JPH0464124B2 - - Google Patents

Info

Publication number
JPH0464124B2
JPH0464124B2 JP59089513A JP8951384A JPH0464124B2 JP H0464124 B2 JPH0464124 B2 JP H0464124B2 JP 59089513 A JP59089513 A JP 59089513A JP 8951384 A JP8951384 A JP 8951384A JP H0464124 B2 JPH0464124 B2 JP H0464124B2
Authority
JP
Japan
Prior art keywords
copper
barrier layer
manufacturing
bronze
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59089513A
Other languages
Japanese (ja)
Other versions
JPS60235308A (en
Inventor
Yasuzo Tanaka
Kenjiro Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59089513A priority Critical patent/JPS60235308A/en
Publication of JPS60235308A publication Critical patent/JPS60235308A/en
Publication of JPH0464124B2 publication Critical patent/JPH0464124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、A3B型化合物超電導体のA元素を
主成分とするコア部と、B元素を含有するブロン
ズ部とからなる複合基材から化合物超電導線を製
造する方法の改良に関するものである。 〔従来技術〕 A3B型化合物超電導体としては、Nb3Sn,V3
Ga,Nb3Ga,Nb3Alなどがあるが、これらの化
合物超電導体は通常、A元素を主成分とするコア
部とB元素を含有するブロンズ部とからなる複合
基材を、減面加工により最終寸法の線にした後、
拡散熱処理を行うことにより製造されている。一
例としてはNb3Sn線の製造工程を説明すると次の
とおりである。 (a) まず、Nbコアを10〜15%Snのブロンズ中に
埋め込み、複合基材をつくる。 (b) この複合基材を減面加工する。 (c) 減面加工率20〜50%毎に、400〜700℃の温度
で10分〜1時間の中間焼鈍を繰り返し行う。 (d) 最終寸法の線に仕上げる。 (e) 拡散熱処理によつてNbコアとブロンズの界
面にNb3Sn化合物を生成させる。 〔従来技術の問題点〕 上記のような従来の製造方法には次のような問
題点がある。 複合基材中ではNbコアとブロンズが直接接
触しているため、中間焼鈍の際に1回毎に0.05
〜0.1μmのNb3Snが形成される。 中間焼鈍で形成されたNb3Snは、その後の減
面加工で破壊し、Nbコアの断面形状の不整や
断線を誘発する。 最終の拡散熱処理前にNbコア表面に不連続
なNb3Snが形成されているため、拡散反応に有
効なSn濃度が低下するだけでなく、反応界面
の質が低下する。その結果、拡散熱処理により
生成されるNb3Sn層の断面積の減少や結晶粒の
異常成長などによる超電導特性の低下が起こ
る。 このような問題点はNb3Sn線を製造する場合に
限らず、他のA3B型化合物超電導線を製造する
場合にも存在する。 〔問題点の解決手段〕 本発明は、上記のような従来技術の問題点を解
決するもので、A3B型化合物超電導体のA元素
を主成分とするコア部と、B元素を含有するブロ
ンズ部とからなる複合基材を、中間焼鈍を含む減
面加工により、最終寸法の線にした後、拡散熱処
理により内部にA3B型化合物超電導体を生成す
る化合物超電導線の製造方法において、上記複合
基材として、コア部とブロンズ部の間に、上記中
間焼鈍時におけるA元素とB元素の反応を阻止す
るため、B元素を含まない溶質元素の濃度が1原
子%以下の銅基希薄合金をバリア層として介在さ
せたものを用いることを特徴とするものである。
上記のバリア層は中間焼鈍時には化合物超電導体
の生成をなくす働きをし、拡散熱処理時にはブロ
ンズ部との拡散反応により消滅する。 上記バリア層はB元素を含まない銅基希薄合金
単独でなく、該銅基希薄合金と純銅の複合体で構
成することもできる。いずれにしてもその厚さは
0.05〜1μmの範囲にあることが好ましい。厚さの
下限は複合基材の一部として均一に加工され、最
終寸法まで有効に作用する限界の薄さである。ま
た厚さの上限は拡散熱処理時のB元素の有効濃度
を実用上低下させない程度の値である。B元素の
濃度の低下は化合物結晶の粒径を大きくし、臨界
電流密度の低下につながるからである。 銅基希薄合金の溶質元素は、Ag,Ti,Zr,
Hf,V,Ta,Pd,Mg,Al,Si,Ge,Inなどの
いずれでもよく、また複数元素でもよいが、溶質
元素の合計の濃度は1原子%以下とする。この範
囲内であれば、冷間加工によつても実質的に加工
硬化せず、かつ純銅より高い硬さを有するため均
一に加工できると共に、拡散熱処理時に化合物超
電導体の生成に悪影響を及ぼすこともない。な
お、銅基希薄合金の代わりに銀基希薄合金を使用
することも可能である。 バリア層として純銅の如き極めて軟質なものを
使用すると、コア部とブロンズ部の加工性に整合
できず、バリア層の厚さが著しく変動したり、コ
ア部とブロンズ部が直接接触する部分ができたり
する。 なお、バリア層として銅基希薄合金と純銅の複
合体を使用するときは、銅基希薄合金が80%以上
を占めるようにすることが望ましい。これは、バ
リア層の強度を向上させ、コア部の断面形状の不
整を防止するためである。 第1図は本発明の製造方法に用いられる複合基
材の一例を示す。符号1はNbコア、2はブロン
ズ、3は銅基希薄合金のバリア層、4は拡散障
壁、5は安定化銅である。 第2図は上記複合基材から製造された化合物超
電導線を示す。Nbコア1とブロンズ2の間に、
Nb3Sn化合物6が形成されている。 第3図ないし第5図はそれぞれ本発明の製造方
法に用いられる複合基材の他の例を示す。第3図
の複合基材は、Nbコア1とブロンズ2の間に銅
基希薄合金7と純銅8とを周方向に交互に配置し
てなるバリア層9を設けたものである。第4図の
複合基材は、同様なバリア層9を有するが、銅基
希薄合金7と純銅8の厚さを異ならせてある。第
5図の複合基材は、銅基希薄合金7と純銅8を同
軸状に複合してなるバリア層9を設けたものであ
る。 ここにおけるNbコア1は主成分がNbであれば
よく、Ti,Hf,Zr,Sn,Cuが含まれていても総
量として15原子%以下ならばかまわない。また、
ブロンズ2中のSnの濃度は2〜9原子%の範囲
が望ましいが、そのほかにMg,Gaなどの添加元
素を加えた三元あるいは四元合金ブロンズでもよ
い。 〔実施例〕 実施例1 (第1図相当) Sn濃度14重量%、Ti濃度0.5重量%、残部Cuの
ブロンズに、予め0.1mm厚のCu−0.2重量%(0.3
原子%)Ti希薄合金を被覆したNb−2重量%Hf
合金棒を複合し、さらにその外側に拡散障壁とし
てTaを、安定化金属として純銅を順次設けて複
合基材を形成した。次にこの複合基材を減面加工
した。途中、減面加工率40%毎に550℃の温度で
30分間の中間焼鈍を行つた。拡散熱処理前の銅基
希薄合金の厚さは0.5μm,Nb合金フイラメント
径は7μmであつた。これを拡散熱処理して化合物
超電導線を得た結果は第1表のとおりである。 実施例2 (第3図相当) 実施例1と同じブロンズに、厚さ0.1mmのCu−
0.2重量%(0.3原子%)Ti希薄合金および純銅を
被覆したNb−2重量%Hf合金棒を複合し、さら
に実施例1と同様にして複合基材を形成した。そ
の後の工程は実施例1と同じとした。結果は第1
表のとおりである。 比較例 実施例1と同じブロンズとNb合金コアの界面
に高純度無酸素銅層を有するもの1と有しないも
の2を用意し、同様の減面加工および拡散熱処理
を経て、化合物超電導線を製造した。結果は第1
表のとおりである。 第1表から明らかなように、実施例ではNbフ
イラメントが均一な径に加工され、すぐれた超電
導特性を示すが、比較例ではフイラメント径の不
揃いが大きい。比較例1では軟質のCuが、2で
は中間焼鈍で出来るNb3Sn層が大きく影響してフ
イラメント径を大きく変動させている。また比較
例ではNb3Sn層の厚さの変動も大きく、超電導特
性を悪くしている。
