JPH09120721A - Nb3sn compound superconductor - Google Patents

Nb3sn compound superconductor

Info

Publication number
JPH09120721A
JPH09120721A JP7278598A JP27859895A JPH09120721A JP H09120721 A JPH09120721 A JP H09120721A JP 7278598 A JP7278598 A JP 7278598A JP 27859895 A JP27859895 A JP 27859895A JP H09120721 A JPH09120721 A JP H09120721A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
compound
continuous
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7278598A
Other languages
Japanese (ja)
Inventor
Genzo Iwaki
源三 岩城
Shuji Sakai
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7278598A priority Critical patent/JPH09120721A/en
Publication of JPH09120721A publication Critical patent/JPH09120721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the critical current characteristics and lower the trait of hysteresis loss by forming continuous fibers from an Nb-Ta alloy containing 0.5-1.5at.%, and turning them into ultra-thin fibers without degrading the easiness in processing the conductor. SOLUTION: An Nb3 Sn compound superconductor is structured so that sub- element wires 1 in which a number of continuous Nb-Ta alloy fibers are embedded, are gathered in a matrix 2 made of Cu-Sn alloy, and a diffusive barrier of Ta 3 and a stabilizer of Cu 4 are formed one over another on the periphery of the gathering of sub-element wires. The continuous fibers in these sub-element wires 1 consist of Nb-Ta alloy containing 0.5-1.5at.% Ta, and the diameter prior to the final heat treatment is 1-4μm. Besides Sn, the matrix of Cu-Sn alloy contains at least one of the Ti, Ni, Ga, Si, Al, Zn, Ta, and B in a total content of no more than 5at.%. This ensures that the critical current characteristics are enhanced and the trait of hysteresis loss is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はNb3 Sn系化合物
超電導導体に関し、特に、導体の加工性を低下させずに
連続繊維の極細化が図れるようにして、臨界電流特性の
向上と履歴損失特性の低減を図ったNb3 Sn系化合物
超電導導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Nb 3 Sn-based compound superconducting conductor, and more particularly, to improving the critical current characteristics and the history loss characteristics by making it possible to make the continuous fibers extremely fine without deteriorating the workability of the conductor. The present invention relates to a Nb 3 Sn-based compound superconducting conductor for reducing

【0002】[0002]

【従来の技術】化合物超電導導体として、例えば、Cu
−Sn合金を用いてブロンズ法によって形成されたNb
3 Sn系超電導導体がある。
2. Description of the Related Art As a compound superconducting conductor, for example, Cu
-Nb formed by bronze method using Sn alloy
3 There are Sn-based superconducting conductors.

【0003】従来、この種のNb3 Sn系化合物超電導
導体は、Snを含有したマトリックス中に多数本のNb
の連続繊維を埋設し、これに所定の加工(例えば、熱処
理)を施してNb3 Sn化合物層を形成して構成されて
いる。
Conventionally, this type of Nb 3 Sn-based compound superconducting conductor has a large number of Nb in a matrix containing Sn.
Of the continuous fiber are embedded and subjected to predetermined processing (for example, heat treatment) to form an Nb 3 Sn compound layer.

