JPH09147861A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH09147861A
JPH09147861A JP7328261A JP32826195A JPH09147861A JP H09147861 A JPH09147861 A JP H09147861A JP 7328261 A JP7328261 A JP 7328261A JP 32826195 A JP32826195 A JP 32826195A JP H09147861 A JPH09147861 A JP H09147861A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328261A
Other languages
Japanese (ja)
Inventor
Mikiya Yamazaki
幹也 山崎
Mayumi Uehara
真弓 上原
Naoya Nakanishi
直哉 中西
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7328261A priority Critical patent/JPH09147861A/en
Publication of JPH09147861A publication Critical patent/JPH09147861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which has sufficient charging and discharging capacity even in the case where lithium copper composite oxide, whose cost is lower than that of metal oxide containing lithium such as LiCoO2 or the like, is used as positive electrode material. SOLUTION: In a lithium secondary battery, metal lithium or material which can store and discharge lithium ions is used for a negative electrode 2, and simultaneously material which can store and discharge lithium ions is used for a positive electrode 1. One kind element or more selected out of B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, Bi, In, Mo, W are compounded with Lithium copper composite oxide so as to be used as the material for the positive electrode 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、負極に金属リチ
ウム又はリチウムイオンの吸蔵,放出が可能な材料を用
いると共に、正極にリチウムイオンの吸蔵,放出が可能
な材料を用いたリチウム二次電池に係り、特に、その正
極の材料に、安価でかつリチウムイオンの吸蔵,放出特
性も良好な材料を用いたリチウム二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a material capable of storing and releasing metallic lithium or lithium ions for the negative electrode and a material capable of storing and releasing lithium ions for the positive electrode. In particular, the present invention relates to a lithium secondary battery using a material for its positive electrode, which is inexpensive and has good lithium ion storage / release characteristics.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池の1つとして、リチウムの酸化還元を利用して
充放電を行なうようにしたリチウム二次電池が利用され
るようになった。
2. Description of the Related Art In recent years, as one of new type secondary batteries having high output and high energy density, lithium secondary batteries which are charged and discharged by utilizing redox of lithium have come into use. .

【0003】そして、このリチウム二次電池における正
極や負極の材料としては、従来より様々な材料が使用さ
れており、その正極の材料には、例えば、リチウムイオ
ンの吸蔵,放出が可能な、LiCoO2 ,LiNiO
2 ,LiMnO2 等のリチウム含有金属酸化物が一般に
使用されていた。
Various materials have been conventionally used as materials for the positive electrode and the negative electrode in this lithium secondary battery. The material for the positive electrode is, for example, LiCoO 2 capable of absorbing and desorbing lithium ions. 2 , LiNiO
2 , lithium-containing metal oxides such as LiMnO 2 have been commonly used.

【0004】しかし、これらのリチウム含有金属酸化物
は一般にそのコストが高く付くという問題があり、リチ
ウムイオンを吸蔵,放出できる新たな材料について検討
されるようになった。
However, these lithium-containing metal oxides generally have a problem of high cost, and new materials capable of inserting and extracting lithium ions have been investigated.

【0005】ここで、リチウムイオンの吸蔵,放出が可
能な安価な材料としては、リチウム銅複合酸化物Li2
CuO2 等が知られていたが、このリチウム銅複合酸化
物は上記のLiCoO2 ,LiNiO2 ,LiMnO2
等のリチウム含有金属酸化物に比べてリチウムイオンを
吸蔵,放出できる容量が小さく、これを正極の材料とし
て使用した場合には、リチウム二次電池としての十分な
充放電容量が得られないという問題があった。
Here, as an inexpensive material capable of inserting and extracting lithium ions, lithium copper composite oxide Li 2 is used.
Although CuO 2 and the like have been known, this lithium-copper composite oxide has the above-mentioned LiCoO 2 , LiNiO 2 , and LiMnO 2
Has a smaller capacity to store and release lithium ions than other lithium-containing metal oxides, and when used as a material for the positive electrode, a sufficient charge / discharge capacity as a lithium secondary battery cannot be obtained. was there.

