JPH09118522A - Oxide superconductor having high critical current density - Google Patents

Oxide superconductor having high critical current density

Info

Publication number
JPH09118522A
JPH09118522A JP7299309A JP29930995A JPH09118522A JP H09118522 A JPH09118522 A JP H09118522A JP 7299309 A JP7299309 A JP 7299309A JP 29930995 A JP29930995 A JP 29930995A JP H09118522 A JPH09118522 A JP H09118522A
Authority
JP
Japan
Prior art keywords
oxide superconductor
calcined powder
weight
powder
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7299309A
Other languages
Japanese (ja)
Other versions
JP3568657B2 (en
Inventor
Atsushi Murata
篤 村田
Mamoru Sato
守 佐藤
Hideji Yoshizawa
秀二 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP29930995A priority Critical patent/JP3568657B2/en
Publication of JPH09118522A publication Critical patent/JPH09118522A/en
Application granted granted Critical
Publication of JP3568657B2 publication Critical patent/JP3568657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an oxide superconductor having high critical current density. SOLUTION: Calcined powder prepd. by blending components so as to attain the objective compsn. is compacted and sintered to obtain the objective oxide superconductor. The carbon and water contents of the calcined powder having been regulated to <=1.0wt.%, preferably <=0.1wt.% and <=3.0wt.%, preferably <=0.5wt.%, respectively. The oxide superconductor is preferably a Bi-contg. oxide superconductor and preferably has >=3,000A/cm<2> critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,高い臨界電流密度
を有する酸化物超電導体に関する。
TECHNICAL FIELD The present invention relates to an oxide superconductor having a high critical current density.

【0002】[0002]

【従来の技術】酸化物超電導物質として各種の材料が提
案されているが,これらの酸化物焼結体(バルク体)は
その成分組成がどのようなものであっても一様に臨界電
流密度が低いという性質がある。このために超電導電流
リードへの適用が困難であるという共通した問題があ
る。
2. Description of the Related Art Various materials have been proposed as oxide superconducting materials, but these oxide sintered bodies (bulk bodies) have a uniform critical current density regardless of their composition. Is low. For this reason, there is a common problem that it is difficult to apply to superconducting current leads.

【0003】例えば,公知の酸化物超電導体であるY
系,Bi系,Tl系,Hg系等の焼結体酸化物超電導体
の臨界電流密度(以下,Jcと略することがある)は一
般的に200〜300A/cm2程度である。例えばY系焼
結体では,そのJcは高々100A/cm2程度であり,こ
のため,溶融法で製造することも試みられているが,こ
の場合には意図する形状のものが得られないという難点
がある。Bi系については或る報告では1000A/cm2
のものが得られたことが報じられ,また最高で2500
A/cm2が得られたという報告もある。しかし,超電導電
流リードへの適用には少なくとも3000A/cm2以上の
可能な限り高いJcが必要とされるので,満足すべきも
のではない。このため,大容量の超電導電流を流すこと
のできる酸化物超電導体を得るべく各方面で開発が進め
られている。
For example, Y, which is a known oxide superconductor
The critical current density (hereinafter, sometimes abbreviated as Jc) of a sintered oxide superconductor such as a system, Bi system, Tl system, Hg system, etc. is generally about 200 to 300 A / cm 2 . For example, the Yc sintered body has a Jc of about 100 A / cm 2 at most, and therefore, it has been attempted to manufacture it by a melting method, but in this case, the intended shape cannot be obtained. There are difficulties. For Bi system, one report is 1000 A / cm 2
Was reported to have been obtained, and up to 2500
There is also a report that A / cm 2 was obtained. However, application to superconducting current leads requires at least 3000 A / cm 2 or higher as high as possible Jc, which is not satisfactory. For this reason, developments are being made in various fields to obtain an oxide superconductor capable of flowing a large-capacity superconducting current.

【0004】酸化物超電導体物質においてそのJcを高
めるには,結晶の方位を揃えるといった方策や, 高密度
化した焼結体にすることが必要である。また不純物を可
能な限り低減することも必要である。したがって,酸化
物超電導体の高Jc化はその使用材料が決め手になると
いっても過言ではない。
[0004] To increase the Jc in the oxide superconductor material, and measures such as to align the crystal orientation, it is necessary to a sintered body densified. It is also necessary to reduce impurities as much as possible. Therefore, it is no exaggeration to say that the high Jc of oxide superconductors is determined by the materials used.

【0005】従来の酸化物超電導体は,目標組成となる
ように各成分を配合した原料粉を成形・焼結して酸化物
超電導体材料とするものであるが,この原料粉として一
般に仮焼粉が用いられる。仮焼粉は,目標組成となるよ
うに各成分を配合した混合物(共沈粉を含む)をいった
ん焼成し,この焼成物を粉砕するという焼成・粉砕の工
程を数回繰り返すことによって得られた粉体である。
In the conventional oxide superconductor, a raw material powder in which each component is mixed so as to have a target composition is molded and sintered to obtain an oxide superconductor material. Generally, the raw material powder is calcined. Powder is used. The calcined powder was obtained by firing a mixture (including coprecipitated powder) of each component once to achieve the target composition, and then repeating the firing and pulverizing process of pulverizing the fired product several times. It is a powder.