【0004】また、Nb3 Sn系化合物超電導導体の製
造では、一般に、Cu−Sn合金マトリックスが冷間に
よる減面加工で著しく硬化し、導体の加工が困難になる
ことから、工程中にCu−Sn合金マトリックスの加工
性を回復させるための中間熱処理として、600℃以上
の焼鈍を冷間加工中に多数回施している。
Further, in the production of Nb 3 Sn-based compound superconducting conductors, the Cu-Sn alloy matrix is generally significantly hardened by cold surface-reduction processing, which makes it difficult to process the conductors. As an intermediate heat treatment for recovering the workability of the Sn alloy matrix, annealing at 600 ° C. or higher is performed many times during cold working.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のNb3
Sn系化合物超電導導体によると、上述したCu−Sn
合金マトリックスの中間熱処理によってCu−Sn合金
マトリックスとNb連続繊維の界面に微量のNb3 Sn
系化合物が生成される。このNb3 Sn系化合物はNb
連続繊維の径が大きいものでは全く導体の加工性を阻害
する要因とはならないが、Nb連続繊維の径がミクロン
オーダーになると、Nb連続繊維にネッキングや破断が
発生し、断線回数の増大等から加工性を低下させると共
に臨界電流特性を低下させるという不都合をもたらす。
このため、Nb連続繊維の径を4μm以下にすることが
できなかった。
However, the conventional Nb 3
According to the Sn-based compound superconducting conductor, Cu-Sn described above is used.
Due to the intermediate heat treatment of the alloy matrix, a trace amount of Nb 3 Sn is formed at the interface between the Cu-Sn alloy matrix and the Nb continuous fiber.
A system compound is produced. This Nb 3 Sn-based compound is Nb
If the diameter of the continuous fiber is large, it does not hinder the workability of the conductor at all. However, if the diameter of the continuous Nb fiber is in the order of micron, necking or breakage occurs in the continuous Nb fiber, and the number of disconnection increases. This causes inconvenience that workability is lowered and critical current characteristics are lowered.
Therefore, the diameter of the Nb continuous fiber could not be reduced to 4 μm or less.

【0006】従って、本発明の目的は導体の加工性を低
下させずに連続繊維の極細化が図れ、臨界電流特性の向
上と履歴損失特性の低減を図ることができるNb3 Sn
系化合物超電導導体を提供することである。
It is therefore an object of the present invention Hakare ultrafine of continuous fibers without reducing the processability of the conductor, it is possible to reduce the increase and history loss characteristics of critical current characteristic Nb 3 Sn
An object is to provide a compound superconductor.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点に鑑
み、導体の加工性を低下させずに連続繊維の極細化が図
れ、臨界電流特性の向上と履歴損失特性の低減を図るた
め、連続繊維を0.5〜1.5at%のTaを含有した
Nb−Ta合金によって構成したNb3 Sn系化合物超
電導導体を提供するものである。
In view of the above-mentioned problems, the present invention is capable of achieving ultrafine continuous fibers without deteriorating the workability of the conductor, improving the critical current characteristics and reducing the hysteresis loss characteristics. there is provided a continuous fiber is constituted by Nb-Ta alloy containing 0.5~1.5At% of Ta Nb 3 Sn compound superconducting conductors.

【0008】上記連続繊維は、Nb3 Sn系化合物を生
成する最終熱処理前の径が1μm以上、4μm以下であ
る構成を有している。
The continuous fiber has a structure in which the diameter before the final heat treatment for producing the Nb 3 Sn type compound is 1 μm or more and 4 μm or less.

【0009】また、上記Snを含有したマトリックス
は、Cu−Sn系合金より構成され、Cu−Sn系合金
はSnの他に、Ti,Ni,Ga,Si,Al,Zn,
Ta,Bの少なくとも1種を合計で5at%以下含有し
た構成を有している。
The matrix containing Sn is composed of a Cu-Sn alloy, and the Cu-Sn alloy contains Sn, Ti, Ni, Ga, Si, Al, Zn,
It has a configuration in which at least one of Ta and B is contained in a total amount of 5 at% or less.

【0010】ここで、連続繊維を構成するNb−Ta合
金のTaの含有量を0.5〜1.5at%にする理由
は、含有量が0.5at%以下では純Nbのものに比べ
て化合物生成抑制効果が現れず、また、含有量が1.5
at%以上では逆に化合物生成促進効果が生じて、化合
物生成量が多くなるからである。
The reason why the Ta content of the Nb-Ta alloy constituting the continuous fiber is 0.5 to 1.5 at% is that the content of 0.5 at% or less is less than that of pure Nb. The compound production inhibitory effect does not appear, and the content is 1.5
This is because, when the content is at% or more, on the contrary, a compound production promoting effect occurs and the compound production amount increases.

