JPH05174647A - Manufacture of compound superconductive wire - Google Patents

Manufacture of compound superconductive wire

Info

Publication number
JPH05174647A
JPH05174647A JP3344734A JP34473491A JPH05174647A JP H05174647 A JPH05174647 A JP H05174647A JP 3344734 A JP3344734 A JP 3344734A JP 34473491 A JP34473491 A JP 34473491A JP H05174647 A JPH05174647 A JP H05174647A
Authority
JP
Japan
Prior art keywords
alloy
wire
diameter
bronze
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3344734A
Other languages
Japanese (ja)
Inventor
Daisuke Miura
大介 三浦
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3344734A priority Critical patent/JPH05174647A/en
Publication of JPH05174647A publication Critical patent/JPH05174647A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a compound superconductive wire having a reduced AC loss by setting a diameter of a superconductive filament in submicrons without connection between the superconductive filaments due to a superconductive current. CONSTITUTION:In a bronzing method for manufacturing an A15 type compound superconductive wire, a plurality of core members 1 each made of Nb or an Nb alloy are filled in a matrix 2 made of a Cu alloy not including elements composing an A15 type compound and having high resistance and a Cu alloy including magnetic elements. Furthermore, bronze 3 is disposed around the matrix, followed by wire drawing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物超電導線の製造方
法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a compound superconducting wire.

【0002】[0002]

【従来の技術】化合物超電導線としては、Nb3 Sn、
Nb3 Al、Nb3 Ga等のA15型化合物超電導線が
知られている。
2. Description of the Related Art Nb 3 Sn, a compound superconducting wire,
A15 type compound superconducting wires such as Nb 3 Al and Nb 3 Ga are known.

【0003】従来、前記A15型化合物超電導線は、以
下に説明するブロンズ法により製造される。まず、1本
或いは複数本のNb又はNb合金からなる芯材を、A1
5型化合物の一方の構成元素であるSn、Al、Ga等
を含むブロンズからなるマトリックス中に埋め込む。つ
づいて、これらを伸線して複合材を形成し、更に前記複
合材をブロンズからなる管内に複数本配置し再び伸線し
て線材化することにより、前記芯材の径を通常数ミクロ
ン程度にまで縮径する。この際、前記ブロンズが加工硬
化し易いため熱間押出し等の熱間加工を施してから中間
熱処理を施しながら伸線加工を行なう。その後、得られ
た線材に熱処理を施すことによって前記芯材とブロンズ
との界面にNb3 Sn、Nb3 Al、Nb3 Ga等のA
15型化合物層を生成することにより、該芯材を超電導
フィラメントとするA15型化合物超電導線を製造す
る。
Conventionally, the A15 type compound superconducting wire is manufactured by the bronze method described below. First, the core material made of one or a plurality of Nb or Nb alloy is A1
It is embedded in a matrix made of bronze containing Sn, Al, Ga, etc., which are one of the constituent elements of the 5-type compound. Subsequently, these are drawn to form a composite material, and a plurality of the composite materials are arranged in a tube made of bronze and drawn again to form a wire material, so that the diameter of the core material is usually about several microns. Reduce the diameter to. At this time, since the bronze is easily work-hardened, hot working such as hot extrusion is performed, and then wire drawing is performed while performing intermediate heat treatment. Then, heat treatment is applied to the obtained wire material so that A of Nb 3 Sn, Nb 3 Al, Nb 3 Ga or the like is formed at the interface between the core material and the bronze.
By producing a 15-type compound layer, an A15-type compound superconducting wire having the core material as a superconducting filament is manufactured.

【0004】ところで、パルスや交流応用のA15型化
合物超電導線では、交流損失を低減させるために超電導
フィラメント径をサブミクロン化することが重要な課題
となっている。
By the way, in the pulse or AC application type A15 type compound superconducting wire, it is an important subject to make the diameter of the superconducting filament submicron in order to reduce the AC loss.