【0006】[0006]

【発明が解決しようとする課題】この仮焼粉を成形・焼
結して目標とする成分組成と結晶構造を有する酸化物超
電導体とする場合,仮焼粉自体が目標とする酸化物超電
導体と実質的に同一の成分組成を有するように精密に制
御されていても,そして,原料から同伴する不可避的不
純物を可能な限り低減したとしても,それだけでは,J
cの向上効果には限度があることがわかった。本発明は
この限界を克服することを課題としたものである。
When the calcined powder is formed and sintered to form an oxide superconductor having a target component composition and crystal structure, the calcined powder itself is a target oxide superconductor. Even if it is precisely controlled to have substantially the same component composition as that of J, and even if the inevitable impurities accompanying the raw materials are reduced as much as possible,
It was found that the effect of improving c is limited. The present invention aims to overcome this limitation.

【0007】[0007]

【課題を解決するための手段】本発明によれば,目標組
成となるように各成分を配合した仮焼粉を成形・焼結し
てなる酸化物超電導体であって,該仮焼粉中の炭素含有
量を1.0重量%以下好ましくは0.1重量%以下に抑制
し,さらには,水分含有量を3.0重量%以下好ましく
は0.5重量%以下に抑制し,さらには,原料以外の製
造過程で混入する不純物(Cおよび水を除く)を0.0
5重量%以下に抑制してなる臨界電流密度の高い酸化物
超電導体を提供する。ここで言う仮焼粉は,例えば,目
標組成となるように各成分を配合した混合物(共沈粉を
含む)をいったん焼成し,この焼成物を粉砕するという
焼成・粉砕の工程を1回または数回繰り返すことによっ
て得られた粉体を言う。
According to the present invention, there is provided an oxide superconductor obtained by molding and sintering a calcined powder in which each component is mixed so as to have a target composition. Carbon content of 1.0% by weight or less, preferably 0.1% by weight or less, and further, the water content of 3.0% by weight or less, preferably 0.5% by weight or less, , 0.0 except impurities (excluding C and water) mixed in during the manufacturing process other than raw materials
Provided is an oxide superconductor having a high critical current density, which is suppressed to 5% by weight or less. The calcined powder referred to here is obtained by, for example, once firing a mixture (including coprecipitated powder) in which each component is mixed so as to have a target composition, and then pulverizing the fired product once or once. The powder obtained by repeating several times.

【0008】[0008]

【発明の実施の形態】酸化物超電導体物質を得るには,
先ず高純度の原料粉を使用することが必要である。例え
ばビスマス系で言えば, 特定の或る成分組成例えばBi
1.85Pb0.35Sr1.90Ca2.05Cu3.05x の焼結体を
得るには,その組成比に限りなく近い組成比をもつ高純
度の仮焼粉を準備する必要がある。かような仮焼粉の出
発原料としては,Bi23,PbO,SrCO3,Ca
OおよびCuOの粉体が用いられるが,これらの原料粉
自体が高純度であることが必要である。また, このよう
な原料を共沈法によって製造する場合にも,不純物が混
在するようなことは避けねばならない。
BEST MODE FOR CARRYING OUT THE INVENTION To obtain an oxide superconductor material,
First, it is necessary to use high-purity raw material powder. For example in the bismuth-based, specific one-component composition for example Bi
In order to obtain a sintered body of 1.85 Pb 0.35 Sr 1.90 Ca 2.05 Cu 3.05 O x , it is necessary to prepare a high-purity calcined powder having a composition ratio as close as possible to the composition ratio thereof. The starting materials for such calcined powder include Bi 2 O 3 , PbO, SrCO 3 , and Ca.
Powders of O and CuO are used, but the raw material powders themselves must have high purity. Also , when producing such raw materials by the coprecipitation method, it is necessary to avoid mixing impurities.

【0009】しかし,酸化物超電導体物質の成分組成と
なるように仮焼粉の成分量を精密に制御し且つ高純度の
原料を使用して原料から同伴する不純物を可及的に低減
しても,酸化物超電導体のJcの向上には超えられない
限界があり,これは大気中の水分と炭酸ガスに主因があ
ることを本発明らは知った。大気中の水分と炭酸ガスに
起因して,仮焼粉中に炭素(水)が含有されることにな
り,これが酸化物超電導体のJcに有害に作用するので
ある。例えば仮焼粉中の炭素含有量が1重量%を超える
ととJcは500A/cm2以下に低下し,水分が3重
量%を超えてもJcは500A/cm以下2に低下す
る。
However, the amount of the components of the calcined powder is precisely controlled so that the composition of the oxide superconductor material is controlled, and high-purity raw materials are used to reduce impurities accompanying the raw materials as much as possible. However, the present inventors have found that there is a limit that cannot be exceeded in improving the Jc of an oxide superconductor, and this is mainly due to water and carbon dioxide in the atmosphere. Carbon (water) is contained in the calcined powder due to water and carbon dioxide in the atmosphere, and this adversely affects Jc of the oxide superconductor. For example, when the carbon content in the calcined powder exceeds 1% by weight, Jc decreases to 500 A / cm 2 or less, and even when the water content exceeds 3% by weight, Jc decreases to 500 A / cm 2 or less 2 .

