが、リワーク性、信頼性、電食性いずれも良好で、保存安定性も比較例1に比べると向上している。
【0038】
実施例6〜8
実施例1〜3と同様であるが、アミン化合物を用いずにイソシアネート化合物を用いた。n─ブチルイソシアネート(NBIと略)、2,4─トリレンジイソシアネート(TDIと略)、4,4─ジフェニルメタンジイソシアネート(MDIと略)をそれぞれ3.0重量部添加した。
結果を表2に示すが、リワーク性、信頼性、電食性いずれも良好で保存安定性も比較例1に比べると向上している。
【0039】
実施例9、11
実施例1〜8と同様であるが、アミン化合物とイソシアネート化合物を併用した。結果を表2に示すが、リワーク性、信頼性、電食性、保存安定性いずれも良好で、中でも保存安定性はアミン化合物、イソシアネート化合物を単独で用いた場合よりも向上していた。
【0040】
実施例12〜17
実施例9〜11と同様であるが、表1のようにエポキシ樹脂および熱可塑性樹脂の種類を変えてみた。エポキシ樹脂として新しく用いたものはHP4032D(ナフタレンジオール型高純度半固形エポキシ樹脂、大日本インキ化学工業株式会社製商品名、4032と略)、EP1032H60(多官能型高純度固形エポキシ樹脂、油化シェルエポキシ株式会社製商品名、1032と略)である。熱可塑性樹脂として新しく用いたものはPKHC(ビスフェノールAより誘導されるフェノキシ樹脂、分子量25,000、水酸基含量6%、ユニオンカーバイド株式会社製商品名、PKと略)、PVB3000K(ポリビニルブチラール、分子量30,000、水酸基含有、電気化学工業株式会社製商品名、PVと略)、タフテックM─1913(カルボキシル化SEBS、旭化成工業株式会社製商品名、M1と略)、WS─023(アクリルゴム、水酸基およびカルボキシル基含有、帝国化学産業株式会社製商品名、WSと略)である。
結果を表2に示すが、各実施例はいずれもは良好な結果を示した。
【0041】
実施例18〜20
実施例2、6、9と同様であるが、アミン化合物、イソシアネート化合物をそれぞれシアネートエステル樹脂、熱可塑性樹脂と前処理(40℃、1時間)をしてから配合を行った。
結果を表2に示すが、各実施例はいずれも良好な結果を示し、特に保存安定性は前処理を行うことによってさらに向上し、40℃で10日間エージング後も良好な結果を示した。
【0042】
【表2】
Figure 0003852488
【0043】
【発明の効果】
以上説明から明らかなように、本発明によれば、高密度電極の低温短時間接続が可能であり、接続部の信頼性が高くかつ汎用溶剤により容易に補修可能で、製品の保存安定性に優れた接着剤を提供することが可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a repairable electrode connecting adhesive composition (hereinafter referred to as an adhesive) which is formed between two opposed electrodes in an electronic component such as a liquid crystal panel or an IC chip, and is suitable for connecting both electrodes. And a connecting member for electrode connection (hereinafter referred to as a connecting member) containing the adhesive composition.
[0002]
[Prior art]
Adhesives that bond two circuit boards and provide electrical continuity between these electrodes are known to be thermoplastic materials such as styrene and polyester, and thermosetting materials such as epoxy and silicone. It has been. In this case, the conductive particles are blended in the adhesive, and electrical connection is obtained in the thickness direction of the adhesive by pressurization (for example, Japanese Patent Application Laid-Open No. 55-104007). In some cases, electrical connection is obtained by contact of fine irregularities on the electrode surface by pressurizing (for example, JP-A-60-262430).
[0003]
By the way, in the connection with these adhesives, if an electrical connection is defective or an electronic component or circuit becomes defective after connection, the adhesive is removed with a solvent after mechanically peeling between the electrodes and circuits. The non-defective product is again connected (reworked) with an adhesive. In this case, the adhesive on the microcircuits and electrodes can be removed quickly and easily using general-purpose solvents (for example, acetone, methyl ethyl ketone, toluene, ligroin, tetrahydrofuran, alcohol, etc.) without adversely affecting the surrounding good parts. It is important to be able to improve connection workability and reduce manufacturing costs.