【0011】[0011]

【発明の実施の形態】以下、本発明のNb3 Sn系化合
物超電導導体について添付図面を参照しながら詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The Nb 3 Sn compound superconductor of the present invention will be described in detail below with reference to the accompanying drawings.

【0012】図1には、本発明のNb3 Sn系化合物超
電導導体の最終熱処理前の断面構造が示されている。こ
のNb3 Sn系化合物超電導導体は、Cu−Sn系合金
のマトリックス2中に、Nb−Ta合金の連続繊維を5
5本埋設したサブエレメント線1を361本集合させ、
その外周にTaの拡散バリヤ3とCuの安定化材4を順
次形成して構成されている。
FIG. 1 shows the sectional structure of the Nb 3 Sn compound superconductor of the present invention before the final heat treatment. This Nb 3 Sn-based compound superconducting conductor contains 5 continuous fibers of Nb-Ta alloy in a matrix 2 of Cu-Sn-based alloy.
Assembling 361 sub-element wires 1 embedded 5
A diffusion barrier 3 of Ta and a stabilizing material 4 of Cu are sequentially formed on the outer circumference of the barrier.

【0013】サブエレメント線1中の連続繊維は、0.
5〜1.5at%のTaを含有したNb−Ta合金より
構成されている。この連続繊維は最終熱処理前の径が1
〜4μmになっている。
The continuous fibers in the sub-element wire 1 have a density of 0.
It is composed of an Nb-Ta alloy containing 5 to 1.5 at% Ta. This continuous fiber has a diameter of 1 before the final heat treatment.
It is about 4 μm.

【0014】以下、本発明の実施の形態を更に詳細に説
明する。まず、上記構成、つまり、連続繊維のNb−T
a合金のTaの含有量が0.5〜1.5at%である構
成を有する第1及び第2の実施の形態と、連続繊維が純
Nbの比較例1と、連続繊維のNb−Ta合金のTaの
含有量が1.5at%以上の比較例4をそれぞれ表1の
条件に基づいて作成した。即ち、導体径が0.9mm、
繊維本数が19855本、最終熱処理前の連続繊維径が
約1.90μm、銅対非銅部断面積比が1.6:1のも
のを作成した。
The embodiments of the present invention will be described in more detail below. First, the above configuration, that is, Nb-T of continuous fibers
a and a 1st and 2nd embodiment which has a structure whose Ta content is 0.5-1.5 at%, the comparative example 1 whose continuous fiber is pure Nb, and the Nb-Ta alloy of continuous fiber. Comparative Example 4 having a Ta content of 1.5 at% or more was prepared based on the conditions shown in Table 1. That is, the conductor diameter is 0.9 mm,
The number of fibers was 19,855, the continuous fiber diameter before the final heat treatment was about 1.90 μm, and the cross-sectional area ratio of copper to non-copper portion was 1.6: 1.

【表1】 [Table 1]

【0015】これらの導体は静水圧押出を用いたダブル
スタッキング法で製作し、製作時の押出温度は各段階共
通の400℃とし、押出ビレット径約27.5mmに対
して押出比5.3で実施した。また、引抜伸線における
中間熱処理条件は600℃×30分とし、熱処理減面率
を35〜40%とした。
These conductors were manufactured by the double stacking method using hydrostatic extrusion, and the extrusion temperature at the time of production was 400 ° C. which is common to each stage, and the extrusion ratio was 5.3 for the extrusion billet diameter of about 27.5 mm. Carried out. Further, the intermediate heat treatment condition in the drawn wire was 600 ° C. × 30 minutes, and the heat treatment area reduction ratio was 35 to 40%.