【0010】また,たとえ高純度の原料物質を使用して
も,仮焼粉製造時に不可避的に混入する不純物(Cと水
を除く)もJcの向上や品質特性に有害に作用すること
がわかった。仮焼粉製造過程で混入する他の不純物とし
てSi,Al,Zr,Na,アルカリ土類金属類や重金
属類があるが,これらは焼成,粉砕時に用いられる冶具
と装置及び人から混入することがわかった。このような
不純物が0.05重量%以上になると,Jcは300A
/cm以下2に低下する。
Further, even if a high-purity raw material is used, impurities (except C and water) inevitably mixed during the production of the calcined powder are found to adversely affect the improvement of Jc and quality characteristics. It was Other impurities that may be mixed in during the calcination powder manufacturing process include Si, Al, Zr, Na, alkaline earth metals and heavy metals, but these may be mixed in by jigs and equipment used during firing and grinding, and by people. all right. If the amount of such impurities exceeds 0.05% by weight, Jc will be 300A.
/ Cm reduced to 2 or less.

【0011】大気中から炭素が混入する経路は次のよう
に考えることができる。すなわち,大気中の水分が超電
導結晶を構成していない微量な物質と接すると水酸化物
を形成し,この水酸化物が雰囲気中の炭酸ガスと作用し
て炭酸物を作り,この炭酸物がCとしての含有量を増加
させ,最終的にCが結晶粒界に析出する。このようにし
て結晶粒界にCが析出すると粒子間を流れる超電導電流
を阻害するものと本発明者らは考えている。
The route by which carbon is mixed from the atmosphere can be considered as follows. That is, when moisture in the atmosphere comes into contact with a trace amount of a substance that does not form a superconducting crystal, a hydroxide is formed, and this hydroxide reacts with carbon dioxide gas in the atmosphere to form a carbonate, and this carbonate is The content as C is increased, and finally C precipitates at the grain boundaries. The present inventors believe that the precipitation of C at the crystal grain boundaries impedes the superconducting current flowing between the grains.

【0012】このような大気中からの水分と炭素の混入
は,出発原料物質をいくら高純度のものに厳選しても回
避できるものではなく,とりわけ,仮焼粉の製造過程で
起きることがわかった。とくに,仮焼粉を製造する焼成
工程と粉砕工程のうち,粉砕工程で混入する機会が多
い。焼成後に粉砕した状態では,比表面積の急激な増大
と活性点の増大によって,大気中の湿分を吸湿しやすい
状態となっているからである。この吸湿現象は,空気温
度にもよるが特に露点が10℃より高い雰囲気では吸湿
しやすいことがわかった。したがって,露点10℃以
下,好ましくは露点5℃以下の雰囲気下で粉砕し保持す
ればこの粉砕時における吸湿の問題は解決される。しか
し,この粉砕時の吸湿を低減する対策だけではなお不充
分であり,炭素含有量を可及的に少なくした仮焼粉を製
造する必要がある。
It has been found that such contamination of water and carbon from the atmosphere cannot be avoided no matter how carefully the starting raw material is selected to be highly pure, and in particular, it occurs in the process of producing the calcined powder. It was Of the firing and crushing processes for producing the calcined powder, there are many opportunities to mix in the crushing process. This is because in the crushed state after firing, the moisture in the atmosphere is easily absorbed due to the rapid increase in the specific surface area and the increase in active points. It has been found that this moisture absorption phenomenon is likely to be absorbed particularly in an atmosphere having a dew point higher than 10 ° C. although it depends on the air temperature. Therefore, if the powder is crushed and held in an atmosphere having a dew point of 10 ° C. or lower, preferably 5 ° C. or lower, the problem of moisture absorption during crushing can be solved. However, the measures to reduce the moisture absorption during crushing are still insufficient, and it is necessary to produce calcined powder with the carbon content as low as possible.

【0013】本発明によれば,炭素含有量の低い仮焼粉
は,粉砕工程のあと600℃以上融点以下の温度で熱処
理することによって有利に得られることがわかった。熱
処理温度が500℃程度では炭素は除去できず,また結
合力の強くない水分は除去できるが十分ではない。60
0℃以上,好ましくは700℃以上の温度で熱処理する
と炭素と水分は共に除去できる。ただし,融点以上の温
度では溶解分解が起こって目的物以外の物質となるので
排除すべきである。この熱処理温度に保持する時間は処
理温度によって決定されるが,0.1〜50時間の範囲
であればよい。より具体的には,イットリウム系仮焼粉
では850〜950℃で5〜10時間の熱処理を,また
ビスマス系仮焼粉では750〜850℃で5〜10時間
の熱処理を行うのがよい。
According to the present invention, it has been found that the calcined powder having a low carbon content can be advantageously obtained by performing a heat treatment at a temperature of 600 ° C. or higher and a melting point or lower after the pulverizing step. When the heat treatment temperature is about 500 ° C., carbon cannot be removed, and water having a weak bonding force can be removed, but it is not sufficient. 60
Both carbon and water can be removed by heat treatment at a temperature of 0 ° C. or higher, preferably 700 ° C. or higher. However, it should be excluded because it decomposes into a substance other than the target substance at a temperature above the melting point and becomes a substance other than the target substance. The time to be kept at this heat treatment temperature is determined by the treatment temperature, but may be in the range of 0.1 to 50 hours. More specifically, the yttrium-based calcined powder is preferably heat-treated at 850 to 950 ° C. for 5 to 10 hours, and the bismuth-based calcined powder is preferably heat-treated at 750 to 850 ° C. for 5 to 10 hours.