[0004]
In consideration of the reliability of the circuit connection portion, that is, heat resistance and moisture resistance, an epoxy-based thermosetting adhesive is effective. However, the repair method in this case is difficult with a general-purpose solvent, and it is necessary to use a strong solvent such as an epoxy release agent. In this case, the influence of the acid or halide which is a release agent component on the reconnecting portion causes circuit corrosion or electrolytic corrosion, and the reliability of the connecting portion is lowered. On the other hand, in the case of a thermoplastic adhesive, rework is relatively easy, but heat resistance is insufficient, and the reliability of the connection portion is also lowered.
[0005]
As an attempt to impart reworkability to an adhesive, Japanese Patent Application Laid-Open No. 5-28828 discloses a system of cyanate ester resin / thermoplastic resin / epoxy resin / metal compound catalyst. As a metal compound catalyst, an organometallic compound, a metal Chelate compounds and organometallic salts are exemplified. Here, as the metal compound catalyst of the cyanate ester resin, zinc octylate, acetylacetone iron, dibutyltin malate, cobalt naphthenate and the like are already known.
The reaction product of cyanate ester and epoxy resin is known from Japanese Examined Patent Publication No. Sho 46-41112. However, several hours are required for curing, the reactivity is inferior, and the heat resistance is insufficient.
[0006]
According to Japanese Patent Laid-Open No. 5-28828, although reworkability is improved as compared with the prior art, when this system is used for connecting an electrode of an electronic component, electrolytic corrosion in an energization and moisture resistance test is likely to occur due to the remaining metal compound catalyst. In addition, there are problems such as insufficient temperature reduction during curing.
[0007]
Electro-corrosion is a phenomenon in which the electrode material moves between adjacent electrodes due to the formation of a local battery between the electrodes, for example, in a shape called dendrites. It is increasingly regarded as a problem due to higher density due to a decrease in distance, and efforts to reduce impurities such as metals such as Co, Cu, Fe, and chlorine from connection materials continue.
[0008]
In addition, lowering the curing temperature is important from the point of obtaining accurate alignment of the high-density electrode by suppressing the elongation of the substrate when connecting the electrodes. Low temperature connection is required. Incidentally, in the invention described in the publication, the cyanate ester resin, which is the main agent, and the epoxy resin are promoted by a metal compound catalyst, and in this embodiment, curability such as 180 ° C. for 20 seconds is possible. However, if the amount of the catalyst is increased to further lower the connection temperature, the storage stability is extremely lowered, so that it is difficult to lower the connection temperature with an adhesive using a cyanate ester resin.
[0009]
[Problems to be solved by the invention]
The present invention provides an adhesive composition capable of low-temperature and short-time connection of high-density electrodes, having high connection reliability, easily repairable with a general-purpose solvent, and having excellent product storage stability. It is.
[0010]
[Means for Solving the Problems]
The present invention relates to a repairable electrode connecting adhesive composition essentially comprising a cyanate ester resin / epoxy resin / non-metallic microcapsule latent curing agent / thermoplastic resin / amine compound and / or isocyanate compound, The present invention relates to a connecting member for electrode connection, further containing 0.1 to 20% by volume of conductive particles with respect to 100 parts by weight of these compositions.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The cyanate ester used in the present invention includes monomers, oligomers, and derivatives thereof having at least one cyanate group in the molecular chain. These molecular weights are preferably about 150 to 2,000. If it is less than 150, it is easy to crystallize and the solubility is lowered, and the cohesive force of the adhesive system is lowered and it is difficult to obtain a high adhesive force. If it exceeds 2000, the compatibility with other components decreases, and handling becomes difficult. In addition, the molecular weight as used in the field of this invention is a weight average molecular weight (styrene conversion value by GPC method).
Examples of these cyanate ester resins together with trade names and manufacturers are 2,2'-di (4-cyanatophenyl) propane ... trade names Skylex CA200 (Mitsubishi Gas Chemical), AROCY B-10, 30, 50 (Asahi) Ciba), di (4-cyanato 3,5 dimethylphenyl) methane ... AROCY M-10,20, di (4-cyanatophenyl) thioether ... AROCY.T-10,20,2,2'-di (4 ─Cyanatophenyl) hexafluoropropane… AROCY · F-10, di (4-cyanatophenyl) ethane AROCY · L-10, cyanate of phenol / dicyclopentagen copolymer… XU71787 (Dow Chemical), phenol novolak Cyanate: Primer PT (Allide Signal).