【0005】しかしながら、前記従来のブロンズ法によ
るA15型化合物超電導線の製造方法では、熱間加工時
及び伸線加工途中の焼鈍時に前記芯材とブロンズとの界
面にNbSn化合物、NbAl化合物、NbGa化合物
などの難加工性化合物が生成される。かかる難加工性化
合物は、伸線加工性を著しく悪化させる。このため、前
記芯材の径が1μm以下となるまで伸線加工すると、該
芯材が断線したり或いは線材自体の断線にまで至る。こ
のようなことから、超電導フィラメントの径をサブミク
ロン程度にすることは困難であった。
However, in the conventional method for producing an A15 type compound superconducting wire by the bronze method, the NbSn compound, the NbAl compound and the NbGa compound are present at the interface between the core material and the bronze during the hot working and the annealing during the wire drawing. A compound that is difficult to process is produced. Such a difficult-to-work compound significantly deteriorates wire drawing workability. Therefore, when the wire drawing is performed until the diameter of the core material becomes 1 μm or less, the core material may be broken or the wire itself may be broken. For these reasons, it was difficult to reduce the diameter of the superconducting filament to about submicron.

【0006】なお、超電導フィラメント径のサブミクロ
ン化を可能とするために、ブロンズ中のSn濃度を減少
させて芯材とブロンズとの界面における反応性を低下さ
せることにより焼鈍時における難加工性化合物の生成反
応を抑制する対策が試みられているが、十分な効果は得
られていない。
In order to make the diameter of the superconducting filament submicron, the Sn concentration in the bronze is reduced to lower the reactivity at the interface between the core material and the bronze, thereby making it difficult to process the compound during annealing. Although attempts have been made to suppress the formation reaction of the, the sufficient effect has not been obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、超電導フィラメン
ト径のサブミクロン化を可能とした化合物超電導線の製
造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and an object thereof is to provide a method for producing a compound superconducting wire capable of reducing the diameter of a superconducting filament to a submicron size. Is.

【0008】[0008]

【課題を解決するための手段】本発明は、ブロンズ法に
よりA15型化合物超電導線を製造する方法において、
A15型化合物の構成元素を含まない高抵抗のCu合
金、或いは磁性元素を含むCu合金からなるマトリック
ス中にNb又はNb合金からなる芯材を複数本埋め込
み、更に前記マトリックスの周囲にブロンズを配置した
後、これらを伸線加工する工程を具備することを特徴と
する化合物超電導線の製造方法である。
The present invention provides a method for producing an A15 type compound superconducting wire by the bronze method,
A plurality of core materials made of Nb or Nb alloy were embedded in a matrix made of a Cu alloy having a high resistance containing no constituent element of the A15 type compound or a Cu alloy containing a magnetic element, and bronze was arranged around the matrix. After that, the method for producing a compound superconducting wire is characterized by comprising a step of drawing these.

【0009】前記高抵抗のCu合金としては、例えばC
u−Si合金、Cu−Ag合金、Cu−Ni合金、Cu
−Pd合金、Cu−Zn合金などを挙げることができ、
A15生成反応後の残存ブロンズよりも高抵抗であるこ
とが必要である。また、前記磁性元素としては、例えば
Fe、Mnなどを挙げることができる。
As the high resistance Cu alloy, for example, C
u-Si alloy, Cu-Ag alloy, Cu-Ni alloy, Cu
-Pd alloy, Cu-Zn alloy, etc. can be mentioned,
It is necessary that the resistance is higher than that of the remaining bronze after the A15 formation reaction. Examples of the magnetic element include Fe and Mn.

【0010】前記ブロンズとしては、Cu−Sn合金、
Cu−Al合金、Cu−Ga合金が挙げられる。
As the bronze, a Cu--Sn alloy,
Cu-Al alloy and Cu-Ga alloy are mentioned.

【0011】[0011]