【0014】図1は,後記の実施例1における仮焼粉製
造時の熱処理温度を変えた場合の該温度と仮焼粉中のC
含有量との関係を示したものである。図1から明らかな
ように,熱処理温度が750℃以上でC含有量は0.1
重量%以下となり,さらに高い温度にすれば,C含有量
を0.05重量%以下とすることができる。
FIG. 1 shows the temperature and C in the calcined powder when the heat treatment temperature was changed during the production of the calcined powder in Example 1 described later.
It shows the relationship with the content. As is clear from Fig. 1, the C content was 0.1 at heat treatment temperatures of 750 ° C or higher.
If the temperature is higher than that, the C content can be reduced to 0.05% by weight or less.

【0015】図2は,同様に後記実施例3における仮焼
粉製造時の熱処理温度を変えた場合の該温度と仮焼粉中
のC含有量との関係を示したものであるが,図2から明
らかなように,熱処理温度が850℃以上でC含有量は
0.1重量%以下となり,さらに高い温度にすればC含
有量を0.05重量%以下とすることができる。
Similarly, FIG. 2 shows the relationship between the temperature and the C content in the calcined powder when the heat treatment temperature at the time of manufacturing the calcined powder is changed in Example 3 described later. As is clear from 2, the C content becomes 0.1% by weight or less at the heat treatment temperature of 850 ° C. or higher, and the C content can be made 0.05% by weight or less at a higher temperature.

【0016】図3は,後記の実施例1と同じ成分組成の
ビスマス系超電導焼結体について,該仮焼粉中のC含有
量を変えた場合の超電導焼結体のJcの測定値を示した
ものである。C含有量の調節は,実施例1と同じ方法で
得られた仮焼粉を,純水を少量入れたデシケータ内に入
れて適当な時間(24〜72時間)放置することによっ
て行った。このようにして各種のC含有量を有する仮焼
粉を直径約20mmの円板状に形成し,これを850℃
で一次焼結し,密度を高めるために,さらにCIP(冷
間等方圧縮)し,再度850℃で二次焼結して焼結体を
得,得られた焼結体のJcを測定した。
FIG. 3 shows Jc measured values of the bismuth-based superconducting sintered body having the same composition as in Example 1 described later, when the C content in the calcined powder was changed. It is a thing. The C content was adjusted by placing the calcined powder obtained by the same method as in Example 1 in a desiccator containing a small amount of pure water and leaving it for an appropriate time (24 to 72 hours). In this way, calcined powders having various C contents were formed into a disk shape with a diameter of about 20 mm, which was then heated to 850 ° C.
Was primary-sintered, further subjected to CIP (cold isotropic compression) to increase the density, and then secondary-sintered again at 850 ° C. to obtain a sintered body, and Jc of the obtained sintered body was measured. .

【0017】なお,Jcの測定は,得られた焼結体を1
mm角の断面をもつ短冊状に切り出し,Jc測定用電極
およびリード線を取付けて測定した。また,C含有量の
測定は,デシケータで放置処理した各仮焼粉の一部をサ
ンプリングし,1000℃以上の高温に加熱し,燃焼さ
せた状態で出てくる炭酸ガスを赤外線分光器で定量し
た。
The Jc was measured using the obtained sintered body as 1
It was cut out into a strip shape having a square section of mm, Jc measurement electrodes and lead wires were attached, and the measurement was performed. In addition, the C content is measured by sampling a portion of each calcined powder left to stand in a desiccator, heating it to a high temperature of 1000 ° C or higher, and quantifying the carbon dioxide gas emitted in the burned state with an infrared spectroscope. did.

【0018】図3から明らかなように,焼結体中のJc
(A/cm2)は仮焼粉のC含有量の低下と共に急減に向上
することがわかる。本仮焼粉の場合,C含有量が0.0
8重量%以下の付近からJcは急激に向上しはじめ,
0.04重量%以下は3000A/cm2を超えるようにな
る。
As is clear from FIG. 3, Jc in the sintered body is
It can be seen that (A / cm 2 ) sharply decreases as the C content of the calcined powder decreases. In the case of this calcined powder, the C content is 0.0
Jc began to improve sharply from around 8% by weight,
If it is less than 0.04% by weight, it will exceed 3000 A / cm 2 .