[0012]
The epoxy resin used in the present invention is typically a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, F, D or the like, and an epoxy novolac resin derived from epichlorohydrin and phenol novolac or cresol novolac, and other glycidylamines. Various epoxy compounds having two or more oxirane groups in one molecule such as glycidyl ester, alicyclic, heterocyclic, and brominated epoxy are applicable. These can be used alone or in admixture of two or more. These epoxy resins, impurity ions (Na +, Cl -, etc.) or the like hydrolyzable chlorine using a high purity product was reduced to 300ppm or less, preferably for electrolytic corrosion or electromigration prevention.
[0013]
Among the above-mentioned epoxy resins, bisphenol type epoxy resins are preferable because grades having different molecular weights are widely available, and adhesiveness and reactivity can be arbitrarily set. Among them, the bisphenol F type epoxy resin is particularly preferable because it has a particularly low viscosity and can be set in a wide range of fluidity and is easily obtained in a liquid state. A so-called polyfunctional epoxy resin having three or more oxirane groups in one molecule is also preferable because it improves the crosslink density of the composition and improves heat resistance. The proportion of the functional epoxy resin can be used as 20% or less.
[0014]
Amine compounds used in the present invention are primary and secondary amines having at least one active hydrogen in one molecule, and include morpholine, piperidine, pyrrolidine, hexamethyleneimine, dihexylamine, dibenzylamine, benzylmethylamine, and the like. .
[0015]
The isocyanate compound used in the present invention is a compound having at least one isocyanate group in one molecule, such as phenyl isocyanate, n-butyl isocyanate, n-dodecane isocyanate, 2,4-tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, etc. There is.
[0016]
The proportion of the cyanate ester in the composition is 25% by weight or less, the epoxy resin containing the latent curing agent is 30% by weight or more, and the amine compound and / or isocyanate compound is 10% by weight or less. The content of the latent curing agent in the epoxy resin is preferably 5 to 50% by weight because it is easy to handle. If it is less than 5%, the curing agent concentration is low and the activity is low, and if it exceeds 50%, the dispersibility is lowered.
A desirable ratio of the cyanate ester is 1 to 25% by weight, and more preferably 2 to 11% by weight. If this amount is small, the reworkability by the solvent is insufficient, and if it is large, the reliability of the connecting portion is insufficient. The epoxy resin may be added in a large amount as long as reworkability permits, and a preferred ratio is 30 to 90% by weight, and more preferably 40 to 80% by weight. When this amount is small, the heat resistance based on the curing of the epoxy resin is insufficient, and when it is large, the reworkability is insufficient. A desirable ratio of the amine compound and / or the isocyanate compound is 1 to 10% by weight, and more preferably 1 to 7% by weight. If the amount is small, the storage stability is lowered. If the amount is large, unreacted amine compound or isocyanate compound remains in the adhesive, and there is a risk of adversely affecting the electronic components and circuits around the connection portion.
[0017]
Latent curing agents include imidazole, hydrazide, boron trifluoride-amine complexes, amine imides, polyamine salts, dicyandiamide, etc., and their modified products. These are used alone or as a mixture of two or more. it can. These are so-called ion polymerizable catalyst-type curing agents such as anion or cation polymerization type, and are preferable because they can easily obtain fast curability and require less chemical equivalent consideration. Of these, imidazole-based compounds are non-metallic, are less susceptible to electrolytic corrosion, and are particularly preferable in terms of reactivity and connection reliability. In addition, polyamines, polymercaptans, polyphenols, acid anhydrides, and the like can be used as the curing agent, and the catalyst-type curing agent can be used in combination.
[0018]
Preferred forms of the present invention that require both contradictory properties of long-term storage and fast curability are polymer materials such as polyurethane and polyester based on these curing agents, and metals such as Ni and Cu. A microcapsule type coated with an inorganic substance such as a thin film and calcium silicate is preferred. What should be noted when using the capsule-type curing agent is that the capsule particle size is made smaller than, for example, the thickness of the film adhesive to prevent capsule breakage during storage, and the material of the capsule coating layer is a composition. Resistant to water and solvents.
[0019]
The active temperature of the curing agent of the present invention is preferably 40 to 200 ° C. If the temperature is less than 40 ° C, the temperature difference from room temperature is small and a low temperature is required for storage. If the temperature exceeds 200 ° C, the other members of the connection are affected by heat. More preferred. The active temperature of the present invention indicates an exothermic peak temperature when the temperature is raised from room temperature to 10 ° C./minute using a DSC (differential scanning calorimeter) as a sample of a mixture of an epoxy resin and a curing agent. The activation temperature is determined on the basis of the low temperature side because the reactivity is superior to the reactivity but the storage stability tends to be lowered.