【作用】本発明によれば、高抵抗のCu合金、或いは磁
性元素を含むCu合金からなるマトリックス中にNb又
はNb合金からなる芯材を複数本埋め込み、更に前記マ
トリックスの周囲にブロンズを配置する。これにより、
前記芯材と前記ブロンズとの直接接触が回避されるため
熱間加工時及び伸線途中の焼鈍時における難加工性化合
物の生成反応が抑制される。その結果、前記難加工性化
合物による断線等を生じることなく、前記芯材の径がサ
ブミクロン程度になるまで該芯材を健全な表面性状で縮
径することができる。また、前記マトリックス材料とし
て高抵抗のCu合金或いは磁性元素を含むCu合金を用
いることによって、得られる化合物超電導線において近
接効果を抑制できるため超電導フィラメント間が超電導
電流で結合されるのを防止できる。
According to the present invention, a plurality of core materials made of Nb or Nb alloy are embedded in a matrix made of a Cu alloy having a high resistance or a Cu alloy containing a magnetic element, and bronze is arranged around the matrix. .. This allows
Since the direct contact between the core material and the bronze is avoided, the formation reaction of the hardly workable compound is suppressed during hot working and during annealing during wire drawing. As a result, it is possible to reduce the diameter of the core material with a sound surface property until the diameter of the core material becomes about submicron without causing the disconnection due to the difficult-to-process compound. Further, by using a Cu alloy having a high resistance or a Cu alloy containing a magnetic element as the matrix material, it is possible to suppress the proximity effect in the obtained compound superconducting wire, and thus it is possible to prevent the superconducting filaments from being coupled by a superconducting current.

【0012】こうして芯材の径がサブミクロン程度にな
るまで縮径された線材に熱処理を施すことにより、前記
ブロンズ中のSn等が前記マトリックスを通して拡散し
て前記芯材の界面にNb3 Sn等のA15型化合物が生
成される。従って、超電導フィラメント径をサブミクロ
ン化でき、しかもこれら超電導フィラメント間が超電導
電流で結合されるのを防止できるため、交流損失が低減
されたA15型化合物超電導線を製造できる。
By heat-treating the wire thus reduced in diameter until the diameter of the core becomes about submicron, Sn or the like in the bronze diffuses through the matrix and Nb 3 Sn or the like at the interface of the core. A15 type compound is produced. Therefore, the diameter of the superconducting filament can be made submicron, and the superconducting filaments can be prevented from being coupled with each other by the superconducting current, so that the A15 type compound superconducting wire with reduced AC loss can be manufactured.

【0013】なお、前記マトリックスの配置によってブ
ロンズ比が低下するが、前記芯材の径がサブミクロンレ
ベルであるため従来法と同様な熱処理でもA15型化合
物を十分に生成できる。
Although the arrangement of the matrix lowers the bronze ratio, the core material has a diameter of the submicron level, so that the A15 type compound can be sufficiently produced by the heat treatment similar to the conventional method.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】実施例1 まず、図1(a)に示すように直径2.5mmのNb−
0.7重量%Ti合金からなる芯材1を55本埋め込ん
だ直径37.5mmのCu−2.5重量%Si合金棒
(マトリックス)2を、外径45.3mmφ、内径38
mmφのCu−14.3重量%Sn合金からなる管3内
に挿入する。つづいて、これらを700℃で熱間押出し
た後、伸線加工を施す。これにより、図1(b)に示す
ように対辺距離が2mmの六角状の複合材4を形成し
た。
Example 1 First, as shown in FIG. 1A, Nb- having a diameter of 2.5 mm was used.
A Cu-2.5 wt% Si alloy rod (matrix) 2 having a diameter of 37.5 mm, in which 55 core materials 1 made of 0.7 wt% Ti alloy are embedded, has an outer diameter of 45.3 mmφ and an inner diameter of 38.
It is inserted into a tube 3 made of a Cu-14.3 wt% Sn alloy of mmφ. Subsequently, after hot extruding these at 700 ° C., wire drawing is performed. Thereby, as shown in FIG. 1B, a hexagonal composite material 4 having an opposite side distance of 2 mm was formed.

【0016】次いで、図2(a)に示すように前記複合
材4を260本まとめて外径45.3mmφ、内径36
mmφのCu−14.3重量%Sn合金からなる管5内
に挿入する。つづいて、これらを600℃で熱間押出し
た後、伸線加工を施す。これにより、図2(b)に示す
ような線材6を形成した。この際、伸線加工率を変える
ことにより線径の異なる4種の線材6を形成した。これ
ら4種の線材6の線径及びその線径より算出される芯材
径を下記表1に示す。また、これら線材6の材料構成比
(Cu−Sn合金:Cu−Si合金:Nb−Ti合金)
は5.3:3.2:1となる。
Next, as shown in FIG. 2 (a), 260 composite materials 4 are put together into an outer diameter of 45.3 mmφ and an inner diameter of 36.
It is inserted into a tube 5 made of a Cu-14.3 wt% Sn alloy of mmφ. Subsequently, these are hot extruded at 600 ° C. and then subjected to wire drawing. Thereby, the wire rod 6 as shown in FIG. 2B was formed. At this time, four kinds of wire rods 6 having different wire diameters were formed by changing the drawing ratio. Table 1 below shows the wire diameters of these four kinds of wire rods 6 and the core wire diameters calculated from the wire diameters. The material composition ratio of these wire rods 6 (Cu-Sn alloy: Cu-Si alloy: Nb-Ti alloy)
Is 5.3: 3.2: 1.