【0019】図4は,図3と同じ仮焼粉中の水分量と超
電導焼結体のJcの測定値を示したものである。この水
分量の調整は,図3の場合と全く同様に,デシケータ内
に放置する時間を変化させることによって行なったもの
である。図3と同一サンプルについて,300まで加熱
した際に出てくる水分をカールフイッシャー水分計を用
いて測定した。
FIG. 4 shows measured values of water content in the calcined powder and Jc of the superconducting sintered body as in FIG. This adjustment of the amount of water is performed by changing the time of leaving it in the desiccator, just as in the case of FIG. With respect to the same sample as in FIG. 3, the water content generated when heated to 300 was measured using a Karl Fischer water content meter.

【0020】図4から明らかなように,焼結体中のJc
(A/cm2)は仮焼粉中の水分含有量の低下と共に急激に
向上することがわかる。本例の場合,仮焼粉の水分含有
量が0.2重量%付近を境にして,これ以下になるとJ
c値は急激に立ち上がっている。
As is clear from FIG. 4, Jc in the sintered body is
It can be seen that (A / cm 2 ) rapidly improves as the water content in the calcined powder decreases. In the case of this example, when the moisture content of the calcined powder is around 0.2% by weight as the boundary, and when it is less than this, J
The c value rises sharply.

【0021】図5は,図3と図4のデータにおいて,仮
焼粉中のC含有量と水分含有量の関係を示したものであ
る。図5から明らかなように,仮焼粉中のC含有量と水
分含有量の間には明確な相関があることがわかる。
FIG. 5 shows the relationship between the C content and the water content in the calcined powder in the data of FIGS. 3 and 4. As is clear from FIG. 5, there is a clear correlation between the C content and the water content in the calcined powder.

【0022】このように仮焼粉中のC含有量と水分含有
量は焼結体のJcに重大な影響を与えるのであり,従来
の水準を超えたJcを得るにはC含有量と水分含有量の
抑制が不可避な要件であることが明らかである。
As described above, the C content and the water content in the calcined powder have a great influence on the Jc of the sintered body, and in order to obtain the Jc exceeding the conventional level, the C content and the water content are obtained. It is clear that quantity control is an unavoidable requirement.

【0023】しかし,仮焼粉中のC含有量と水分含有量
を可及的に抑制できたとしても,仮焼粉製造中に容器や
冶具から不純物が混入しては,その効果も減少してしま
う。焼成時の容器や粉砕時の粉砕冶具からの不純物の混
入を回避する手段としては,製造しようとする仮焼粉と
同一組成の粉体ペーストを作り,これをそれら容器や冶
具の表面に0.01〜1mm程度の厚さに塗布し,70
0〜950℃でその塗膜を焼成するのがよい。これによ
って,十分な強度を有する同一組成の保護皮膜が形成さ
れるので,該不純物の混入が効果的に防止できる。
However, even if the C content and the water content in the calcined powder can be suppressed as much as possible, if impurities are mixed from the container or the jig during the manufacture of the calcined powder, the effect is also reduced. Will end up. As a means for avoiding the inclusion of impurities from the container during calcination or the crushing jig during crushing, a powder paste having the same composition as the calcined powder to be manufactured is prepared, and this is applied to the surface of the container or jig. Apply to a thickness of about 01 to 1 mm, 70
The coating is preferably baked at 0 to 950 ° C. As a result, a protective film of the same composition having sufficient strength is formed, so that the mixing of the impurities can be effectively prevented.

【0024】このようにして製造された本発明の仮焼粉
はC≦0.05重量%,水分≦0.2重量%,その他の不
純物≦0.01重量%とすることができ,これを焼結し
た超電導体物質の臨界電流密度は安定して1000A/
cm2 以上,ビスマス系では3000A/cm2 以上,
さらには5000A/cm2 以上にも高めることができ
る。
The calcined powder of the present invention thus produced can have C ≦ 0.05% by weight, water ≦ 0.2% by weight, and other impurities ≦ 0.01% by weight. The critical current density of the sintered superconductor material is stable at 1000 A /
cm 2 or more, bismuth-based 3000 A / cm 2 or more,
Further, it can be increased to 5000 A / cm 2 or more.

【0025】[0025]

【実施例】【Example】

〔実施例1〕Bi23,PbO,SrCO3,CaOお
よびCuOの粉状物を,Bi系超電導材料の高温相(2
223相)が得られる割合いで混合し,800℃×10
時間の焼成と露点10℃以下の雰囲気下での粉砕とから
なる工程を2回繰り返し,最後に露点10℃以下の雰囲
気下で800℃で5時間の熱処理を行ったあと,露点1
0℃以下の雰囲気下で粉砕した。そのさい,粉砕に用い
た冶具並びに熱処理に用いた容器は,予めその表面を同
一組成のペーストで塗布し,その塗膜を焼成処理してお
いた。得られた仮焼粉の一部をサンプリングし,C濃
度,水分濃度および不純物濃度を本文に記載の方法で測
定した。
Example 1 Bi 2 O 3, PbO, SrCO 3, CaO and CuO of powdery substance, high-temperature phase of the Bi-based superconducting material (2
223 phase) is mixed at a ratio of 800 ° C. × 10
The process consisting of calcination for 2 hours and pulverization in an atmosphere with a dew point of 10 ° C or lower is repeated twice, and finally heat treatment is performed at 800 ° C for 5 hours in an atmosphere with a dew point of 10 ° C or lower, followed by dew point
It was crushed under an atmosphere of 0 ° C or lower. At that time, the jig used for the crushing and the container used for the heat treatment were coated on the surface with a paste having the same composition in advance, and the coating film was baked. A part of the obtained calcined powder was sampled, and the C concentration, water concentration and impurity concentration were measured by the methods described in the text.