【0016】次に、中間熱処理によって第1及び第2の
実施の形態、及び比較例1、2の導体に生成されたNb
3 Sn化合物層の量を比較するために、Nb3 Sn生成
最終熱処理前のこれらの導体に対して磁化の強さの温度
変化を測定し、Nb,或いはNb−Ta合金のTc(約
9K)直上における磁化の強さを測定した。測定は温度
を変化させて磁化の強さが測定可能なSQUIDを装着
した高感度磁化測定装置によって行った。この時の試料
印加磁場は0.01Tであり、測定温度は20Kから
4.5Kであった。
Next, Nb produced in the conductors of the first and second embodiments and the comparative examples 1 and 2 by the intermediate heat treatment.
In order to compare the amount of 3 Sn compound layer, the temperature change of the magnetization intensity was measured for these conductors before the final heat treatment of Nb 3 Sn formation, and the Tc (about 9 K) of Nb or Nb-Ta alloy was measured. The strength of magnetization immediately above was measured. The measurement was performed by a high-sensitivity magnetization measuring device equipped with an SQUID capable of measuring the strength of magnetization by changing the temperature. The sample applied magnetic field at this time was 0.01 T, and the measurement temperature was 20 K to 4.5 K.

【0017】図2にその測定結果を示す。ここで、磁化
の強さとは中間熱処理で化合物が生成しないと仮定した
場合の連続繊維の単位体積当たりの磁気モーメントを指
す。この図から判るように、Nb−Ta合金中のTaの
濃度が0.5〜1.5at%の範囲内の第1及び第2の
実施の形態は、中間熱処理における化合物生成量を純N
bのものより約50%低減することができる。また、T
a濃度が高くなると逆に化合物生成促進効果が現れ、化
合物生成量が多くなる。
FIG. 2 shows the measurement result. Here, the strength of magnetization refers to a magnetic moment per unit volume of continuous fibers on the assumption that a compound is not formed in the intermediate heat treatment. As can be seen from this figure, in the first and second embodiments in which the Ta concentration in the Nb-Ta alloy is in the range of 0.5 to 1.5 at%, the amount of compound produced in the intermediate heat treatment is pure N.
It can be reduced by about 50% from that of b. Also, T
On the contrary, when the concentration a increases, the compound production promoting effect appears, and the compound production amount increases.

【0018】この後、第1及び第2の実施の形態、及び
比較例1,2の導体に、650℃×200時間のNb3
Sn化合物生成熱処理を施した導体の臨界電流特性をそ
れぞれ考察した。図3にその考察結果を示す。この図か
ら判るように、10T、11T、12Tの各磁場での臨
界電流は、中間熱処理で生成された化合物生成量に密接
に関係している。つまり、Nb−Ta合金中のTaの濃
度が0.5〜1.5at%の範囲内の第1及び第2の実
施の形態は、比較例1、2に比べて大幅に臨界電流が向
上している。
After that, the conductors of the first and second embodiments and Comparative Examples 1 and 2 were subjected to Nb 3 at 650 ° C. for 200 hours.
The critical current characteristics of the conductors subjected to the heat treatment for forming the Sn compound were considered. FIG. 3 shows the result of the consideration. As can be seen from this figure, the critical current in each of the magnetic fields of 10T, 11T, and 12T is closely related to the production amount of the compound produced in the intermediate heat treatment. That is, in the first and second embodiments in which the Ta concentration in the Nb-Ta alloy is in the range of 0.5 to 1.5 at%, the critical current is significantly improved as compared with Comparative Examples 1 and 2. ing.