[Technical field] The present invention is an improvement of a method for manufacturing a compound superconducting wire from a composite base material consisting of a core part mainly composed of element A of an A 3 B type compound superconductor and a bronze part containing element B. It is related to. [Prior art] As A 3 B type compound superconductors, Nb 3 Sn, V 3
There are Ga, Nb 3 Ga, Nb 3 Al, etc., but these compound superconductors are usually made by reducing the area of a composite base material consisting of a core part mainly composed of element A and a bronze part containing element B. After making the final dimension line by
Manufactured by diffusion heat treatment. As an example, the manufacturing process of Nb 3 Sn wire is explained as follows. (a) First, a composite base material is created by embedding a Nb core in 10-15% Sn bronze. (b) This composite base material is subjected to surface reduction processing. (c) Repeat intermediate annealing for 10 minutes to 1 hour at a temperature of 400 to 700°C for every 20 to 50% area reduction rate. (d) Finish to the final dimension line. (e) A Nb 3 Sn compound is generated at the interface between the Nb core and the bronze by diffusion heat treatment. [Problems with Prior Art] The conventional manufacturing method as described above has the following problems. Since the Nb core and bronze are in direct contact in the composite base material, 0.05
~0.1 μm of Nb 3 Sn is formed. The Nb 3 Sn formed during intermediate annealing is destroyed during the subsequent area reduction process, causing irregularities in the cross-sectional shape of the Nb core and disconnection. The formation of discontinuous Nb 3 Sn on the Nb core surface before the final diffusion heat treatment not only reduces the effective Sn concentration for the diffusion reaction but also degrades the quality of the reaction interface. As a result, the superconducting properties deteriorate due to a decrease in the cross-sectional area of the Nb 3 Sn layer produced by the diffusion heat treatment and abnormal growth of crystal grains. Such problems exist not only when manufacturing Nb 3 Sn wires but also when manufacturing other A 3 B type compound superconducting wires. [Means for Solving the Problems] The present invention solves the problems of the prior art as described above, and consists of a core portion of an A 3 B-type compound superconductor containing the A element as a main component and a B-type compound superconductor. A method for manufacturing a compound superconducting wire, in which a composite base material consisting of a bronze part is made into a wire of final dimensions by surface reduction processing including intermediate annealing, and then an A 3 B type compound superconductor is generated inside by diffusion heat treatment, As the composite base material, in order to prevent the reaction between the A element and the B element during the intermediate annealing, a copper-based diluted material with a concentration of solute elements not containing the B element of 1 atomic % or less is provided between the core part and the bronze part. It is characterized by using an alloy interposed as a barrier layer.
The above-mentioned barrier layer serves to prevent the formation of compound superconductors during intermediate annealing, and disappears due to a diffusion reaction with the bronze portion during diffusion heat treatment. The barrier layer may be composed not only of a copper-based diluted alloy that does not contain the B element, but also of a composite of the copper-based diluted alloy and pure copper. In any case, the thickness