【0026】また,得られた仮焼粉をプレス成型し,8
50℃で50時間焼成し,更にCIP(冷間等方圧縮
法)にて再度圧縮し,再び850℃で50時間焼成し
た。得られた焼結体を切り出し,Jcを本文に記載の方
法で測定した。各測定結果を表1に示した。
Further, the calcined powder obtained is press-molded,
It was baked at 50 ° C. for 50 hours, further compressed by CIP (cold isotropic compression method), and baked again at 850 ° C. for 50 hours. The obtained sintered body was cut out and Jc was measured by the method described in the text. Table 1 shows the measurement results.

【0027】〔実施例2〕原料の粉状物として各成分を
共沈させた共沈粉を使用した以外は,実施例1と同じ条
件で同一組成の仮焼粉を製造し,得られた仮焼粉を実施
例1と同じ条件で焼結した。焼結体のJcおよび仮焼粉
のC濃度,水分濃度および不純物量を実施例1と同様の
方法で測定した。その結果を表1に示した。
[Example 2] A calcined powder of the same composition was produced under the same conditions as in Example 1 except that a coprecipitated powder in which each component was coprecipitated was used as a raw material powder. The calcined powder was sintered under the same conditions as in Example 1. The Jc of the sintered body, the C concentration of the calcined powder, the water concentration and the amount of impurities were measured in the same manner as in Example 1. The results are shown in Table 1.

【0028】〔実施例3〕Y23,BaCO3,CuO
の粉状物をモル比で1:2:3の割合いで混合し,94
0℃×30時間の焼成と露点10℃以下の雰囲気下での
粉砕とからなる工程を2回繰り返し,最後に露点10℃
以下の雰囲気下で900℃で10時間の熱処理を行った
あと露点10℃以下の雰囲気下で粉砕した。使用した冶
具および容器は,本例の組成物と同じ組成のペーストを
その表面に塗布し,これを焼成処理しておいた。
Example 3 Y 2 O 3 , BaCO 3 , CuO
Powdery substance of 1: 2: 3 in a molar ratio of 94:
A process consisting of baking at 0 ° C for 30 hours and crushing in an atmosphere with a dew point of 10 ° C or lower is repeated twice, and finally the dew point is 10 ° C.
Heat treatment was performed at 900 ° C. for 10 hours in the following atmosphere, and then pulverization was performed in an atmosphere having a dew point of 10 ° C. or less. The jig and the container used were prepared by applying a paste having the same composition as the composition of this example on the surface thereof and firing the paste.

【0029】得られた仮焼粉をプレス成型し,950℃
で50時間焼成した。得られた焼結体からJc測定用試
料を切り出して焼結体のJcを実施例1と同様の方法で
測定した。また仮焼粉のC濃度,水分濃度および不純物
量を実施例1と同様の方法で測定した。その結果を表1
に示した。
The calcined powder obtained is press-molded at 950 ° C.
It was baked for 50 hours. A sample for Jc measurement was cut out from the obtained sintered body, and the Jc of the sintered body was measured by the same method as in Example 1. Further, the C concentration, the water concentration and the amount of impurities of the calcined powder were measured by the same method as in Example 1. Table 1 shows the results.
It was shown to.

【0030】〔比較例1〕仮焼粉の製造過程において,
800℃で5時間の最終熱処理を行わなかった以外は,
実施例1と同様の方法で焼結体を得た。また,冶具およ
び容器はペーストの塗布・焼結処理なしのものを用い,
また粉砕は大気中で行った。得られた焼結体のJcおよ
び仮焼粉のC濃度,水分濃度および不純物量を実施例1
と同様の方法で測定し,その結果を表1に示した。
[Comparative Example 1] In the process of producing the calcined powder,
Except that the final heat treatment was not performed for 5 hours at 800 ° C.
A sintered body was obtained in the same manner as in Example 1. In addition, the jigs and containers used are those without paste coating / sintering treatment.
The crushing was performed in the atmosphere. The Jc of the obtained sintered body, the C concentration of the calcined powder, the water concentration, and the amount of impurities were determined in Example 1.
The measurement was performed in the same manner as in, and the results are shown in Table 1.