[0020]
Thermoplastic resins are used as needed for the purpose of film formation and reworkability. Applicable thermoplastic resins include high molecular weight epoxy resins including phenoxy resins, polyvinyl acetals, polysulfones, polyesters, polyurethanes. , Polyamides, polyimides, polycarbonates, polyethers, polysiloxanes, polyetherimides, polyvinyls, epoxy acrylates, various thermoplastic elastomers such as styrene, etc., and mixtures and copolymers thereof may be used. These are determined in consideration of compatibility with cyanate ester and epoxy resin and characteristics of the connecting member. When these resins contain polar groups such as hydroxyl groups and carboxyl groups, the compatibility with the epoxy resin is improved, and a film having a uniform appearance and characteristics can be obtained, and a short-time curing can be achieved by promoting the reaction during curing. It is also preferable from the point of obtaining.
[0021]
The molecular weight of these thermoplastic resins is preferably 2000 or more from the viewpoint of film formation. Further, the proportion in the composition should be as small as possible if film formation is possible, and is preferably 40% by weight or less.
[0022]
Among these, a phenoxy resin which is a preferred embodiment will be described. The phenoxy resin is a high molecular weight epoxy resin having a molecular weight of 10,000 or more, and since the structure is similar to that of the epoxy resin, it has a good compatibility with the epoxy resin and also has a good adhesive property. The larger the molecular weight, the easier the film-forming property is obtained, and the melt viscosity that affects the fluidity at the time of connection can be set in a wide range depending on the addition amount. Compared with a general phenoxy resin introduced from bisphenol A, a product introduced from bisphenol F is more preferable because it is easy to control compatibility and fluidity.
[0023]
Examples of the tackifier used in the present invention include natural resin such as rosin and terpene, polymerization resin such as aliphatic, alicyclic, aromatic, coumarone / indene and styrene, and phenol and xylene. There are condensed resins such as those, and there are modified products and derivatives thereof. These can be used alone or in admixture of two or more. These are preferably solids having a softening point of 40 ° C. or higher from the viewpoint of increasing the cohesive strength of the adhesive system.
[0024]
In the adhesive composition obtained above, as usual additives, for example, fillers, softeners, accelerators, anti-aging agents, coloring agents, flame retardants, thixotropic agents, coupling agents and Curing agents and catalysts such as phenol resins, melamine resins and isocyanates can also be contained. Among these, fillers such as conductive particles and silica and coupling agents of various systems such as silane, titanium, chromium, zirconium, and aluminum are particularly useful. As the coupling agent, amino group, epoxy group, and isocyanate group-containing materials are particularly preferable from the viewpoint of improving adhesiveness.
[0025]
Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, carbon, and the like. These and non-conductive glass, ceramic, plastic, and the like may be formed by coating the above-described conductive layer. . In the case of using plastic as a core or hot-melt metal particles, it is preferable because it has deformability by heating and pressurization, so that the contact area with the electrode is increased at the time of connection and reliability is improved. The conductive particles are 0 to 30% by volume, preferably 20% by volume or more based on the adhesive composition, and the conductive particles are conductive in the thickness direction by 0.1 to 20% by volume. It can also be anisotropically conductive. In addition, an insulating layer that melts at the time of connection can be formed on the surface of these particles.
[0026]
The adhesive composition of the present invention is particularly useful as a one-component adhesive, particularly as a film adhesive. In this case, for example, the adhesive composition obtained above is liquefied as a dispersion in the case of a solvent or an emulsion, and formed on a peelable substrate such as a release paper, or the above-mentioned compounding in a substrate such as a nonwoven fabric The solution may be impregnated to form on a peelable substrate, dried at a temperature lower than the curing agent activation temperature, and the solvent or dispersion may be removed. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved. Here, the SP value of the oxygen-containing solvent is preferably in the range of 8.1 to 10.7 in terms of protecting the latent curing agent, and acetates are more preferable. The boiling point of the solvent can be 150 ° C. or less. When the boiling point exceeds 150 ° C., a high temperature is required for drying, and since the temperature is close to the activation temperature of the latent curing agent, the potential is lowered, and at a low temperature, the workability during drying is lowered. For this reason, the boiling point is preferably 60 to 150 ° C, more preferably 70 to 130 ° C.