【0017】比較例1 実施例1と同様な材料及び配置状態の芯材が埋め込まれ
た直径37.5mmのCu−14.3重量%Sn合金
(ブロンズ)棒を、外径45.3mmφ、内径38mm
φのCu−14.3重量%Sn合金からなる管内に挿入
する。その後、実施例1と同様に行なって熱間押出及び
伸線加工を施すことにより、線径が0.6mm、及び
0.4mmの2種の線材を形成した。これら2種の線材
の芯材径を前記線径と共に下記表1に示す。また、これ
ら線材の材料構成比(Cu−Sn合金:Nb−Ti合
金)は8.5:1となる。なお、前記伸線加工では、線
径が0.4mmとなった時から断線が多発してそれ以降
の伸線が不可能となった。
Comparative Example 1 A Cu-14.3% by weight Sn alloy (bronze) rod having a diameter of 37.5 mm, in which a core material having the same material and arrangement as in Example 1 was embedded, was used. 38 mm
It is inserted into a tube made of φ Cu-14.3 wt% Sn alloy. Then, hot extrusion and wire drawing were performed in the same manner as in Example 1 to form two types of wire rods having wire diameters of 0.6 mm and 0.4 mm. The core material diameters of these two types of wire materials are shown in Table 1 below together with the wire diameters. The material composition ratio (Cu-Sn alloy: Nb-Ti alloy) of these wires is 8.5: 1. In the wire drawing, wire breakage frequently occurred when the wire diameter was 0.4 mm, and subsequent wire drawing became impossible.

【0018】得られた実施例1及び比較例1の各線材に
ついて、Cu合金部分を硝酸でエッチングして芯材を露
出させ、この芯材の表面性状を走査型電子顕微鏡(SE
M)により観察した。その結果を下記表1に併記する。
With respect to each of the obtained wire rods of Example 1 and Comparative Example 1, the Cu alloy portion was etched with nitric acid to expose the core material, and the surface texture of the core material was examined by a scanning electron microscope (SE).
Observed by M). The results are also shown in Table 1 below.

【0019】[0019]

【表1】 表1から明らかなように実施例1の製造方法では、芯材
径が0.37μmとなるまで縮径してもNb3 Sn等の
難加工性化合物を生成することなく、良好な表面性状で
線材を伸線できることがわかる。これは、前記芯材とブ
ロンズ(Cu−Sn合金)との間にCu−Si合金が配
置されているため該芯材とブロンズとの直接接触が回避
され、しかも伸線加工における焼鈍処理温度,時間では
ブロンズ中のSnが前記Cu−Si合金に殆ど拡散しな
いことによるものである。
[Table 1] As is clear from Table 1, in the production method of Example 1, even if the core material diameter was reduced to 0.37 μm, a difficult-to-process compound such as Nb 3 Sn was not formed, and a good surface property was obtained. It can be seen that the wire can be drawn. This is because the Cu-Si alloy is arranged between the core material and the bronze (Cu-Sn alloy), direct contact between the core material and the bronze is avoided, and the annealing treatment temperature in the wire drawing process, This is because Sn in the bronze hardly diffuses into the Cu-Si alloy in time.

【0020】これに対し、比較例1の製造方法では、前
記芯材とブロンズとが直接接触しているため熱間押出時
及び伸線加工途中の焼鈍時においてNb3 Snが生成さ
れ、その結果、前記芯材の径が1μm以下となった時の
伸線加工性が著しく悪化して芯材の断線を生じているこ
とがわかる。
On the other hand, in the manufacturing method of Comparative Example 1, since the core material and the bronze are in direct contact with each other, Nb 3 Sn is generated during hot extrusion and annealing during wire drawing, and as a result, It can be seen that when the diameter of the core material is 1 μm or less, the wire drawing workability is significantly deteriorated and the core material is broken.