【0031】〔比較例2〕仮焼粉の製造過程において,
900℃で10時間の最終熱処理を行わなかった以外
は,実施例3と同様の方法で焼結体を得た。冶具および
容器はペーストの塗布・焼結処理なしのものを用い,ま
た粉砕は大気中で行った。得られた焼結体のJcおよび
仮焼粉のC濃度,水分濃度および不純物量を実施例1と
同様の方法で測定し,その結果を表1に示した。
[Comparative Example 2] In the process of producing the calcined powder,
A sintered body was obtained in the same manner as in Example 3 except that the final heat treatment was not performed at 900 ° C for 10 hours. The jig and container used were those without paste coating and sintering, and the crushing was performed in the atmosphere. The Jc of the obtained sintered body, the C concentration of the calcined powder, the water concentration and the amount of impurities were measured by the same method as in Example 1, and the results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から,仮焼粉製造のさいの最終工程で
高温熱処理を施さなかった比較例のものに比べて,高温
熱処理を施した本発明実施例のものは,C量と水分量が
極低域にまで低減し,これらの仮焼粉を用いた超電導焼
結体は高いJcを示すことがわかる。また表面を同一組
成物の焼成被覆で覆った冶具や容器を用いると不純物の
混入が回避でき,このことも高いJcを得るうえで寄与
している。
It can be seen from Table 1 that the amount of C and the amount of water in the Example of the present invention subjected to the high temperature heat treatment are higher than those of the Comparative Example in which the high temperature heat treatment was not applied in the final step of the calcination powder production. It can be seen that the superconducting sintered body using these calcined powders shows a high Jc, which is reduced to an extremely low range. Further, by using a jig or a container whose surface is covered with a fired coating of the same composition, it is possible to avoid mixing of impurities, which also contributes to obtaining a high Jc.

【0034】なお,表1に記載した密度は各焼結体の単
位容積当りの重量測定を行ない,次の3段階で評価した
ものである。 ◎印:相対密度80%以上 ○印:相対密度70〜80%未満 △印:相対密度60〜70%未満
The densities shown in Table 1 were evaluated by measuring the weight per unit volume of each sintered body and evaluating it in the following three stages. ◎: Relative density of 80% or more ○: Relative density of 70 to less than 80% △: Relative density of 60 to less than 70%

【0035】また,表1に記載した成形性は,各仮焼粉
を圧粉法による成形性試験に供し,所定圧力でペレット
状に成形したものを100mmの高さから落とした場合
の状態を次の3段階で評価したものである。 ◎印:ペレット形状を維持する。 ○印:一部が崩れる。 △印:ペレット形状を維持しない。 表1から本発明実施例のものは密度および成形性が良好
であり,酸化物超電導材料をバルク材として安定して製
造できることがわかる。
The moldability shown in Table 1 is the condition when each calcined powder is subjected to a moldability test by the powder compacting method and the pelletized one is dropped at a predetermined pressure from a height of 100 mm. It is evaluated in the following three stages. ⊚: The pellet shape is maintained. ○ mark: A part collapses. Δ mark: The pellet shape is not maintained. It can be seen from Table 1 that the examples of the present invention have good density and moldability, and can be stably manufactured using the oxide superconducting material as a bulk material.

【0036】[0036]

【発明の効果】以上説明したように,本発明によれば,
従来の水準を超えた高いJcを有する酸化物超電導体物
質を提供でき,ビスマス系では5000A/cm2 程度
の臨界電流密度も達成可能である。また,C≦0.05
重量%,水分≦0.2重量%,その他の不純物≦0.01
重量%といった高純度の仮焼粉を使用する本発明の超電
導体は,成形性および密度の点でも優れているので,例
えば線材の製造時にもふくれが抑制される結果,超電導
線材の製造技術にも大きく貢献できる。
As described above, according to the present invention,
It is possible to provide an oxide superconductor material having a high Jc exceeding the conventional level, and it is possible to achieve a critical current density of about 5000 A / cm 2 in a bismuth system. In addition, C ≦ 0.05
% By weight, moisture ≤ 0.2% by weight, other impurities ≤ 0.01
The superconductor of the present invention which uses a high-purity calcined powder such as wt% is also excellent in terms of formability and density. For example, as a result of suppressing blistering during the production of a wire rod, the superconducting wire production technique can be applied. Can also contribute significantly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の熱処理温度を変えた場合の該温度と
焼結体中のC含有量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the temperature and the C content in a sintered body when the heat treatment temperature in Example 1 is changed.

【図2】実施例3の熱処理温度を変えた場合の該温度と
焼結体中のC含有量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the temperature and the C content in the sintered body when the heat treatment temperature in Example 3 is changed.

【図3】Bi系超電導体についての仮焼粉中のC含有量
と焼結体のJcの関係を示す図である。
FIG. 3 is a diagram showing a relationship between C content in a calcined powder and Jc of a sintered body for a Bi-based superconductor.

【図4】Bi系超電導体についての仮焼粉中の水分含有
量と焼結体のJcの関係を示す図である。
FIG. 4 is a diagram showing the relationship between the water content in the calcined powder and the Jc of the sintered body for the Bi-based superconductor.