[0027]
In the case of a film adhesive, functional separation such as a composite layer composed of a conductive particle-containing layer and a non-contained layer, or a composite layer having a difference in curability and reworkability is also possible. The film form is preferable because it can be formed continuously with a constant thickness, so that the connection work can be automated, so that the connection workability is improved.
[0028]
Connection of circuits and electrodes using the adhesive composition obtained in the present invention will be described.
This method is an electrode connection method in which an adhesive composition is formed between opposed electrodes on a substrate, and contact between both electrodes and adhesion between the substrates are obtained by heating and pressing. As a substrate for forming an electrode, inorganic materials such as semiconductors, glass and ceramics, organic materials such as polyimide and polycarbonate, and combinations of these composites such as glass / epoxy can be applied.
[0029]
According to the present invention, at the time of connection, the self-polymerization reaction of the epoxy resin as the main component is preferentially generated by the latent curing agent, and the self-polymerization of the cyanate ester resin and the reaction with the epoxy resin are relatively low. It seems that cohesive force is generated to the extent that the connection reliability is maintained due to the heat of the self-polymerization reaction of the resin. Therefore, the cyanate ester resin is considered to have reworkability because it is partially soluble or swellable in the solvent. This is found in a special combination with a non-metallic latent curing agent under the condition that the temperature condition at the time of connection is 200 ° C. or less, preferably 175 ° C. for a few tens of seconds. It seems to be a phenomenon.
[0030]
However, when the cyanate ester resin is used in combination with a latent curing agent and a thermoplastic resin, the storage stability of the adhesive is greatly reduced. This is because the hydroxyl group contained in the thermoplastic resin acts as a curing catalyst for the cyanate ester resin. The present invention has found that the addition of an amine compound or an isocyanate compound is effective in order to improve the storage stability. The amine compound reversibly binds to the cyanate ester group to reduce the reactivity at room temperature, and the isocyanate compound reacts with the hydroxyl group in the thermoplastic resin to reduce the activity as a catalyst, thereby improving the storage stability. It is thought that. Therefore, as a preferable method of using the amine compound, it is preferable to mix the cyanate ester and the amine compound at room temperature or in a heated state for 1 to 2 hours before mixing, and then mix the adhesive. Moreover, as a preferable usage method of the isocyanate compound, it is preferable to mix an adhesive after pre-mixing the thermoplastic resin and the isocyanate compound in a heated state.
[0031]
In this adhesive system, the cyanate ester resin exists in the form of islands when the epoxy resin cured product is the sea due to curing after connection, or the cyanate ester resin is a metal or metal oxide due to the action of the cyanate group or ester group. It is considered that it is adsorbed and formed on the surface of the circuits to be constructed, and exists on the surface at a high concentration. Therefore, high density parts such as islands or inclined parts of cyanate ester resin in the curing system can be swollen or dissolved relatively easily by general-purpose solvents, or this part can be used as a trigger to swell or dissolve the cured product and repair it. It is thought that reworkability is imparted.
[0032]
When the composition of the present invention is used as a circuit connection member, it is slightly opaque when the film-like material has a sea-island structure, and the transparent electrode on the glass circuit can be easily recognized due to irregular reflection of transmitted light when the circuit is aligned. It has also the characteristic which is. In addition, since cyanate ester resin has a low viscosity at the time of connection, when the temperature condition at the time of connection is about 175 ° C. or less and about several tens of seconds, the viscosity is low, the resistance due to the flow of the adhesive is small, and the connection circuit is deformed Absent. Therefore, the circuit is less likely to be displaced and is suitable for connection of a fine circuit.
[0033]
【Example】
Hereinafter, the present invention will be described in detail based on examples. In Examples 1 to 20, the contents of the compositions are shown in Table 1, and the evaluation results are shown in Table 2.
[0034]
Examples 1 to 3 and Comparative Example 1
(1) Preparation of composition AROCY B-30 and Epicoat YL-980 (bisphenol A type high-purity liquid epoxy resin, hydrolyzable chloride ion 150 ppm, product name manufactured by Yuka Shell Epoxy Co., Ltd., abbreviated 980) , Latent curing agent Novacure 3921HP (master in which a microcapsule type curing agent having an average particle diameter of 4 μm having an imidazole modified as a core and a surface coated with a polyurethane film is dispersed in a bisphenol F type high-purity liquid epoxy resin) Batch type curing agent, curing agent / epoxy resin ratio 1/2, active temperature 111 ° C., Asahi Kasei Kogyo Co., Ltd. trade name, abbreviated as 3941), mixed solvent of toluene / ethyl acetate = 50/50 (weight ratio) ZX-1356 (phenoxy resin derived from bisphenol F, molecular weight 50,000, hydroxyl group-containing) Tohto Kasei Co., Ltd. trade name, a ZX approximately) and were mixed so that 10/10/50/30 solid content ratio description order to obtain a 40% solids solution.