It is preferably in the range of 0.05 to 1 μm. The lower limit of the thickness is the thinnest limit that allows it to be uniformly processed as part of the composite substrate and to work effectively to its final dimensions. Further, the upper limit of the thickness is a value that does not practically reduce the effective concentration of B element during diffusion heat treatment. This is because a decrease in the concentration of element B increases the grain size of the compound crystal, leading to a decrease in critical current density. The solute elements of the copper-based dilute alloy are Ag, Ti, Zr,
The solute element may be any of Hf, V, Ta, Pd, Mg, Al, Si, Ge, In, etc., or may be a plurality of elements, but the total concentration of the solute elements should be 1 atomic % or less. Within this range, it will not substantially work harden even during cold working, and since it has higher hardness than pure copper, it can be processed uniformly, and it will not adversely affect the formation of compound superconductors during diffusion heat treatment. Nor. Note that it is also possible to use a silver-based diluted alloy instead of the copper-based diluted alloy. If an extremely soft material such as pure copper is used as a barrier layer, the workability of the core and bronze parts cannot be matched, and the thickness of the barrier layer may vary significantly, or there may be areas where the core and bronze parts are in direct contact. or Note that when using a composite of a copper-based diluted alloy and pure copper as the barrier layer, it is desirable that the copper-based diluted alloy accounts for 80% or more. This is to improve the strength of the barrier layer and prevent irregularities in the cross-sectional shape of the core portion. FIG. 1 shows an example of a composite base material used in the manufacturing method of the present invention. 1 is a Nb core, 2 is bronze, 3 is a copper-based dilute alloy barrier layer, 4 is a diffusion barrier, and 5 is stabilized copper. FIG. 2 shows a compound superconducting wire manufactured from the above composite base material. Between Nb core 1 and bronze 2,
A Nb 3 Sn compound 6 is formed. FIGS. 3 to 5 each show other examples of composite substrates used in the manufacturing method of the present invention. The composite base material shown in FIG. 3 is provided with a barrier layer 9 formed by alternately arranging copper-based diluted alloy 7 and pure copper 8 in the circumferential direction between the Nb core 1 and the bronze 2. The composite substrate of FIG. 4 has a similar barrier layer 9, but the thicknesses of the copper-based dilute alloy 7 and the pure copper 8 are different. The composite base material shown in FIG. 5 is provided with a barrier layer 9 made of a coaxial composite of a copper-based diluted alloy 7 and pure copper 8. The Nb core 1 here only needs to have Nb as its main component, and even if it contains Ti, Hf, Zr, Sn, and Cu, it does not matter if the total amount is 15 atomic % or less. Also,
The concentration of Sn in the bronze 2 is preferably in the range of 2 to 9 atomic percent, but a ternary or quaternary alloy bronze containing additional elements such as Mg and Ga may also be used. [Example] Example 1 (corresponding to Figure 1) Bronze with a Sn concentration of 14% by weight, a Ti concentration of 0.5% by weight, and the balance Cu was preliminarily coated with Cu-0.2% by weight (0.3% by weight) with a thickness of 0.1 mm.
atomic%) Nb-2wt%Hf coated with Ti dilute alloy
A composite base material was formed by combining alloy rods and sequentially providing Ta as a diffusion barrier and pure copper as a stabilizing metal on the outside. Next, this composite base material was subjected to surface reduction processing. On the way, the temperature is 550℃ every 40% area reduction rate.