【図5】Bi系超電導体についての仮焼粉中の炭素含有
量と水分含有量の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a carbon content and a water content in a calcined powder for a Bi-based superconductor.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 目標組成となるように各成分が配合され
た仮焼粉を成形・焼結してなる酸化物超電導体であっ
て,前記の仮焼粉が炭素含有量を1.0重量%以下およ
び水分含有量を3.0重量%以下に抑制したものである
臨界電流密度の高い酸化物超電導体。
1. An oxide superconductor obtained by molding and sintering a calcined powder in which each component is blended so as to have a target composition, wherein the calcined powder has a carbon content of 1.0% by weight. % Or less and a water content of 3.0% by weight or less, an oxide superconductor having a high critical current density.
【請求項2】 酸化物超電導体はビスマス系酸化物超電
導体であり,その仮焼粉は炭素含有量0.1重量%以下
および水分含有量0.5重量%以下に抑制されたもので
あり,臨界電流密度が3000A/cm2以上である請求項
1に記載の酸化物超電導体。
2. The oxide superconductor is a bismuth oxide superconductor, and the calcined powder thereof has a carbon content of 0.1% by weight or less and a water content of 0.5% by weight or less. The oxide superconductor according to claim 1, wherein the critical current density is 3000 A / cm 2 or more.
【請求項3】 酸化物超電導体はイットリウム系酸化物
超電導体であり,その仮焼粉は炭素含有量0.1重量%
以下および水分含有量0.5重量%以下に抑制されたも
のであり,臨界電流密度が500A/cm2以上である請求
項1に記載の酸化物超電導体。
3. The oxide superconductor is a yttrium oxide superconductor, and the calcined powder thereof has a carbon content of 0.1% by weight.
The oxide superconductor according to claim 1, which has a water content of 0.5 wt% or less and has a critical current density of 500 A / cm 2 or more.
【請求項4】 仮焼粉は各成分を含む原料混合物を焼成
後に粉砕したものであって,最終的に600℃以上融点
以下の温度で熱処理されたものである請求項1,2また
は3に記載の酸化物超電導体。
4. The calcined powder is obtained by calcination of a raw material mixture containing each component after firing, and finally heat-treated at a temperature of 600 ° C. or higher and a melting point or lower. The oxide superconductor described.
【請求項5】 仮焼粉の粉砕は露点10℃以下の雰囲気
下で行われたものである請求項4に記載の酸化物超電導
体。
5. The oxide superconductor according to claim 4, wherein the calcination powder is pulverized in an atmosphere having a dew point of 10 ° C. or lower.
【請求項6】 仮焼粉の焼成と粉砕は,当該仮焼粉と実
質上同一の成分組成のコーテング層をもつ容器または冶
具を用いて行われたものである請求項4または5に記載
の酸化物超電導体。
6. The calcination and crushing of the calcined powder is performed by using a container or a jig having a coating layer having substantially the same composition as the calcined powder. Oxide superconductor.
JP29930995A 1995-10-25 1995-10-25 Manufacturing method of oxide superconductor Expired - Lifetime JP3568657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29930995A JP3568657B2 (en) 1995-10-25 1995-10-25 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29930995A JP3568657B2 (en) 1995-10-25 1995-10-25 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH09118522A true JPH09118522A (en) 1997-05-06
JP3568657B2 JP3568657B2 (en) 2004-09-22

Family

ID=17870877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29930995A Expired - Lifetime JP3568657B2 (en) 1995-10-25 1995-10-25 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3568657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001820A (en) * 2005-06-24 2007-01-11 Sumitomo Electric Ind Ltd Raw material aggregated particle powder, its producing method, superconducting wire material, its producing method, and superconducting instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001820A (en) * 2005-06-24 2007-01-11 Sumitomo Electric Ind Ltd Raw material aggregated particle powder, its producing method, superconducting wire material, its producing method, and superconducting instrument

Also Published As

Publication number Publication date
JP3568657B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
EP0495677B1 (en) Oxide superconducting material and process for producing the same
JP3568657B2 (en) Manufacturing method of oxide superconductor
US5026680A (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing a sintered body therefrom
US5382385A (en) Sintered varistor material with small particle size
Peigney et al. Phase Transformations and Melting Effects During the Sintering of Bismuth‐Doped Zinc Oxide Powders
JP3461654B2 (en) Manufacturing method of oxide superconductor
JPH0196055A (en) Superconductive ceramic composition
JPH09118525A (en) Calcined powder for producing bi-containing oxide superconducting material and its production
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH0238359A (en) Production of superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH01275493A (en) Method for growing oxide superconductor single crystal
JPH04124033A (en) Vanadium-containing superconducting substance and its production
JPH05229823A (en) Production of oxide superconducting material
JPH10101337A (en) Calcined powder for producing bi-containing oxide superconductor
JPH0465343A (en) Production of oxide superconducting wire
JPH11139824A (en) Calcined powder for bi-containing high temperature phase superconductor and polycrystalline body
JPH10139438A (en) Calcined powder for oxide superconductor having high critical current density
JPH04124013A (en) Oxide superconductor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term