1.0 part by weight of an epoxy silane coupling agent and 2 parts by volume of conductive particles (with a mean particle diameter of 5 μm on the surface of a styrene-divinylbenzene copolymer resin sphere with respect to 100 parts by weight of the solid content of the above mixture) A thin layer, abbreviated as “Pla”, was added and stirred as Comparative Example 1, and 1.0, 3.0, and 7.0 parts by weight of dihexylamine (abbreviated as “DHA”) were added. It was set as Examples 1-3, and it apply | coated using the roll coater on the polytetrafluoroethylene film (separator), Then, the film-like thing whose thickness of an adhesive bond layer is 20 micrometers was obtained by drying at 80 degreeC for 10 minutes.
(2) Evaluation Using this film-like material, a flexible circuit board (FPC) having a thin tin layer on a copper circuit having a line width of 30 μm, a pitch of 60 μm and a thickness of 20 μm, and a thin layer of indium oxide (ITO) on the entire surface A glass plate with a thickness of 1.1 mm having a thickness of 170 ° C.—30 kg / cm 2 ─ Connected with a width of 1.5 mm in 20 seconds. At this time, after pasting a film-like material on the connecting portion ITO of the glass plate in advance, 90 ° C.—10 kg / cm 2 ─ Temporary connection was made for 5 seconds, and then the separator was peeled off and connected to the FPC.
[0035]
[Table 1]
Figure 0003852488
[0036]
The evaluation results are shown in Table 2.
In Table 2, the reworkability refers to the time required for detaching the FPC of the connection part from the ITO and wiping off the adhesive of a certain area (20 × 2 mm) remaining on the ITO with a cotton swab dipped in acetone, for 30 seconds. Within (circle), 2 minutes or more were represented by (x).
Reliability is the increase ratio of the connection resistance value after 85 ° C 85% RH-1000h with respect to the initial resistance, and the ratio before and after the processing of x + 3σ of 200 resistances of the adjacent circuit of FPC is within 2 times (○), 4 times The above is indicated by (x).
For the electrolytic corrosion property, the FPC is a comb circuit, a potential difference of 50 V is provided between adjacent electrodes, and the appearance after 85 ° C. and 85% RH—500 h is observed with a 200-fold metal microscope. I saw.
Impurity ions are obtained by extracting the cured composition at 100 ° C. for 20 hours in pure water and measuring the extracted water by ion chromatography. In the present invention, the chlorine ion (Cl ) concentration is 10 ppm or less (◯), 20 ppm or more is indicated by (x).
For storage stability, the prepared film-like material was subjected to an aging treatment at 40 ° C. for 5 days, and then a connection test was conducted. The connection resistance was 1Ω or less (◎), 1Ω to 2Ω (◯), 2Ω to 5Ω (Δ), 5Ω or more is indicated by (×).
The results are shown in Table 2. In Comparative Example 1, all of the reworkability, reliability, and electrolytic corrosion properties were good, but the storage stability was poor and connection was impossible after aging at 40 ° C. for 24 hours. On the other hand, the storage stability of Examples 1 to 3 was improved. In particular, the storage stability was most improved in Example 2.
[0037]
Examples 4 and 5
The same as in Examples 1 to 3, except that 3.0 parts by weight of dibenzylamine (abbreviated as DBA) and N-methylbenzylamine (abbreviated as NBA) were added without using dihexylamine. Examples 4 and 5 were designated.
The results are shown in Table 2. The reworkability, reliability, and electrolytic corrosion properties are all good, and the storage stability is improved as compared with Comparative Example 1.
[0038]
Examples 6-8
Although it is the same as that of Examples 1-3, the isocyanate compound was used without using an amine compound. 3.0 parts by weight of n-butyl isocyanate (abbreviated as NBI), 2,4-tolylene diisocyanate (abbreviated as TDI) and 4,4-diphenylmethane diisocyanate (abbreviated as MDI) were added.