Intermediate annealing was performed for 30 minutes. The thickness of the copper-based dilute alloy before diffusion heat treatment was 0.5 μm, and the diameter of the Nb alloy filament was 7 μm. This was subjected to diffusion heat treatment to obtain a compound superconducting wire. The results are shown in Table 1. Example 2 (corresponding to Fig. 3) The same bronze as in Example 1 was coated with a 0.1 mm thick Cu-
A 0.2% by weight (0.3 atomic%) Ti dilute alloy and a Nb-2% by weight Hf alloy rod coated with pure copper were composited, and a composite base material was further formed in the same manner as in Example 1. The subsequent steps were the same as in Example 1. The result is the first
As shown in the table. Comparative Example Compound superconducting wires were prepared with one having a high-purity oxygen-free copper layer and one without a high-purity oxygen-free copper layer at the interface of the bronze and Nb alloy core as in Example 1, and undergoing the same area reduction processing and diffusion heat treatment to produce compound superconducting wires. did. The result is the first
As shown in the table. As is clear from Table 1, in the examples, the Nb filaments were machined to have a uniform diameter and exhibited excellent superconducting properties, but in the comparative examples, the filament diameters were largely uneven. In Comparative Example 1, the soft Cu, and in Comparative Example 2, the Nb 3 Sn layer formed during intermediate annealing greatly influenced the filament diameter, causing a large change in the filament diameter. Furthermore, in the comparative example, the variation in the thickness of the Nb 3 Sn layer was large, which worsened the superconducting properties.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複合基材
として、コア部とブロンズ部の間に、銅基希薄合
金のバリア層を介在させたものを用いたことによ
り、減面加工中の中間焼鈍でコア部とブロンズ部
の間に化合物超電導体が生成されることがなくな
り、最終寸法に加工した状態でのA元素を主成分
とするフイラメントの径を高度に均一化できると
共に、バリア層となる銅基希薄合金がB元素を含
まないので減面加工性も良好である。また拡散熱
処理で形成される化合物超電導体の結晶粒内ある
いは結晶粒界に銅基希薄合金の微量元素が拡散す
ることにより、臨界電流密度が向上すると共に、
結晶粒が微細化して許容曲げ歪特性(曲げ歪が作
用したときの超電導特性の低下し難さ)も改善さ
れる利点がある。
As explained above, according to the present invention, by using a composite base material in which a barrier layer of a copper-based diluted alloy is interposed between the core part and the bronze part, intermediate annealing during area reduction processing is possible. This prevents the formation of a compound superconductor between the core part and the bronze part, making it possible to highly uniform the diameter of the filament whose main component is element A when processed to the final size, and to serve as a barrier layer. Since the copper-based dilute alloy does not contain the B element, the surface reduction processability is also good. In addition, due to the diffusion of trace elements of the copper-based dilute alloy into the crystal grains or grain boundaries of the compound superconductor formed by diffusion heat treatment, the critical current density is improved, and
There is an advantage that crystal grains become finer and allowable bending strain characteristics (difficulty in deterioration of superconducting characteristics when bending strain is applied) are also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に使用される複合基
材の一例を示す断面図、第2図は同複合基材から
製造した化合物超電導線を示す拡大断面図、第3
図ないし第5図はそれぞれ本発明の製造方法に使
用される複合基材の他の例を示す要部断面図であ
る。 1……コア部、2……ブロンズ部、3……バリ
ア層、6……化合物超電導体、7……銅基希薄合
金、8……純銅、9……バリア層。
FIG. 1 is a cross-sectional view showing an example of a composite base material used in the manufacturing method of the present invention, FIG. 2 is an enlarged cross-sectional view showing a compound superconducting wire manufactured from the same composite base material, and FIG.
5 through 5 are sectional views of essential parts showing other examples of composite substrates used in the manufacturing method of the present invention. DESCRIPTION OF SYMBOLS 1... Core part, 2... Bronze part, 3... Barrier layer, 6... Compound superconductor, 7... Copper-based dilute alloy, 8... Pure copper, 9... Barrier layer.