【0019】最後に、これら第1及び第2の実施の形
態、及び比較例1、2の導体の5Tにおける有効繊維径
を測定した。図4にその測定結果を示す。この図から判
るように、中間熱処理における化合物生成量が少ない第
1及び第2の実施の形態の導体は、比較例1、2の導体
に比較して線径が50%程小さくなっている。これは有
効繊維径の増大の一因とされる化合物層による繊維のリ
ボン状変形が発生し難かったものと考えられる。
Finally, the effective fiber diameter at 5T of the conductors of the first and second embodiments and Comparative Examples 1 and 2 was measured. The measurement result is shown in FIG. As can be seen from this figure, the conductors of the first and second embodiments in which the amount of compound produced in the intermediate heat treatment is small have wire diameters that are about 50% smaller than those of the conductors of Comparative Examples 1 and 2. It is considered that this is because the ribbon-shaped deformation of the fiber due to the compound layer, which is one of the causes of the increase in the effective fiber diameter, was difficult to occur.

【0020】しかし、図2から判るように、本発明のN
b−Ta合金の組成範囲内であっても、中間熱処理にお
ける化合物生成を完全に防止することはできない。従っ
て、本発明の効果は連続繊維径に限界が存在する。そこ
で、第2の実施の形態の導体を同じ中間熱処理条件,熱
処理間減面率で線径0.4mm(連続繊維径0.84μ
m)まで引抜き、前述した方法で中間熱処理における化
合物生成量と連続繊維径の関係を調べたところ、Nb−
Ta合金のTc直上の磁化が連続繊維径が1μm以下で
は十分な臨界電流が得られない値になった。また、連続
繊維径が4μm以上では、中間熱処理における化合物生
成において特性にほとんど影響を及ばさないことが同様
な測定から判った。このことから連続繊維径が1μm以
上,4 μm以下であることが最も望ましい。
However, as can be seen from FIG.
Even within the composition range of the b-Ta alloy, compound formation in the intermediate heat treatment cannot be completely prevented. Therefore, the effect of the present invention has a limit in the continuous fiber diameter. Therefore, the conductor of the second embodiment has a wire diameter of 0.4 mm (continuous fiber diameter of 0.84 μm) under the same intermediate heat treatment condition and reduction of surface area during heat treatment.
m), and the relationship between the amount of compound produced in the intermediate heat treatment and the continuous fiber diameter was examined by the above-mentioned method.
The magnetization just above Tc of the Ta alloy was a value at which a sufficient critical current could not be obtained when the continuous fiber diameter was 1 μm or less. Further, it was found from the same measurement that the continuous fiber diameter of 4 μm or more had almost no influence on the characteristics in the compound formation in the intermediate heat treatment. From this, it is most desirable that the continuous fiber diameter is 1 μm or more and 4 μm or less.

【0021】[0021]

【発明の効果】以上説明したように、本発明のNb3
n系化合物超電導導体によると、連続繊維を0.5〜
1.5at%のTaを含有したNb−Ta合金によって
構成したため、導体の加工性を低下させずに連続繊維の
極細化が図れ、臨界電流特性の向上と履歴損失特性の低
減を図ることができる。
As described above, the Nb 3 S of the present invention is used.
According to the n-based compound superconducting conductor, the continuous fiber is 0.5 to
Since it is composed of Nb-Ta alloy containing 1.5 at% of Ta, the continuous fiber can be made extremely fine without deteriorating the workability of the conductor, and the critical current characteristic and the hysteresis loss characteristic can be improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のNb3 Sn系化合物超電導導体の最終
熱処理前の構造を示す断面図。
FIG. 1 is a sectional view showing the structure of a Nb 3 Sn-based compound superconducting conductor of the present invention before final heat treatment.

【図2】NbへのTaの含有量とNbのTc直上の磁化
の強さの関係を表すグラフ。
FIG. 2 is a graph showing the relationship between the content of Ta in Nb and the strength of magnetization just above Tc of Nb.

【図3】NbへのTaの含有量と臨界電流の関係を表す
グラフ。
FIG. 3 is a graph showing the relationship between the content of Ta in Nb and the critical current.

【図4】NbへのTaの含有量と5Tにおける有効繊維
系の関係を表すグラフ。
FIG. 4 is a graph showing the relationship between the content of Ta in Nb and the effective fiber system at 5T.