The results are shown in Table 2, and all the reworkability, reliability, and electrolytic corrosion properties are good, and the storage stability is improved as compared with Comparative Example 1.
[0039]
Examples 9 and 11
Although it is the same as that of Examples 1-8, the amine compound and the isocyanate compound were used together. The results are shown in Table 2. Reworkability, reliability, electrolytic corrosion, and storage stability were all good, and among them, the storage stability was improved as compared with the case of using an amine compound and an isocyanate compound alone.
[0040]
Examples 12-17
Although it is the same as that of Examples 9-11, it tried changing the kind of an epoxy resin and a thermoplastic resin like Table 1. FIG. Newly used epoxy resins are HP4032D (Naphthalenediol high purity semi-solid epoxy resin, Dainippon Ink and Chemicals, trade name, abbreviated 4032), EP1032H60 (multifunctional high purity solid epoxy resin, oiled shell) Epoxy Co., Ltd. trade name, abbreviated as 1032. Newly used thermoplastic resins are PKHC (phenoxy resin derived from bisphenol A, molecular weight 25,000, hydroxyl group content 6%, trade name of Union Carbide Corporation, abbreviated as PK), PVB3000K (polyvinyl butyral, molecular weight 30). , 000, hydroxyl group-containing, product name, manufactured by Denki Kagaku Kogyo Co., Ltd., abbreviated as PV), Tuftec M-1913 (carboxylated SEBS, product name produced by Asahi Kasei Kogyo Co., Ltd., abbreviated M1), WS-023 (acrylic rubber, hydroxyl group) And carboxyl group-containing, Teikoku Chemical Industry Co., Ltd. trade name, abbreviated as WS).
The results are shown in Table 2, and all the examples showed good results.
[0041]
Examples 18-20
Although it is the same as that of Example 2, 6, and 9, it mix | blended after carrying out pre-processing (40 degreeC, 1 hour), respectively with the cyanate ester resin and the thermoplastic resin for the amine compound and the isocyanate compound.
The results are shown in Table 2, and all examples showed good results. Particularly, the storage stability was further improved by pretreatment, and good results were also obtained after aging at 40 ° C. for 10 days.
[0042]
[Table 2]
Figure 0003852488
[0043]
【The invention's effect】
As is clear from the above description, according to the present invention, high-density electrodes can be connected at low temperature and short time, the connection is highly reliable and can be easily repaired with a general-purpose solvent, and the storage stability of the product is improved. It has become possible to provide excellent adhesives.

Claims (4)

下記成分を必須とする補修可能な電極接続用接着剤組成物
(1)シアネートエステル樹脂
(2)エポキシ樹脂
(3)非金属系のマイクロカプセル状潜在性硬化剤
(4)熱可塑性樹脂
(5)アミン化合物および/またはイソシアネート化合物
Repairable adhesive composition for electrode connection comprising the following components (1) cyanate ester resin ,
(2) epoxy resin ,
(3) a non-metallic microcapsule-like latent curing agent ,
(4) thermoplastic resin ,
(5) Amine compounds and / or isocyanate compounds
シアネートエステル樹脂が1〜25重量%、非金属系のマイクロカプセル状潜在性硬化剤を5〜50重量%含有するエポキシ樹脂が30〜90重量%、アミン化合物および/またはイソシアネート化合物が1〜10重量%である請求項1記載の補修可能な電極接続用接着剤組成物。 1 to 25 % by weight of cyanate ester resin, 30 to 90 % by weight of epoxy resin containing 5 to 50% by weight of non-metallic microcapsule latent curing agent, 1 to 10 % of amine compound and / or isocyanate compound % a is claim 1 repairable electrode connecting adhesive composition. 非金属系のマイクロカプセル状潜在性硬化剤がイオン重合性の触媒型硬化剤である請求項1または2に記載の接着剤組成物。An adhesive composition according to claim 1 or 2 microencapsulated latent curing agent of the non-metallic is ionically polymerizable catalyst-type curing agent. 請求項1、2又は3に記載の補修可能な電極接続用接着剤組成物に対し、0.1〜20体積%の導電粒子を含有してなる電極接続用接続部材。A connecting member for electrode connection comprising 0.1 to 20% by volume of conductive particles with respect to the repairable electrode connecting adhesive composition according to claim 1, 2 or 3.