Claims (1)

【特許請求の範囲】 1 A3B型化合物超電導体のA元素を主成分と
するコア部と、B元素を含有するブロンズ部とか
らなる複合基材を、中間焼鈍を含む減面加工によ
り、最終寸法の線にした後、拡散熱処理により内
部にA3B型化合物超電導体を生成する方法にお
いて、上記複合基材として、コア部とブロンズ部
の間に、上記中間焼鈍時におけるA元素とB元素
の反応を阻止するため、B元素を含まない溶質元
素の濃度が1原子%以下の銅基希薄合金をバリア
層として介在させたものを用いることを特徴とす
る化合物超電導線の製造方法。 2 特許請求の範囲第1項記載の製造方法であつ
て、バリア層の厚さが0.05〜1μmであるもの。 3 特許請求の範囲第1項記載の製造方法であつ
て、バリア層がB元素を含まない溶質元素の濃度
が1原子%以下の銅基希薄合金と純銅との複合体
からなるもの。 4 特許請求の範囲第3項記載の製造方法であつ
て、バリア層の厚さが0.05〜1μmであるもの。 5 特許請求の範囲第3項または第4項記載の製
造方法であつて、複合体は銅基希薄合金が80%以
上を占めるもの。
[Claims] A composite base material consisting of a core part mainly composed of element A of a 1 A 3 B-type compound superconductor and a bronze part containing element B is subjected to surface reduction processing including intermediate annealing, In the method of producing an A 3 B type compound superconductor inside by diffusion heat treatment after the wire is made into the final dimension, the composite base material is formed between the core part and the bronze part by the A element and B element during the intermediate annealing. A method for manufacturing a compound superconducting wire, characterized in that a copper-based dilute alloy containing no B element and having a solute element concentration of 1 atomic % or less is interposed as a barrier layer in order to prevent reactions of the elements. 2. The manufacturing method according to claim 1, wherein the barrier layer has a thickness of 0.05 to 1 μm. 3. The manufacturing method according to claim 1, wherein the barrier layer is made of a composite of pure copper and a copper-based dilute alloy containing no B element and having a concentration of a solute element of 1 atomic % or less. 4. The manufacturing method according to claim 3, wherein the barrier layer has a thickness of 0.05 to 1 μm. 5. The manufacturing method according to claim 3 or 4, in which the composite comprises 80% or more of a copper-based dilute alloy.
JP59089513A 1984-05-07 1984-05-07 Method of producing compound superconductive wire Granted JPS60235308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089513A JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089513A JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Publications (2)