【0021】また、実施例1及び比較例1の各線材をそ
れぞれ温度650℃、24時間の条件下で熱処理を施す
ことにより、Cu−14.3重量%Sn合金中のSnを
前記芯材に拡散反応させてNb3 Sn層が形成された化
合物超電導線を製造した。得られた化合物超電導線につ
いて、Jc測定及び磁化測定を行ない、これら測定値か
ら下記式(1)を用いて有効フィラメント径を算出し
た。その結果を図3に併記する。
Further, each of the wire rods of Example 1 and Comparative Example 1 was heat-treated at a temperature of 650 ° C. for 24 hours, whereby Sn in the Cu-14.3 wt% Sn alloy was used as the core material. A compound superconducting wire in which a Nb 3 Sn layer was formed by diffusion reaction was manufactured. The obtained compound superconducting wire was subjected to Jc measurement and magnetization measurement, and the effective filament diameter was calculated from these measured values using the following formula (1). The results are also shown in FIG.

【0022】 Ph=(8/3π)・λ・Jc・deff・Bm …(1) (ただし、式(1)中のPhは交流損失のうちのヒステ
リシス損失、λ・Jcは線材断面積当りの臨界電流密
度、deffは有効フィラメント径、Bmは外部磁化の
振幅をそれぞれ示す)図3から明らかなように実施例1
の化合物超電導線は、有効フィラメント径が熱処理前の
芯材径に比例して減少していることがわかる。これは、
前記芯材が埋め込まれるマトリックス材料としてブロン
ズ(Cu−14.3重量%Sn合金の比抵抗:1.1×
10-7Ωm:4.2K)と同程度に高抵抗のCu−2.
5重量%Si合金(比抵抗:1.7×10-7Ωm:4.
2K)を用いているため、超電導フィラメント径をサブ
ミクロン化した場合においても超電導フィラメント間の
超電導電流による結合が防止されていることによるもの
である。
Ph = (8 / 3π) · λ · Jc · def · Bm (1) (where, Ph in the formula (1) is hysteresis loss of AC loss, and λ / Jc is per wire cross-sectional area. (Critical current density, deff is the effective filament diameter, and Bm is the amplitude of external magnetization.) As is clear from FIG.
It can be seen that in the compound superconducting wire, the effective filament diameter is reduced in proportion to the core material diameter before the heat treatment. this is,
As a matrix material in which the core material is embedded, bronze (Cu-14.3 wt% Sn alloy resistivity: 1.1 ×
10-7 Ωm: 4.2K) and Cu-2.
5 wt% Si alloy (specific resistance: 1.7 × 10 −7 Ωm: 4.
2K), the reason is that even when the diameter of the superconducting filament is made submicron, the coupling due to the superconducting current between the superconducting filaments is prevented.

【0023】これに対し、比較例1の化合物超電導線で
は、超電導フィラメント径を0.98μmにサブミクロ
ン化した場合、Nb3 Sn生成後はブロンズマトリック
ス中のSn濃度が減少して低抵抗となり、超電導フィラ
メント間が超電導電流で結合されるため有効フィラメン
ト径が熱処理前の芯材径より大幅に大きくなることがわ
かる。
On the other hand, in the compound superconducting wire of Comparative Example 1, when the superconducting filament diameter was made to be 0.98 μm submicron, the Sn concentration in the bronze matrix decreased after Nb 3 Sn formation, resulting in low resistance, It can be seen that the effective filament diameter is significantly larger than the core material diameter before the heat treatment because the superconducting filaments are connected by the superconducting current.

【0024】なお、上記実施例では、前記芯材が埋め込
まれるマトリックス材料としてブロンズより高抵抗のC
u合金を用いた場合について説明したが、同マトリック
ス材料として、Cu−Mn合金等の磁性元素を含むCu
合金を用いた場合についても同様な結果が得られた。
In the above embodiment, as the matrix material in which the core material is embedded, C having a higher resistance than bronze is used.
Although the case of using the u alloy has been described, Cu containing a magnetic element such as Cu—Mn alloy is used as the matrix material.
Similar results were obtained with alloys.