【0006】[0006]

【発明が解決しようとする課題】この発明は、負極に金
属リチウム又はリチウムイオンの吸蔵,放出が可能な材
料を用いると共に、正極にリチウムイオンの吸蔵,放出
が可能な材料を用いたリチウム二次電池における上記の
ような問題を解決することを課題とするものであり、L
iCoO2 ,LiNiO2 ,LiMnO2 等のリチウム
含有金属酸化物より安価なリチウム銅複合酸化物を用い
た場合においても、十分な充放電容量をもつリチウム二
次電池が得られるようにすることを目的とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention uses a material capable of occluding and releasing metallic lithium or lithium ions for the negative electrode and a lithium secondary battery using a material capable of occluding and releasing lithium ions for the positive electrode. It is an object to solve the above problems in a battery, and L
An object of the present invention is to obtain a lithium secondary battery having a sufficient charge / discharge capacity even when using a lithium-copper composite oxide that is cheaper than a lithium-containing metal oxide such as iCoO 2 , LiNiO 2 , and LiMnO 2. It is what

【0007】[0007]

【課題を解決するための手段】この発明におけるリチウ
ム二次電池においては、負極に金属リチウム又はリチウ
ムイオンの吸蔵,放出が可能な材料を用いると共に、正
極にリチウムイオンの吸蔵,放出が可能な材料を用いた
リチウム二次電池において、上記の正極の材料として、
リチウム銅複合酸化物に、B,Na,Mg,Al,S
i,K,Ca,Sc,Ti,V,Cr,Mn,Fe,C
o,Ni,Zn,Ga,Ge,Zr,Nb,Ru,A
g,Ta,Bi,In,Mo,Wの中から選ばれる一種
以上の元素が複合化されたものを用いるようにしたので
ある。
In the lithium secondary battery of the present invention, a material capable of storing and releasing metallic lithium or lithium ions is used for the negative electrode, and a material capable of storing and releasing lithium ions is used for the positive electrode. In the lithium secondary battery using, as the material of the positive electrode,
B, Na, Mg, Al, S in lithium copper composite oxide
i, K, Ca, Sc, Ti, V, Cr, Mn, Fe, C
o, Ni, Zn, Ga, Ge, Zr, Nb, Ru, A
A composite of one or more elements selected from g, Ta, Bi, In, Mo and W is used.

【0008】そして、本発明者等の考察によれば、この
発明におけるリチウム二次電池のように正極の材料にリ
チウム銅複合酸化物を用いるにあたり、このリチウム銅
複合酸化物に前記のような元素を1種以上複合化させる
と、このリチウム銅複合酸化物における銅の酸化還元が
スムーズに行なわれるようになると考えられ、このた
め、こ正極にリチウム銅複合酸化物を用いた場合であっ
ても、LiCoO2 ,LiNiO2 ,LiMnO2 等の
リチウム含有金属酸化物を用いた場合と同様の十分な充
放電容量をもつリチウム二次電池が得られるようにな
る。
According to the consideration of the present inventors, when a lithium-copper composite oxide is used as a material for a positive electrode as in the lithium secondary battery of the present invention, the lithium copper composite oxide contains the above-mentioned elements. It is considered that when one or more of these are compounded, the redox of copper in this lithium-copper composite oxide will be carried out smoothly. Therefore, even if this lithium-copper composite oxide is used for this positive electrode. , LiCoO 2 , LiNiO 2 , LiMnO 2 and the like, a lithium secondary battery having a sufficient charge / discharge capacity similar to the case of using a lithium-containing metal oxide can be obtained.

【0009】ここで、リチウム銅複合酸化物に対して複
合化させる前記の元素の量が少ないと、リチウム銅複合
酸化物における銅の酸化還元がスムーズに行なわれなく
なる一方、その量が多くなりすぎると、上記の元素が単
独で存在して正極における電極活性が低下し、何れの場
合においてもリチウム二次電池における充放電容量が低
下するため、リチウム銅複合酸化物に対して複合化させ
る前記の元素の量を、リチウム銅複合酸化物におけるC
uに対して2〜25mol%程度にすることが好まし
い。
If the amount of the above-mentioned element to be complexed with the lithium-copper composite oxide is small, the oxidation-reduction of copper in the lithium-copper composite oxide cannot be carried out smoothly, but the amount becomes too large. And the electrode activity in the positive electrode is reduced by the presence of the above elements alone, the charge and discharge capacity in the lithium secondary battery is reduced in any case, so that the complex with the lithium copper composite oxide The amount of element is C in the lithium-copper composite oxide.
It is preferably about 2 to 25 mol% with respect to u.

【0010】このため、上記のリチウム二次電池に使用
する正極の材料としては、Lix Cu1-y My Oz (MがB,Na,Mg,Al,Si,K,Ca,Sc,
Ti,V,Cr,Mn,Fe,Co,Ni,Zn,G
a,Ge,Zr,Nb,Ru,Ag,Ta,Bi,I
n,Mo,Wの中から選ばれる一種以上の元素であり、
x,y,zが、0<x≦2.6、0.02≦y≦0.
2、1.8≦z≦2.2である。)の一般式で表わされ
る材料を用いることが好ましい。
Therefore, as the material of the positive electrode used in the above lithium secondary battery, Lix Cu1-y My Oz (M is B, Na, Mg, Al, Si, K, Ca, Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Zn, G
a, Ge, Zr, Nb, Ru, Ag, Ta, Bi, I
One or more elements selected from n, Mo and W,
x, y, z are 0 <x ≦ 2.6, 0.02 ≦ y ≦ 0.
2, 1.8 ≦ z ≦ 2.2. It is preferable to use the material represented by the general formula (1).

【0011】また、この発明におけるリチウム二次電池
において、負極に使用するリチウムイオンの吸蔵,放出
が可能な材料としては、例えば、黒鉛,コークス,有機
物焼成体等の炭素材料や、Li−Al,Li−In,L
i−Sn,Li−Pb,Li−Bi,Li−Ga,Li
−Sr,Li−Si,Li−Zn,Li−Cd,Li−
Ca,Li−Ba等のリチウム合金が使用される。
Further, in the lithium secondary battery of the present invention, examples of the material capable of inserting and extracting lithium ions used for the negative electrode include carbon materials such as graphite, coke, and an organic fired body, Li-Al, Li-In, L
i-Sn, Li-Pb, Li-Bi, Li-Ga, Li
-Sr, Li-Si, Li-Zn, Li-Cd, Li-
A lithium alloy such as Ca or Li-Ba is used.

【0012】また、この発明のリチウム二次電池におけ
る電解質としては、公知の非水電解液や高分子固体電解
質を使用することでき、非水電解液における溶媒にも公
知のものを使用することができ、例えば、エチレンカー
ボネート、ビニレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート等の有機溶媒や、これらの
有機溶媒にジエチルカーボネート、ジメチルカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、エトキシメトキシエタン等の低沸点溶媒を混合さ
せた混合溶媒等を使用することができ、またこの溶媒に
溶解させる溶質としても公知のものを使用することがで
き、例えば、LiPF6 、LiCF3 SO3 、LiCl
4 、LiBF4 、Li210Cl10、Li212Cl
12等を使用することができる。
As the electrolyte in the lithium secondary battery of the present invention, a known non-aqueous electrolytic solution or a polymer solid electrolyte can be used, and a known solvent can also be used as the solvent in the non-aqueous electrolytic solution. It is possible to use, for example, organic solvents such as ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, and diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane in these organic solvents. It is possible to use a mixed solvent obtained by mixing a low boiling point solvent such as, and known solutes to be dissolved in this solvent, for example, LiPF 6 , LiCF 3 SO 3 , LiCl.
O 4 , LiBF 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl
12 etc. can be used.

【0013】また、高分子固体電解質を使用する場合に
も、この高分子固体電解質を構成する高分子に公知のも
のを用いることができ、特に、リチウムイオンに対する
イオン導電性の高い高分子を使用することが好ましく、
例えば、ポリエチレンオキサイド,ポリプロピレンオキ
サイド,ポリエチレンイミン等が好適に使用され、また
この高分子に対して上記の溶質と共に、上記の溶媒を加
えてゲル状にして使用することも可能である。
Also, when a polymer solid electrolyte is used, a known polymer can be used as the polymer constituting the polymer solid electrolyte, and in particular, a polymer having a high ionic conductivity for lithium ions is used. Preferably
For example, polyethylene oxide, polypropylene oxide, polyethyleneimine and the like are preferably used, and it is also possible to add the above solvent to the polymer together with the above solvent to form a gel.

【0014】[0014]

【実施例】以下、この発明の実施例に係るリチウム二次
電池について実験例を挙げて具体的に説明し、この実施
例に係るリチウム二次電池が充放電特性の点で優れてい
ることを明らかにする。なお、この発明におけるリチウ
ム二次電池は、下記に示した実施例のものに限定される
ものではなく、その要旨を変更しない範囲において適宜
変更することができる。
EXAMPLES Hereinafter, the lithium secondary battery according to the example of the present invention will be specifically described with reference to experimental examples, and it will be shown that the lithium secondary battery according to this example is excellent in charge and discharge characteristics. Make it clear. The lithium secondary battery according to the present invention is not limited to the examples shown below, and may be appropriately modified within the scope of the invention.

【0015】(実験例1〜6)これらの実験例において
は、下記のようにして作製した正極,負極及び非水電解
液を用いて、直径24.0mm、厚さ3.0mmになっ
た図1に示すようなコイン型のリチウム二次電池を作製
するようにした。
(Experimental Examples 1 to 6) In these experimental examples, the positive electrode, the negative electrode and the non-aqueous electrolyte prepared as described below were used to obtain a diameter of 24.0 mm and a thickness of 3.0 mm. A coin-type lithium secondary battery as shown in 1 was manufactured.

【0016】[正極の作製]これらの実験例において正
極を作製するにあたっては、原料として、実験例1では
LiOHとCuOとを用い、LiとCuのモル比が2:
1になるように混合し、また実験例2〜6ではLiOH
とCuOの他にB23 を用い、LiとCuとBとのモ
ル比が実験例2では2:0.98:0.02になるよう
に混合し、実験例3〜6ではLiとCuとBのモル比を
変更させるようにした。
[Production of Positive Electrode] In the production of the positive electrode in these experimental examples, LiOH and CuO were used as raw materials in Experimental Example 1, and the molar ratio of Li and Cu was 2: 2.
1, so that LiOH was used in Experimental Examples 2 to 6.
And CuO, B 2 O 3 was used, and Li, Cu, and B were mixed so that the molar ratio was 2: 0.98: 0.02 in Experimental Example 2, and Li was mixed in Experimental Examples 3 to 6. The molar ratio of Cu and B was changed.

【0017】そして、これらの混合物を、それぞれ乾燥
空気雰囲気中において850℃で20時間焼成し、実験
例1ではLi2 CuO2 、実験例2〜6では前記の一般
式Lix Cu1-y My Oz におけるMがBからなり、y
値が下記の表1に示す値になった正極材料を得た。
Then, these mixtures were respectively calcined in a dry air atmosphere at 850 ° C. for 20 hours to obtain Li 2 CuO 2 in Experimental Example 1 and in the general formula Lix Cu1-y My Oz in Experimental Examples 2 to 6. M consists of B, y
A positive electrode material having a value shown in Table 1 below was obtained.

【0018】そして、上記実験例1〜6において得た各
正極材料を石川式らいかい乳鉢で粉砕し、このようにし
て得た各粉末と導電剤であるアセチレンブラックと結着
剤であるフッ素樹脂粉末とをそれぞれ重量比90:6:
4の比率で混合して正極合剤を調製し、この正極合剤を
成型圧2トン/cm2 の圧力で直径20mmの円板状に
加圧成型し、その後、これらをそれぞれ250℃で2時
間熱処理して各実験例の正極を作製した。
Then, each positive electrode material obtained in the above Experimental Examples 1 to 6 was crushed in an Ishikawa type raid mortar, and each powder thus obtained, acetylene black as a conductive agent, and fluororesin as a binder. The powder and the weight ratio of 90: 6:
4 to prepare a positive electrode mixture, and the positive electrode mixture was pressure-molded at a molding pressure of 2 ton / cm 2 into a disk shape having a diameter of 20 mm, and thereafter, these were each mixed at 250 ° C. for 2 hours. Heat treatment was performed for a period of time to produce the positive electrode of each experimental example.

【0019】[負極の作製]これらの実験例において
は、負極を作製するにあたり、所定厚みのリチウム圧延
板からそれぞれ直径20mmの円板を打ち抜いて負極を
作製した。
[Preparation of Negative Electrode] In these experimental examples, a negative electrode was prepared by punching a disc having a diameter of 20 mm from a lithium rolled plate having a predetermined thickness to prepare the negative electrode.

【0020】[非水電解液の調製]これらの実験例にお
いては、プロピレンカーボネートと1,2−ジメトキシ
エタンとを体積比で1:1に混合させた混合溶媒にLi
Cl4 を1mol/lの割合で溶解させて非水電解液を
調製した。
[Preparation of Non-Aqueous Electrolyte Solution] In these experimental examples, Li was added to a mixed solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1.
Cl 4 was dissolved at a ratio of 1 mol / l to prepare a non-aqueous electrolytic solution.

【0021】[電池の作製]そして、実験例1〜6の各
リチウム二次電池を作製するにあたっては、図1に示す
ように、上記のようにして作製した各正極1と各負極2
の間にそれぞれポリプロピレン製の微多孔膜(ヘキスト
セラニーズ社製,セルガード)で構成されたセパレータ
3を挟み込み、このセパレータ3に上記の非水電解液を
含浸させて、これらを正極缶4aと負極缶4bとによっ
て形成される電池ケース4内に収容させるようにし、正
極集電体5を介して正極1を正極缶4aに接続させる一
方、負極集電体6を介して負極2を負極缶4bに接続さ
せ、この正極缶4aと負極缶4bとをポリプロピレン製
の絶縁性パッキン7により電気的に絶縁させて各実験例
1〜6の各リチウム二次電池を作製した。そして、各リ
チウム二次電池の内部で生じた化学エネルギーを正極缶
4aと負極缶4bの両端子から電気エネルギーとして外
部へ取り出すようにした。
[Production of Battery] Then, in producing each lithium secondary battery of Experimental Examples 1 to 6, as shown in FIG. 1, each positive electrode 1 and each negative electrode 2 produced as described above.
A separator 3 composed of a polypropylene microporous film (Hoechst Celanese Co., Ltd., Celgard) is sandwiched between the two, and the separator 3 is impregnated with the above non-aqueous electrolytic solution to form a positive electrode can 4a and a negative electrode. The positive electrode 1 is connected to the positive electrode can 4a via the positive electrode collector 5 while being housed in the battery case 4 formed by the can 4b, while the negative electrode 2 is connected to the negative electrode can 4b via the negative electrode collector 6. , And the positive electrode can 4a and the negative electrode can 4b were electrically insulated by the insulating packing 7 made of polypropylene to produce the lithium secondary batteries of Experimental Examples 1 to 6. Then, the chemical energy generated inside each lithium secondary battery was taken out as electric energy from both terminals of the positive electrode can 4a and the negative electrode can 4b.

【0022】次に、上記のようにして作製した実験例1
〜6の各リチウム二次電池における放電特性を調べるた
め、各リチウム二次電池を充電電流1mAで充電終止電
圧4.3Vまで充電した後、放電電流3mAで放電終止
電圧2.0Vまで放電して、実験例1〜6の各リチウム
二次電池における放電容量を調べ、その結果を下記の表
1に合わせて示した。
Next, Experimental Example 1 produced as described above
In order to investigate the discharge characteristics of each of the lithium secondary batteries of Nos. 6 to 6, each lithium secondary battery was charged to a charge end voltage of 4.3 V at a charge current of 1 mA, and then discharged to a discharge end voltage of 2.0 V at a discharge current of 3 mA. The discharge capacities of the lithium secondary batteries of Experimental Examples 1 to 6 were examined, and the results are also shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から明らかなように、リチウム銅
複合酸化物におけるCuに対してBを所定の割合で添加
させ、特に、一般式Lix Cu1-y My Oz におけるy
値が前記のように0.02≦y≦0.2の範囲になった
実験例2〜5の各リチウム二次電池においては、Bを加
えなかった実験例1のリチウム二次電池に比べて放電容
量が著しく大きくなっていた。
As is clear from these results, B was added in a predetermined ratio to Cu in the lithium-copper composite oxide, and particularly y in the general formula Lix Cu1-y My Oz was used.
In each of the lithium secondary batteries of Experimental Examples 2 to 5 in which the value was in the range of 0.02 ≦ y ≦ 0.2 as described above, compared with the lithium secondary battery of Experimental Example 1 in which B was not added. The discharge capacity was remarkably large.

【0025】(実験例7〜66)これらの実験例におい
ては、上記実験例1〜6のリチウム二次電池における正
極だけを変更させ、それ以外については、上記の実験例
1〜6の各リチウム二次電池と同様にして図1に示すよ
うなコイン型のリチウム二次電池を作製した。
(Experimental Examples 7 to 66) In these Experimental Examples, only the positive electrode in the lithium secondary batteries of Experimental Examples 1 to 6 was changed, and other than that, each lithium of Experimental Examples 1 to 6 was changed. A coin-type lithium secondary battery as shown in FIG. 1 was produced in the same manner as the secondary battery.

【0026】ここで、この実験例7〜66においては、
正極を作製するにあたり、下記の表2〜表4に示すよう
に、LiOHとCuOに対して添加する原料を変更させ
ると共に、前記の一般式Lix Cu1-y My Oz におけ
るMの元素及びy値をこれらの表に示すように変更さ
せ、それ以外については、上記実験例1〜6の場合と同
様にして正極を作製した。
Here, in Experimental Examples 7 to 66,
In producing the positive electrode, as shown in Tables 2 to 4 below, the raw materials added to LiOH and CuO were changed, and the element of M and the y value in the general formula Lix Cu1-y My Oz were changed. The positive electrode was manufactured in the same manner as in Experimental Examples 1 to 6 except for the changes as shown in these tables.

【0027】そして、このようにして作製した実験例7
〜66の各リチウム二次電池について、それぞれ上記実
験例1〜6の場合と同様にして、各リチウム二次電池の
放電特性を調べ、その結果をこれらの表に合わせて示し
た。
Then, Experimental Example 7 produced in this way
For each of the lithium secondary batteries of No. 66 to No. 66, the discharge characteristics of each of the lithium secondary batteries were examined in the same manner as in the case of Experimental Examples 1 to 6 above, and the results are also shown in these tables.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】この結果から明らかなように、前記の一般
式Lix Cu1-y My Oz におけるMの元素に、B,N
a,Mg,Al,Si,K,Ca,Sc,Ti,V,C
r,Mn,Fe,Co,Ni,Zn,Ga,Ge,Z
r,Nb,Ru,Ag,Ta,Bi,In,Mo,Wの
中から選ばれる一種以上の元素を用いると共に、そのy
値が0.02〜0.2の範囲にある各実験例のリチウム
二次電池においては、その放電容量が著しく高くなって
いた。
As is clear from this result, the elements of M in the above-mentioned general formula Lix Cu1-y My Oz are replaced by B, N.
a, Mg, Al, Si, K, Ca, Sc, Ti, V, C
r, Mn, Fe, Co, Ni, Zn, Ga, Ge, Z
At least one element selected from r, Nb, Ru, Ag, Ta, Bi, In, Mo and W is used, and y
The discharge capacity was remarkably high in the lithium secondary battery of each experimental example having a value in the range of 0.02 to 0.2.

【0032】[0032]

【発明の効果】以上詳述したように、この発明における
リチウム二次電池においては、正極の材料にリチウム銅
複合酸化物を用いるにあたり、このリチウム銅複合酸化
物に対してB,Na,Mg,Al,Si,K,Ca,S
c,Ti,V,Cr,Mn,Fe,Co,Ni,Zn,
Ga,Ge,Zr,Nb,Ru,Ag,Ta,Bi,I
n,Mo,Wの中から選ばれる一種以上の元素を複合化
させたため、正極に使用したリチウム銅複合酸化物にお
ける銅の酸化還元がスムーズに行なわれるようになり、
特に、リチウム銅複合酸化物に対して複合化させる元素
の量を調整し、一般式Lix Cu1-y My Oz で表され
る上記の元素Mのy値が0.02〜0.2になるように
した場合には、十分な充放電容量をもつリチウム二次電
池が得られるようになった。
As described above in detail, in the lithium secondary battery according to the present invention, when the lithium copper composite oxide is used as the material of the positive electrode, B, Na, Mg, Al, Si, K, Ca, S
c, Ti, V, Cr, Mn, Fe, Co, Ni, Zn,
Ga, Ge, Zr, Nb, Ru, Ag, Ta, Bi, I
Since one or more elements selected from n, Mo and W are compounded, the redox of copper in the lithium-copper composite oxide used for the positive electrode can be smoothly performed,
In particular, the amount of the element to be complexed with the lithium copper complex oxide is adjusted so that the y value of the element M represented by the general formula Lix Cu1-y My Oz becomes 0.02-0.2. In this case, a lithium secondary battery having a sufficient charge / discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例1〜66の各リチウム二次電池における
内部構造を示した概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the internal structure of each lithium secondary battery of Experimental Examples 1 to 66.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極に金属リチウム又はリチウムイオン
の吸蔵,放出が可能な材料を用いると共に、正極にリチ
ウムイオンの吸蔵,放出が可能な材料を用いたリチウム
二次電池において、上記の正極の材料として、リチウム
銅複合酸化物に、B,Na,Mg,Al,Si,K,C
a,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,
Zn,Ga,Ge,Zr,Nb,Ru,Ag,Ta,B
i,In,Mo,Wの中から選ばれる一種以上の元素が
複合化されたものを用いたことを特徴とするリチウム二
次電池。
1. A lithium secondary battery using a material capable of occluding and releasing metallic lithium or lithium ions for the negative electrode and a material capable of occluding and releasing lithium ions for the positive electrode. As lithium copper composite oxide, B, Na, Mg, Al, Si, K, C
a, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, B
A lithium secondary battery comprising a composite of one or more elements selected from i, In, Mo and W.
【請求項2】 負極に金属リチウム又はリチウムイオン
の吸蔵,放出が可能な材料を用いると共に、正極にリチ
ウムイオンの吸蔵,放出が可能な材料を用いたリチウム
二次電池において、上記の正極の材料として、 Lix Cu1-y My Oz (MはB,Na,Mg,Al,Si,K,Ca,Sc,
Ti,V,Cr,Mn,Fe,Co,Ni,Zn,G
a,Ge,Zr,Nb,Ru,Ag,Ta,Bi,I
n,Mo,Wの中から選ばれる一種以上の元素であり、
x,y,zは、0<x≦2.6、0.02≦y≦0.
2、1.8≦z≦2.2である。)の一般式で表わされ
る材料を用いたことを特徴とするリチウム二次電池。
2. A lithium secondary battery using a material capable of absorbing and desorbing metallic lithium or lithium ions for the negative electrode and a material capable of absorbing and desorbing lithium ions for the positive electrode. As Lix Cu1-y My Oz (M is B, Na, Mg, Al, Si, K, Ca, Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Zn, G
a, Ge, Zr, Nb, Ru, Ag, Ta, Bi, I
One or more elements selected from n, Mo and W,
x, y, and z are 0 <x ≦ 2.6, 0.02 ≦ y ≦ 0.
2, 1.8 ≦ z ≦ 2.2. ) A lithium secondary battery characterized by using a material represented by the general formula (1).
JP7328261A 1995-11-22 1995-11-22 Lithium secondary battery Pending JPH09147861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328261A JPH09147861A (en) 1995-11-22 1995-11-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328261A JPH09147861A (en) 1995-11-22 1995-11-22 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09147861A true JPH09147861A (en) 1997-06-06

Family

ID=18208252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328261A Pending JPH09147861A (en) 1995-11-22 1995-11-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09147861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532224A (en) * 2005-04-01 2008-08-14 エルジー・ケム・リミテッド Electrode for lithium secondary battery containing electrode additive and lithium secondary battery containing the electrode
JP2014017210A (en) * 2012-07-11 2014-01-30 Nippon Telegr & Teleph Corp <Ntt> Lithium cuprate positive electrode material, method for producing the same, and lithium secondary battery including the positive electrode material as positive electrode active material
WO2017119410A1 (en) * 2016-01-05 2017-07-13 国立研究開発法人産業技術総合研究所 Lithium-copper composite oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532224A (en) * 2005-04-01 2008-08-14 エルジー・ケム・リミテッド Electrode for lithium secondary battery containing electrode additive and lithium secondary battery containing the electrode
JP2014017210A (en) * 2012-07-11 2014-01-30 Nippon Telegr & Teleph Corp <Ntt> Lithium cuprate positive electrode material, method for producing the same, and lithium secondary battery including the positive electrode material as positive electrode active material
WO2017119410A1 (en) * 2016-01-05 2017-07-13 国立研究開発法人産業技術総合研究所 Lithium-copper composite oxide
JPWO2017119410A1 (en) * 2016-01-05 2018-10-25 国立研究開発法人産業技術総合研究所 Lithium copper complex oxide

Similar Documents

Publication Publication Date Title
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP2000195516A (en) Lithium secondary battery
JPH09330720A (en) Lithium battery
JPH06243871A (en) Nonaqueous secondary battery
JP3197779B2 (en) Lithium battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3717544B2 (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP2002170566A (en) Lithium secondary cell
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JPH06338325A (en) Nonaqueous electrolytic secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH0864246A (en) Sealed type nonaqueous electrolyte secondary battery
JPH08171936A (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2002025626A (en) Aging method for lithium secondary battery
JPH10144291A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3670895B2 (en) Lithium secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JP3167577B2 (en) Lithium battery