Publication Number Publication Date
JPS60235308A JPS60235308A (en) 1985-11-22
JPH0464124B2 true JPH0464124B2 (en) 1992-10-14

Family

ID=13972862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089513A Granted JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS60235308A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562434B2 (en) * 1986-01-31 1996-12-11 古河電気工業株式会社 Compound superconducting wire
US4983228A (en) * 1989-03-31 1991-01-08 General Electric Company Contraction pre-annealing superconducting wire for length stabilization followed by reaction annealing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734607A (en) * 1980-08-11 1982-02-25 Yazaki Corp Composition for semiconductor layer for power cable
JPS609012A (en) * 1983-06-27 1985-01-18 日立電線株式会社 Method of producing extrafine multicore compound superconductive conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734607A (en) * 1980-08-11 1982-02-25 Yazaki Corp Composition for semiconductor layer for power cable
JPS609012A (en) * 1983-06-27 1985-01-18 日立電線株式会社 Method of producing extrafine multicore compound superconductive conductor

Also Published As

Publication number Publication date
JPS60235308A (en) 1985-11-22

Similar Documents

Publication Publication Date Title
US5100481A (en) Compound superconducting wire and method of manufacturing the same
JPH0377608B2 (en)
US4665611A (en) Method of fabricating superconductive electrical conductor
JPS6215967B2 (en)
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPH0464124B2 (en)
US6845254B2 (en) Nb3Ga multifilamentary superconducting wire and process for preparing the same
Pyon et al. Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors
JPS60241611A (en) Method of producing nb3sn superconductive wire
JPH08195133A (en) Manufacture of nb3sn superconducting wire
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS60100307A (en) Method of producing nb3sn superconductive wire material
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP3428771B2 (en) Nb3Sn compound superconducting wire
JP3070969B2 (en) Superconducting wire manufacturing method
JPH07282650A (en) Compound superconductor
JP3014524B2 (en) Superconducting wire and its manufacturing method
JPH0313686B2 (en)
JPH0554741A (en) Manufacture of compound superconducting wire
JPS62211358A (en) Manufacture of nb3sn superconductor wire
JPH06101001A (en) Compound superconductor
JPH041446B2 (en)
JPH0381247B2 (en)