JP10714896A 1996-04-26 1996-04-26 Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition Expired - Lifetime JP3852488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10714896A JP3852488B2 (en) 1996-04-26 1996-04-26 Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10714896A JP3852488B2 (en) 1996-04-26 1996-04-26 Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition

Publications (2)

Publication Number Publication Date
JPH09291268A JPH09291268A (en) 1997-11-11
JP3852488B2 true JP3852488B2 (en) 2006-11-29

Family

ID=14451737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10714896A Expired - Lifetime JP3852488B2 (en) 1996-04-26 1996-04-26 Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition

Country Status (1)

Country Link
JP (1) JP3852488B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072957A (en) * 1999-03-26 2001-03-21 Hitachi Chem Co Ltd Circuit connecting component
JP5640951B2 (en) * 1999-03-26 2014-12-17 日立化成株式会社 Circuit connection member
JP2007169632A (en) * 2000-04-25 2007-07-05 Hitachi Chem Co Ltd Adhesive for circuit connection, circuit connection method using the same and circuit connection structure
AU2001252557A1 (en) 2000-04-25 2001-11-07 Hitachi Chemical Co. Ltd. Adhesive for circuit connection, circuit connection method using the same, and circuit connection structure
JP3565797B2 (en) * 2001-06-06 2004-09-15 ソニーケミカル株式会社 Latent curing agent, method for producing latent curing agent, and adhesive
KR100938263B1 (en) * 2002-12-05 2010-01-22 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Latent Hardener, Manufacturing Method for Latent Hardener, and Adhesive
JP2005353420A (en) * 2004-06-10 2005-12-22 Sony Corp Conductive material, carrier sheet of conductive material, and charging method and device of conductive material
CN101679608B (en) * 2007-06-22 2012-07-18 Adeka股份有限公司 One-pack type cyanate/epoxy composite resin composition
JP4938567B2 (en) * 2007-06-29 2012-05-23 株式会社Adeka One-component cyanate-epoxy composite resin composition
JP5475223B2 (en) * 2007-10-09 2014-04-16 株式会社Adeka One-component cyanate-epoxy composite resin composition, cured product thereof and method for producing the same, and sealing material and adhesive using the same
JP5603610B2 (en) 2010-02-12 2014-10-08 株式会社Adeka Solvent-free one-component cyanate ester-epoxy composite resin composition
JP5727325B2 (en) * 2011-08-01 2015-06-03 積水化学工業株式会社 Thermosetting resin material and multilayer substrate
JP6002566B2 (en) * 2012-12-13 2016-10-05 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
JP2017203109A (en) * 2016-05-11 2017-11-16 パナソニックIpマネジメント株式会社 Resin composition containing conductive particle and electronic device including the resin composition
JP7060939B2 (en) * 2017-10-25 2022-04-27 株式会社Adeka One-component resin composition, cured product thereof, and adhesive using the same

Also Published As

Publication number Publication date
JPH09291268A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP3885896B2 (en) Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition
JP3852488B2 (en) Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition
JP3475959B2 (en) ADHESIVE COMPOSITION, PROCESS FOR PRODUCING FILM ADHESIVE USING THE ADHESIVE COMPOSITION, CONNECTOR OF ELECTRODES USING THE ADHESIVE, AND METAL FOIL WITH ADHESIVE
JP3513835B2 (en) Adhesive film
JPH08315885A (en) Circuit connecting material
JPH083081B2 (en) Adhesive composition for circuit connection
JP3651624B2 (en) Circuit connection member
JP2842051B2 (en) Adhesive composition
JP2002327162A (en) Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
EP1657725B1 (en) Insulation-coated electroconductive particles
JP3947532B2 (en) Anisotropic conductive adhesive film
JP2894093B2 (en) Adhesive composition and laminated film
JP3937299B2 (en) Adhesive with support and circuit connection structure using the same
JP2003268344A (en) Anisotropically electroconductive adhesive and heat- seal connector
JP4995067B2 (en) Circuit connection material
JPH09162235A (en) Method for packaging ic chip and member for connecting ic chip
JP4339414B2 (en) Circuit connection member
JP2010024384A (en) Anisotropically electroconductive composition
JPH05117419A (en) Anisotropically conductive film
JP2002265916A (en) Adhesive composition
JP2006054180A (en) Circuit connecting material
JP2009161684A (en) Adhesive composition for use in circuit connection, and connection structure of circuit member and connecting method of circuit member by using the adhesive composition
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JPH11106731A (en) Composition for circuit connection and film made therefrom
JP4947229B2 (en) Film-like circuit connecting material manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6