【符号の説明】[Explanation of symbols]

1 サブエレメント線 2 マトリックス 3 拡散バリヤ 4 安定化材 1 Sub-element line 2 Matrix 3 Diffusion barrier 4 Stabilizer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Snを含有したマトリックス中にNbを
含有した多数本の連続繊維を埋設し、熱処理等を施して
Nb3 Sn系化合物層を形成してなるNb3Sn系化合
物超電導導体において、 前記連続繊維は、0.5〜1.5at%のTaを含有し
たNb−Ta合金より構成されていることを特徴とする
Nb3 Sn系化合物超電導導体。
1. A Nb 3 Sn-based compound superconducting conductor obtained by embedding a large number of continuous fibers containing Nb in a matrix containing Sn and subjecting it to heat treatment or the like to form an Nb 3 Sn-based compound layer. The Nb 3 Sn based compound superconducting conductor, wherein the continuous fiber is composed of an Nb-Ta alloy containing 0.5 to 1.5 at% Ta.
【請求項2】 前記連続繊維は、前記Nb3 Sn系化合
物を生成する最終熱処理前の径が1μm以上、4μm以
下である構成の請求項1のNb3 Sn系化合物超電導導
体。
Wherein said continuous fibers, the Nb 3 diameter before final heat treatment that produces a Sn-based compound is 1μm or more, according to claim 1 of configuration is 4μm or less Nb 3 Sn compound superconducting conductors.
【請求項3】 前記Snを含有したマトリックスは、C
u−Sn系合金より構成され、 前記Cu−Sn系合金は、Snの他にTi,Ni,G
a,Si,Al,Zn,Ta,Bの少なくとも1種を合
計で5at%以下含有している構成の請求項1のNb3
Sn系化合物超電導導体。
3. The Sn-containing matrix is C
The Cu-Sn alloy is composed of u-Sn alloy, and the Cu-Sn alloy is Ti, Ni, G in addition to Sn.
Nb 3 of claim 1, wherein the composition contains at least one of a, Si, Al, Zn, Ta and B in a total content of 5 at% or less.
Sn-based compound superconducting conductor.
JP7278598A 1995-10-26 1995-10-26 Nb3sn compound superconductor Pending JPH09120721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278598A JPH09120721A (en) 1995-10-26 1995-10-26 Nb3sn compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278598A JPH09120721A (en) 1995-10-26 1995-10-26 Nb3sn compound superconductor

Publications (1)

Publication Number Publication Date
JPH09120721A true JPH09120721A (en) 1997-05-06

Family

ID=17599504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278598A Pending JPH09120721A (en) 1995-10-26 1995-10-26 Nb3sn compound superconductor

Country Status (1)

Country Link
JP (1) JPH09120721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP4687438B2 (en) * 2005-12-14 2011-05-25 日立電線株式会社 Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0383776B1 (en) Sheathing of superconducting wires
JPS6097514A (en) Method of producing composite superconductive conductor
CN115295242B (en) Preparation method of niobium tri-tin superconducting stranded wire with high critical current density
US4153986A (en) Method for producing composite superconductors
JPH09120721A (en) Nb3sn compound superconductor
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
US5001020A (en) Multifilament superconducting wire of NB3 AL
Pyon et al. Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JPH0969316A (en) Nb3 sn superconductive wire material
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JPH07282650A (en) Compound superconductor
JP3104329B2 (en) Manufacturing method of aluminum stabilizer for superconducting conductor
JPH06101001A (en) Compound superconductor
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPH05174647A (en) Manufacture of compound superconductive wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPS609012A (en) Method of producing extrafine multicore compound superconductive conductor
DE19719722C2 (en) Process for producing an elongated high-Tc superconductor
JPH0464124B2 (en)
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JPH06325643A (en) Nb3sn superconducting wire and manufacture thereof
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH0676662A (en) Manufacture of nb3sn superconducting wire