【0025】[0025]

【発明の効果】以上詳述した如く、本発明によれば超電
導フィラメント間の超電導電流による結合を招くことな
く、超電導フィラメント径をサブミクロン化することが
でき、ひいては交流損失が低減された化合物超電導線を
製造し得る方法を提供することができる。
As described in detail above, according to the present invention, the diameter of the superconducting filament can be made submicron without inducing coupling between the superconducting filaments due to the superconducting current, and thus AC loss is reduced. A method may be provided by which the wire may be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の化合物超電導線の製造工程を示す説
明図。
FIG. 1 is an explanatory view showing a manufacturing process of a compound superconducting wire of Example 1.

【図2】実施例1の化合物超電導線の製造工程を示す説
明図。
2 is an explanatory view showing a manufacturing process of the compound superconducting wire of Example 1. FIG.

【図3】実施例1及び比較例1の化合物超電導線におけ
る熱処理前の芯材径に対する有効フィラメント径の変化
を示す特性図。
FIG. 3 is a characteristic diagram showing a change in effective filament diameter with respect to a core material diameter before heat treatment in the compound superconducting wires of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…芯材、2…Cu−Si合金棒(マトリックス)、3
…Cu−Sn合金管、4…複合材、5…Cu−Sn合金
管。
1 ... Core material, 2 ... Cu-Si alloy rod (matrix), 3
... Cu-Sn alloy tube, 4 ... Composite material, 5 ... Cu-Sn alloy tube.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ブロンズ法によりA15型化合物超電導
線を製造する方法において、A15型化合物の構成元素
を含まない高抵抗のCu合金、或いは磁性元素を含むC
u合金からなるマトリックス中にNb又はNb合金から
なる芯材を複数本埋め込み、更に前記マトリックスの周
囲にブロンズを配置した後、これらを伸線加工する工程
を具備することを特徴とする化合物超電導線の製造方
法。
1. A method for producing an A15 type compound superconducting wire by a bronze method, which comprises a high resistance Cu alloy containing no constituent elements of the A15 type compound or C containing a magnetic element.
A compound superconducting wire, comprising a step of embedding a plurality of core materials made of Nb or Nb alloy in a matrix made of u alloy, further arranging bronze around the matrix, and then wire-drawing these. Manufacturing method.
JP3344734A 1991-12-26 1991-12-26 Manufacture of compound superconductive wire Pending JPH05174647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344734A JPH05174647A (en) 1991-12-26 1991-12-26 Manufacture of compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344734A JPH05174647A (en) 1991-12-26 1991-12-26 Manufacture of compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH05174647A true JPH05174647A (en) 1993-07-13

Family

ID=18371565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344734A Pending JPH05174647A (en) 1991-12-26 1991-12-26 Manufacture of compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH05174647A (en)

Similar Documents

Publication Publication Date Title
JPH07105753A (en) Oxide superconducting wire and its manufacture, and oxide superconducting coil
US4094059A (en) Method for producing composite superconductors
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
JPH05174647A (en) Manufacture of compound superconductive wire
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JP2562435B2 (en) Superfine superconducting wire
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
JPH063690B2 (en) Copper-coated ΝbTi superconducting wire
JPH10255563A (en) Nb3sn superconducting wire
JPH11238418A (en) Compound superconductive wire
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPH07282650A (en) Compound superconductor
JPH04109513A (en) Compound superconductor wire rod and manufacture thereof
JPH065130A (en) Composite multi-core nbti superconductive wire
JP3086487B2 (en) Method for manufacturing Nb3Sn AC superconducting wire
JPH06150738A (en) Compound superconducting cable
JPH0554741A (en) Manufacture of compound superconducting wire
JPS58189909A (en) Method of producing nb3sn superconductor
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPS5994307A (en) Method of producing compound superconductive wire
JPH0554730A (en) Copper coating nbti superconducting wire having nbti barrier
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS60170109A (en) Copper coated nbti superconductive lead and method of producing same
JPH09120721A (en) Nb3sn compound superconductor
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof