JP2007001820A - Raw material aggregated particle powder, its producing method, superconducting wire material, its producing method, and superconducting instrument - Google Patents

Raw material aggregated particle powder, its producing method, superconducting wire material, its producing method, and superconducting instrument Download PDF

Info

Publication number
JP2007001820A
JP2007001820A JP2005184753A JP2005184753A JP2007001820A JP 2007001820 A JP2007001820 A JP 2007001820A JP 2005184753 A JP2005184753 A JP 2005184753A JP 2005184753 A JP2005184753 A JP 2005184753A JP 2007001820 A JP2007001820 A JP 2007001820A
Authority
JP
Japan
Prior art keywords
raw material
particle powder
superconducting
drum
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184753A
Other languages
Japanese (ja)
Other versions
JP4982975B2 (en
Inventor
Masashi Kikuchi
昌志 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005184753A priority Critical patent/JP4982975B2/en
Publication of JP2007001820A publication Critical patent/JP2007001820A/en
Application granted granted Critical
Publication of JP4982975B2 publication Critical patent/JP4982975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material aggregated particle powder which is useful for producing a superconducting wire material having a high critical current; a method for producing the same; the superconducting wire material using the raw material aggregated particle powder; a method for producing the same; and a superconducting instrument including the superconducting wire material. <P>SOLUTION: The method for producing the raw material aggregated particle powder comprises: a process for arranging a raw material particle powder 1 comprising raw material particles 1a, 1b each formed from an oxide containing at least one element selected from the group consisting of Bi, Pb, Sr, Ca and Cu, or a multiple oxide in a drum 11 wherein carbon dioxide and moisture are removed; and a process for forming each raw material aggregated particle 2a by aggregating the raw material particles 1a, 1b by rotating the drum 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、臨界電流の高い超電導線材を製造するために有用な原料凝集粒子粉末およびその製造方法に関し、またかかる原料凝集粒子粉末を用いて製造される超電導線材およびその製造方法、ならびにその超電導線材を含む超電導機器に関する。   The present invention relates to a raw material aggregated particle powder useful for producing a superconducting wire having a high critical current and a method for producing the same, and a superconducting wire produced using the raw material agglomerated particle powder, a method for producing the same, and a superconducting wire therefor Related to superconducting equipment including

Bi、Pb、Sr、Ca、CuおよびOを含有するBi系超電導線材は、高温酸化物超電導線材として代表的なものであり、超電導線材として広く活用されている。   Bi-based superconducting wires containing Bi, Pb, Sr, Ca, Cu and O are typical as high-temperature oxide superconducting wires and are widely used as superconducting wires.

このようなBi系超電導線材は、一般に、Bi、Pb、Sr、Ca、CuおよびOを目的とする化学組成に対して化学量論的に含む原料粒子粉末を金属シースに充填し、この原料粒子粉末が充填された金属シースを塑性加工して線材を形成し、この線材を熱処理することによって製造される。ここで、塑性加工とは、原料粉末が充填された金属シースを塑性変形させて線材を形成する加工の総称であり、伸線加工、圧延加工、プレス加工などが含まれる。   Such a Bi-based superconducting wire is generally filled with a raw material particle powder stoichiometrically with respect to a chemical composition intended for Bi, Pb, Sr, Ca, Cu, and O. A metal sheath filled with powder is plastically processed to form a wire, and the wire is heat-treated. Here, the plastic working is a general term for processing in which a metal sheath filled with raw material powder is plastically deformed to form a wire rod, and includes wire drawing processing, rolling processing, press processing, and the like.

また、上記の原料粒子粉末は、Bi、Pb、Sr、CaおよびCuをそれぞれ含む酸化物または炭酸塩などを、目的とするBi系超電導体の化学組成に対応する化学量論比で配合、混合した後、焼成して得られたものを粉砕、混合して製造される。   In addition, the above raw material particle powder is mixed and mixed with oxides or carbonates containing Bi, Pb, Sr, Ca and Cu, respectively, in a stoichiometric ratio corresponding to the chemical composition of the target Bi-based superconductor. Then, the product obtained by firing is pulverized and mixed.

こうして得られた原料粒子粉末は、かさ密度が低く、平板状の粒子の集合物であるため流動性が低く、金属シースへの充填の際にタッピングが必要であり、金属シースへの原料粒子粉末の充填が不均一となり、充填量も大きくすることができなかった。   The raw material particle powder thus obtained has a low bulk density and is an aggregate of tabular particles, so it has low fluidity and needs tapping when filling the metal sheath. As a result, the filling amount was uneven and the filling amount could not be increased.

このため、原料粉末のかさ密度および流動性を高め、金属シースに原料粒子粉末を均一に充填するとともにその充填量を増大させて、超電導電流が流れる超電導フィラメント部分の断面積を増大させることにより、臨界電流を高めるために、原料粒子凝集させた原料凝集粉粒子から構成される粉末を製造することが検討されている。   For this reason, by increasing the bulk density and fluidity of the raw material powder, uniformly filling the metal sheath with the raw material particle powder and increasing its filling amount, by increasing the cross-sectional area of the superconducting filament portion through which the superconducting current flows, In order to increase the critical current, it has been studied to produce a powder composed of raw material aggregated powder particles obtained by aggregating raw material particles.

しかし、Bi系超電導線材の製造に用いられる原料粒子粉末は、二酸化炭素ガスおよび水分などの不純物を吸着しやすく、二酸化炭素ガスおよび水分が吸着した原料粒子粉末を用いてBi系超電導線材を製造すると、原料粒子粉末を焼結して超電導体結晶を形成させても、吸着した二酸化炭素ガスおよび水分がガス化し、超電導体結晶間の結合が弱くなり、臨界電流が低い超電導線材しか得られない。   However, the raw material particle powder used in the production of the Bi-based superconducting wire is likely to adsorb impurities such as carbon dioxide gas and moisture, and the Bi-based superconducting wire is produced using the raw material particle powder adsorbed with the carbon dioxide gas and moisture. Even if the raw material particle powder is sintered to form a superconductor crystal, the adsorbed carbon dioxide gas and moisture are gasified, the bond between the superconductor crystals is weakened, and only a superconducting wire having a low critical current can be obtained.

一般的な原料凝集粒子の粉末、たとえば酸化鉄凝集粒子粉末の製造方法としては、乾式造粒方法をはじめ各種の粒子凝集方法が提案されているが(たとえば、特許文献1を参照)、Bi系超電導線材の製造に用いられる原料粒子粉末については、二酸化炭素ガスおよび水分の吸着が大きいため、臨界電流を高めるような原料粒子粉末の凝集方法が提案されていなかった。
特開2001−2423号公報
As a method for producing a general raw material agglomerated particle powder, for example, an iron oxide agglomerated particle powder, various particle agglomeration methods including a dry granulation method have been proposed (for example, see Patent Document 1). The raw material particle powder used for the production of the superconducting wire has a large adsorption of carbon dioxide gas and moisture, so that no aggregation method of the raw material particle powder has been proposed so as to increase the critical current.
JP 2001-2423 A

本発明は、臨界電流が高い超電導線材の製造に有用な原料凝集粒子粉末およびその製造方法、原料凝集粒子粉末を用いた超電導線材およびその製造方法、ならびに超電導線材を含む超電導機器を提供することを目的とする。   The present invention provides a raw material agglomerated particle powder useful for the production of a superconducting wire having a high critical current, a method for producing the same, a superconducting wire using the material agglomerated particle powder, a method for producing the same, and a superconducting device including the superconducting wire. Objective.

本発明は、Bi、Pb、Sr、CaおよびCuからなる群から選ばれる1つ以上の元素を含む酸化物または複合酸化物で形成される原料粒子の集合物である原料粒子粉末を二酸化炭素ガスおよび水分が除去されたドラム内に配置する工程と、ドラムを回転させることにより原料粒子を凝集させて原料凝集粒子を形成する工程とを含む原料凝集粒子粉末の製造方法である。   In the present invention, raw material particle powder, which is an aggregate of raw material particles formed of an oxide or composite oxide containing one or more elements selected from the group consisting of Bi, Pb, Sr, Ca and Cu, is converted into carbon dioxide gas. And a raw material aggregated particle powder production method including a step of placing in a drum from which moisture has been removed and a step of aggregating the raw material particles by rotating the drum to form the raw material aggregated particles.

本発明にかかる原料凝集粒子粉末の製造方法においては、ドラム内における二酸化炭素ガス残存濃度を10ppm未満、水分残存濃度を1ppm未満とすることができる。また、ドラムの内圧を101kPa(1気圧)以下とすることができる。   In the method for producing the raw material aggregated particle powder according to the present invention, the residual carbon dioxide gas concentration in the drum can be less than 10 ppm, and the residual moisture concentration can be less than 1 ppm. Further, the internal pressure of the drum can be set to 101 kPa (1 atm) or less.

また、本発明は、上記の製造方法により得られる原料凝集粒子粉末である。
また、本発明は、上記の原料凝集粒子粉末を金属シースに充填する工程と、原料凝集粒子粉末が充填された前記金属シースを塑性加工して線材を形成する工程と、線材を熱処理する工程とを含む超電導線材の製造方法である。
Moreover, this invention is the raw material aggregated particle powder obtained by said manufacturing method.
The present invention also includes a step of filling the raw material aggregated particle powder into a metal sheath, a step of plastically processing the metal sheath filled with the raw material aggregated particle powder to form a wire, and a step of heat-treating the wire. Is a method for manufacturing a superconducting wire.

また、本発明は、上記の製造方法により得られる超電導線材である。さらに、 本発明は、上記の超電導線材を含む超電導機器である。   Moreover, this invention is a superconducting wire obtained by said manufacturing method. Furthermore, this invention is a superconducting apparatus containing said superconducting wire.

本発明によれば、臨界電流が高い超電導線材の製造に有用な原料凝集粒子粉末およびその製造方法、原料凝集粒子粉末を用いた超電導線材およびその製造方法、ならびに超電導線材を含む超電導機器を提供することができる。   According to the present invention, a raw material aggregated particle powder useful for the production of a superconducting wire having a high critical current and a method for producing the same, a superconducting wire using the raw material agglomerated particle powder, a method for producing the same, and a superconducting device including the superconducting wire are provided. be able to.

本発明にかかる原料凝集粒子粉末の製造方法は、図1および図2を参照して、Bi、Pb、Sr、CaおよびCuからなる群から選ばれる1つ以上の元素を含む酸化物または複合酸化物で形成される原料粒子の混合物である原料粒子粉末1を二酸化炭素ガスおよび水分が除去されたドラム11内に配置する工程と、ドラムを回転させることにより原料粒子1a,1bを凝集させて原料凝集粒子2aを形成する工程とを含む。   The raw material aggregated particle powder manufacturing method according to the present invention is described with reference to FIG. 1 and FIG. 2. An oxide or composite oxidation containing one or more elements selected from the group consisting of Bi, Pb, Sr, Ca and Cu A raw material particle powder 1, which is a mixture of raw material particles formed in a product, is disposed in a drum 11 from which carbon dioxide gas and moisture have been removed, and the raw material particles 1 a and 1 b are agglomerated by rotating the drum. Forming the agglomerated particles 2a.

ここで、原料粒子粉末とは、Bi、Pb、Sr、CaおよびCuからなる群から選ばれる1つ以上の元素を含む酸化物または複合酸化物で形成されている原料粒子の集合物をいう。また、原料粒子粉末には、化学組成が異なる2種類以上の原料粒子が含まれていてもよい。具体的には、この原料粒子粉末には、Bi2212(Bi2Sr2CaCu28+δをいう、以下同じ)粒子、(Bi,Pb)2212((Bi,Pb)2Sr2CaCu28+δをいう、以下同じ)粒子、Bi2223(Bi2Sr2Ca2Cu310+δをいう、以下同じ)粒子、(Bi,Pb)2223((Bi,Pb)2Sr2Ca2Cu310+δをいう、以下同じ)粒子、アルカリ土類酸化物粒子、アルカリ土類銅酸化物粒子、銅酸化物粒子、Ca2PbO4粒子、(Bi,Pb)3221((Bi,Pb)3Sr2Ca2CuO10+δをいう、以下同じ)粒子、または上記の化学組成に異なる2種以上の酸化物または複合酸化物を含む粒子が含まれ得る。 Here, the raw material particle powder refers to an aggregate of raw material particles formed of an oxide or composite oxide containing one or more elements selected from the group consisting of Bi, Pb, Sr, Ca and Cu. The raw material particle powder may contain two or more kinds of raw material particles having different chemical compositions. Specifically, the raw material particle powder includes Bi2212 (Bi 2 Sr 2 CaCu 2 O 8 + δ , hereinafter the same) particles, (Bi, Pb) 2212 ((Bi, Pb) 2 Sr 2 CaCu 2 O. 8 + δ , hereinafter the same) particle, Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ , hereinafter the same) particle, (Bi, Pb) 2223 ((Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 + δ , hereinafter the same) particles, alkaline earth oxide particles, alkaline earth copper oxide particles, copper oxide particles, Ca 2 PbO 4 particles, (Bi, Pb) 3221 ((Bi, Pb) 3 Sr 2 Ca 2 CuO 10 + δ , hereinafter the same) particles, or particles containing two or more different oxides or composite oxides in the above chemical composition.

この原料粒子粉末は、Bi、Pb、Sr、CaおよびCuをそれぞれ含む酸化物または炭酸塩などを、目的とするBi系超電導体の化学組成に対応する化学量論比で配合、混合した後、焼成して得られたものを粉砕、混合して製造される。   This raw material particle powder is prepared by mixing and mixing oxides or carbonates containing Bi, Pb, Sr, Ca and Cu at a stoichiometric ratio corresponding to the chemical composition of the target Bi-based superconductor. It is manufactured by pulverizing and mixing the product obtained by firing.

かかる原料粒子粉末は、直径が1μm〜4μm程度、厚さが0.1μm〜5μm程度の平板状の原料粒子から構成され、粉末のかさ密度が0.5g/cm3〜0.7g/cm3程度と低くなる。 Such raw material particle powder is composed of flat raw material particles having a diameter of about 1 μm to 4 μm and a thickness of about 0.1 μm to 5 μm, and the bulk density of the powder is 0.5 g / cm 3 to 0.7 g / cm 3. The degree becomes low.

本発明による原料凝集粒子粉末の製造には、図1を参照して、たとえば回転造粒装置10が用いられる。この回転造粒装置10は、2つのローラ12上に1つのドラム11が載せられたものであり、ローラ12を回転させることによりドラム11を回転させて、ドラム11内に配置された原料粒子粉末1を構成する原料粒子1a,1bを互いに接触させることにより凝集させて原料凝集粒子2aを造粒することができる。   For the production of the raw material aggregated particle powder according to the present invention, for example, a rotary granulator 10 is used with reference to FIG. This rotary granulator 10 has one drum 11 mounted on two rollers 12, and the drum 11 is rotated by rotating the roller 12, and the raw material particle powder disposed in the drum 11. The raw material agglomerated particles 2a can be agglomerated by bringing the raw material particles 1a and 1b constituting 1 into agglomeration by bringing them into contact with each other.

本発明にかかる原料凝集粒子粉末の製造方法は、図2を参照して、上記の原料粒子粉末1を二酸化炭素ガスおよび水分が除去されたドラム11内に配置する工程を含む。原料粒子1a,1bの凝集を二酸化炭素ガスおよび水分が除去されたドラム11内において行なうことにより、粒子表面に二酸化炭素ガスおよび水分を吸着させることなく原料粒子の凝集ができる。こうして、粒子表面に二酸化炭素ガスおよび水分の吸着のない原料凝集粒子粉末が得られるため、後の超電導線材の製造工程において、二酸化炭素ガスおよび水分による超電導体結晶間の結合力低下のおそれがなく、臨界電流の高い超電導線材の製造が可能となる。   The raw material aggregated particle powder manufacturing method according to the present invention includes a step of placing the raw material particle powder 1 in a drum 11 from which carbon dioxide gas and moisture have been removed, with reference to FIG. By aggregating the raw material particles 1a and 1b in the drum 11 from which carbon dioxide gas and moisture have been removed, the raw material particles can be aggregated without adsorbing the carbon dioxide gas and moisture on the particle surface. In this way, since the raw material aggregated particle powder without adsorption of carbon dioxide gas and moisture is obtained on the particle surface, there is no risk of lowering the bonding force between the superconductor crystals due to carbon dioxide gas and moisture in the subsequent production process of the superconducting wire. Thus, it becomes possible to produce a superconducting wire having a high critical current.

ここで、ドラム11内に残存する二酸化炭素ガスおよび水分の濃度は、発明の目的から低ければ低いほど好ましい。ドラム11内の二酸化炭素ガス残存濃度は、10ppm未満が好ましく、1ppm以下がより好ましい。また、ドラム11内の水分残存濃度は、1ppm未満(露点温度−80℃未満)が好ましく、0.1ppm以下(露点温度−90℃以下)がより好ましい。   Here, the concentration of carbon dioxide gas and moisture remaining in the drum 11 is preferably as low as possible for the purpose of the invention. The residual carbon dioxide gas concentration in the drum 11 is preferably less than 10 ppm, and more preferably 1 ppm or less. The residual moisture concentration in the drum 11 is preferably less than 1 ppm (dew point temperature less than −80 ° C.), more preferably 0.1 ppm or less (dew point temperature −90 ° C. or less).

また、本発明にかかる原料凝集粒子粉末の製造方法は、図2を参照して、ドラム1を回転させることにより原料粒子粉末1a,1bを凝集させて原料凝集粒子2aを形成する工程を含む。ここで、原料凝集粒子粉末2とは、原料粒子粉末を構成する原料粒子が凝集して形成された原料凝集粒子2a,2bの集合物をいう。   Moreover, the manufacturing method of the raw material aggregated particle powder concerning this invention includes the process of aggregating the raw material particle powder 1a, 1b by rotating the drum 1, and forming the raw material aggregated particle 2a with reference to FIG. Here, the raw material aggregated particle powder 2 refers to an aggregate of the raw material aggregated particles 2a and 2b formed by aggregating the raw material particles constituting the raw material particle powder.

原料粒子が凝集して原料凝集粒子を形成する機構は、以下のように考えられる。図2を参照して、ドラム11が回転することにより、原料粒子粉末1の表面付近に位置する任意の原料粒子1aは、原料粒子粉末1の表面付近を転がりながら他の原料粒子1bと接触を繰り返して、原料粒子1a,1bは、その表面エネルギーを最小にするために働く自己凝集力により凝集して原料凝集粒子2aを形成する。さらにドラム11が回転すると、上記過程を繰り返しながら、原料凝集粒子2aが大きくなる。このようにして、原料凝集粒子2a,2bの混合物である原料凝集粒子粉末2が得られる。   The mechanism by which the raw material particles aggregate to form the raw material aggregated particles is considered as follows. Referring to FIG. 2, by rotating drum 11, any raw material particle 1 a located near the surface of raw material particle powder 1 makes contact with other raw material particles 1 b while rolling near the surface of raw material particle powder 1. Repeatedly, the raw material particles 1a and 1b are agglomerated by the self-aggregating force that works to minimize the surface energy to form the raw material agglomerated particles 2a. When the drum 11 further rotates, the raw material aggregated particles 2a become larger while repeating the above process. In this way, the raw material aggregated particle powder 2 which is a mixture of the raw material aggregated particles 2a and 2b is obtained.

ここで、原料凝集粒子粉末2は、粒径が10μm〜5mm程度の粒状の原料凝集粒子2a,2bから構成され、粉末のかさ密度が0.8g/cm3〜1.4g/cm3程度と大きく、流動性も高くなる。このため、原料凝集粒子粉末2は、タッピングを行なうことなく、金属シースに均一に充填でき、その充填量を増大することができる。原料凝集粒子粉末を金属シースに均一に充填しかつ充填量を増大することにより、超電導電流が流れる超電導フィラメントの太さを均一にしかつ超電導フィラメントの断面積を増大させ、臨界電流の高い超電導線材の製造が可能となる。 Here, the raw material agglomerated particles 2, the particle size is composed of granular material aggregated particles 2a, 2b of about 10Myuemu~5mm, the bulk density of the powder is 0.8g / cm 3 ~1.4g / cm 3 degree Larger and more fluid. For this reason, the raw material aggregated particle powder 2 can be uniformly filled in the metal sheath without tapping, and the filling amount can be increased. By uniformly filling the metal sheath with the raw material aggregated particle powder and increasing the filling amount, the thickness of the superconducting filament through which the superconducting current flows is made uniform and the cross-sectional area of the superconducting filament is increased. Manufacture is possible.

本発明にかかる原料凝集粒子粉末の製造方法において、図2を参照して、ドラム11の内圧は、特に制限はないが、101kPa以下であることが好ましい。原料凝集粒子2aは、原料粒子1a,1bの自己凝集力により凝集したものであり、その凝集力が小さいため、ドラム内圧が高いと凝集した粒子が再度分離する可能性が高くなる。かかる観点から、ドラム11の内圧は、1kPa以下であることがより好ましく、1Pa以下であることがさらに好ましい。   In the method for producing the raw material aggregated particle powder according to the present invention, referring to FIG. 2, the internal pressure of the drum 11 is not particularly limited, but is preferably 101 kPa or less. The raw material agglomerated particles 2a are agglomerated by the self-aggregating force of the raw material particles 1a and 1b. Since the aggregating force is small, there is a high possibility that the agglomerated particles are separated again when the drum internal pressure is high. From this viewpoint, the internal pressure of the drum 11 is more preferably 1 kPa or less, and further preferably 1 Pa or less.

上記のように、本発明にかかる原料凝集粒子粉末の製造は、ドラムを回転させるだけの簡単な操作により行なわれるため、製造コストの低減を図ることができる。また、ドラムの耐圧が101kPa以下の簡単な装置で足りることから、設備コストの低減を図ることができる。   As described above, the production of the raw material agglomerated particle powder according to the present invention is performed by a simple operation of simply rotating the drum, so that the production cost can be reduced. Further, since a simple device with a drum withstand pressure of 101 kPa or less is sufficient, the equipment cost can be reduced.

また、本発明にかかる原料凝集粒子粉末の製造は、10℃〜30℃程度の室温雰囲気下で行うことができるため、原料粒子の物性を変化させること無く原料凝集粒子を形成することができるため、目的とする特性を有する超電導線材の製造が容易である。   Moreover, since the raw material aggregated particle powder according to the present invention can be produced in a room temperature atmosphere of about 10 ° C. to 30 ° C., the raw material aggregated particles can be formed without changing the physical properties of the raw material particles. Therefore, it is easy to manufacture a superconducting wire having the desired characteristics.

また、本発明にかかる原料凝集粒子粉末は、上記の製造方法により得られることから、金属シースに均一にかつ高密度で充填することが可能であり、臨界電流が高い超電導線材を形成するための好適な原料となる。   Moreover, since the raw material aggregated particle powder according to the present invention is obtained by the above production method, it is possible to fill the metal sheath uniformly and at a high density, and to form a superconducting wire having a high critical current. It becomes a suitable raw material.

また、本発明にかかる超電導線材の製造方法は、上記の原料凝集粒子粉末を金属シースに充填する工程と、原料凝集粒子粉末が充填された金属シースを塑性加工して線材を形成する工程と、線材を熱処理する工程とを含む。原料凝集粒子粉末を金属シースに充填することにより、金属シースに均一に充填するとともにその充填量を増大させて、臨界電流が高い超電導線材を作製することができる。   The superconducting wire manufacturing method according to the present invention includes a step of filling the raw material aggregated particle powder in a metal sheath, a step of plastically processing the metal sheath filled with the raw material aggregated particle powder, and forming a wire, Heat-treating the wire. By filling the raw material aggregated particle powder into the metal sheath, it is possible to uniformly fill the metal sheath and increase the filling amount, thereby producing a superconducting wire having a high critical current.

また、本発明にかかる超電導機器は、上記の臨界電流が高い超電導線材を含んでいるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導変圧器、超電導限流器、超電導電力貯蔵装置などが挙げられる。   In addition, since the superconducting device according to the present invention includes the superconducting wire having a high critical current, the superconducting device has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting transformer, a superconducting current limiter, and a superconducting power storage device.

(実施例1)
素原料としてのBi23、PbO、SrCO3、CaCO3およびCuOの粉末を、Bi1.8Pb0.3Sr1.9Ca2.0Cu3.010+δの標準組成となるような化学量論比で配合、混合した後、101kPaの酸素および窒素の混合ガス(酸素濃度8体積%)雰囲気下、780℃で8時間焼成して得られた多結晶体を粉砕して、原材料粒子粉末を調製した。この原料粒子粉末は、かさ密度0.7g/cm3であり、直径が1μm〜4μm、厚さが0.1μm〜5μmの平板状の原料粒子の混合物であった。ここで、かさ密度(ρ)は、定量カップに一定体積V(単位cm3)の原料粒子粉末または原料凝集粒子粉末入れ、その粒子粉末の質量M(単位g)を測定して、ρ=M/Vより算出した。また、粒子の大きさの測定は、SEM(走査型電子顕微鏡)により行なった。
Example 1
Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO powders as raw materials are blended in a stoichiometric ratio so as to have a standard composition of Bi 1.8 Pb 0.3 Sr 1.9 Ca 2.0 Cu 3.0 O 10 + δ . After mixing, the polycrystal obtained by firing at 780 ° C. for 8 hours in an atmosphere of 101 kPa oxygen and nitrogen mixed gas (oxygen concentration 8% by volume) was pulverized to prepare raw material particle powder. The raw material particle powder was a mixture of flat raw material particles having a bulk density of 0.7 g / cm 3 , a diameter of 1 μm to 4 μm, and a thickness of 0.1 μm to 5 μm. Here, the bulk density (ρ) is measured by adding a certain volume V (unit cm 3 ) of raw material particle powder or raw material aggregated particle powder to a measuring cup, and measuring the mass M (unit g) of the particle powder. Calculated from / V. The particle size was measured by SEM (scanning electron microscope).

次に、図2を参照して、内径(D)15cm×内長(L)34cmのドラム11内に2000gの原料粒子粉末1を配置した。次いで、ドラム11内の空気を二酸化炭素ガス濃度1ppm以下で水分濃度0.1ppm以下の乾燥空気を用いて1時間パージした後、ドラム11内の乾燥空気を真空ポンプで除去して、ドラム内圧を0.1Pa、ドラム内残存二酸化炭素ガス濃度を1ppm以下、ドラム内残存水分濃度を0.1ppm以下(露点温度−90℃以下)とした。   Next, referring to FIG. 2, 2000 g of raw material particle powder 1 was placed in a drum 11 having an inner diameter (D) of 15 cm × an inner length (L) of 34 cm. Next, the air in the drum 11 is purged for 1 hour using dry air having a carbon dioxide gas concentration of 1 ppm or less and a moisture concentration of 0.1 ppm or less, and then the dry air in the drum 11 is removed by a vacuum pump to reduce the drum internal pressure. The residual carbon dioxide gas concentration in the drum was 0.1 ppm or less, and the residual moisture concentration in the drum was 0.1 ppm or less (dew point temperature −90 ° C. or less).

次に、雰囲気温度30℃において、ドラム11を回転数57rpmで4時間回転させることにより、原料粒子1a,1bを凝集させた原料凝集粒子2a,2bの混合物である原料凝集粒子粉末2を形成させた。得られた原料凝集粒子粉末は、かさ密度が0.95g/cm3であり、粒径が10μm以上の原料凝集粒子の混合物であった。 Next, by rotating the drum 11 at 57 rpm for 4 hours at an atmospheric temperature of 30 ° C., the raw material aggregated particle powder 2 which is a mixture of the raw material aggregated particles 2a and 2b obtained by aggregating the raw material particles 1a and 1b is formed. It was. The obtained raw material aggregated particle powder was a mixture of raw material aggregated particles having a bulk density of 0.95 g / cm 3 and a particle size of 10 μm or more.

次に、この原料凝集粒子粉末を直径46mmの銀管に充填した後、伸線加工して、直径10mmのクラッド線材を得た。この上記クラッド線材55本を束ねて再び直径46mmの銀管に挿入し、伸線加工して、原材料粉末がフィラメント状となった多芯線材を得た。   Next, the raw material aggregated particle powder was filled in a silver tube having a diameter of 46 mm and then drawn to obtain a clad wire having a diameter of 10 mm. The 55 clad wires were bundled and inserted again into a silver tube having a diameter of 46 mm, followed by wire drawing to obtain a multicore wire in which the raw material powder was in the form of a filament.

次に、上記多芯線材を1次圧延して、銀比1.5で55芯のフィラメントで構成された幅4.2mm、厚さ0.24mmのテープ状の銀被覆線材を得た。   Next, the multi-core wire was subjected to primary rolling to obtain a tape-like silver-coated wire having a silver ratio of 1.5 and a width of 4.2 mm and a thickness of 0.24 mm made of 55-core filaments.

次いで、上記のテープ状銀被覆線材を、101kPaの酸素および窒素の混合ガス(酸素濃度8体積%)雰囲気下、825℃、30時間の条件で1回目の熱処理を行なって、1次の超電導線材(1次線材)を得た。なお、銀比とは、線材の横断面(幅×厚さ方向の断面)におけるフィラメント部分の面積に対する銀部分の面積の比をいう。   Next, the tape-shaped silver-coated wire is subjected to a first heat treatment in an atmosphere of 101 kPa oxygen and nitrogen mixed gas (oxygen concentration: 8% by volume) at 825 ° C. for 30 hours to produce a primary superconducting wire. (Primary wire) was obtained. In addition, silver ratio means ratio of the area of the silver part with respect to the area of the filament part in the cross section (width x thickness cross section) of a wire.

次に、上記1次線材を8%の圧下率で2次圧延を行なった。なお、圧下率とは、以下の式(1)
圧下率(%)={1−(圧延後の線材の厚さ)/(圧延前の線材の厚さ)}×100 ・・・(1)
で定義されるものである。
Next, the primary wire was subjected to secondary rolling at a rolling reduction of 8%. The rolling reduction is the following formula (1)
Reduction ratio (%) = {1- (Thickness of wire after rolling) / (Thickness of wire before rolling)} × 100 (1)
Is defined by

次いで、2次圧延後の線材を、101kPaの酸素および窒素の混合ガス(酸素濃度8体積%)雰囲気下、822℃、50時間の条件で2回目の熱処理を行ない、超電導線材(2次線材)を得た。   Next, the second heat treatment was performed on the wire after the second rolling in an atmosphere of 101 kPa oxygen and nitrogen mixed gas (oxygen concentration 8% by volume) at 822 ° C. for 50 hours to obtain a superconducting wire (secondary wire). Got.

得られた超電導線材の臨界電流を四端子法により、77K、0Tの条件で測定したところ、130Aと大きな値が得られた。ここで、臨界電流は、超電導線材1cm当たり1μVの電圧を発生させるときの電流と定義した。結果を表1にまとめた。ここで、表1において、粉末の断面積占有率(%)とは、図2を参照して、ドラム11の垂直方向の断面積(S0+S1)に対する原料粒子粉末の占有断面積(S1)の百分率(100×S1/(S0+S1))をいう。また、周速v(m/s)とは、図2を参照して、ドラム11の内周上における回転速度をいう。 When the critical current of the obtained superconducting wire was measured under the conditions of 77K and 0T by the four probe method, a large value of 130A was obtained. Here, the critical current was defined as a current when a voltage of 1 μV per 1 cm of superconducting wire was generated. The results are summarized in Table 1. Here, in Table 1, the sectional area occupation ratio (%) of the powder refers to the sectional area occupied by the raw material powder (S 0 + S 1 ) with respect to the sectional area (S 0 + S 1 ) in the vertical direction of the drum 11 with reference to FIG. 1 ) percentage (100 × S 1 / (S 0 + S 1 )). Further, the peripheral speed v (m / s) refers to the rotational speed on the inner periphery of the drum 11 with reference to FIG.

(実施例2〜7)
実施例1と同様にして作製した原料粒子粉末を用いて、表1に示す条件で、原料凝集粒子粉末を作製した。得られた原料凝集粒子粉末のかさ密度を、表1に示した。表1から明らかなように、本発明にかかる原料凝集粒子粉末の製造方法により、適正なかさ密度を有する粉末が容易に得られる。
(Examples 2 to 7)
Using the raw material particle powder produced in the same manner as in Example 1, raw material aggregated particle powder was produced under the conditions shown in Table 1. Table 1 shows the bulk density of the obtained raw material aggregated particle powder. As is apparent from Table 1, a powder having an appropriate bulk density can be easily obtained by the method for producing the raw material aggregated particle powder according to the present invention.

(比較例1)
原料粒子粉末から原料凝集粒子粉末を作製することなく、原料粒子粉末自体を銀管に充填したこと以外は、実施例1と同様にして超電導線材を作製した。得られた超電導線材の臨界電流は、100Aであった。結果を表1にまとめた。
(Comparative Example 1)
A superconducting wire was produced in the same manner as in Example 1 except that the raw material particle powder itself was filled in the silver tube without producing the raw material aggregated powder from the raw material particle powder. The critical current of the obtained superconducting wire was 100A. The results are summarized in Table 1.

(比較例2)
原料粒子粉末を構成する原料粒子を湿式スプレー(噴霧乾燥)法により凝集させて原料凝集粒子を形成させたこと以外は、実施例1と同様にして超電導線材を作製した。得られた超電導線材の臨界電流は90Aであった。結果を表1にまとめた。
(Comparative Example 2)
A superconducting wire was produced in the same manner as in Example 1 except that the raw material particles constituting the raw material particle powder were aggregated by a wet spray (spray drying) method to form the raw material aggregated particles. The critical current of the obtained superconducting wire was 90A. The results are summarized in Table 1.

ここで、湿式スプレー法とは、アルコールなどの揮発性溶媒に原料粒子粉末を分散させたスラリーを高温(たとえば、120℃〜240℃)気流中の炉内に噴霧することにより生じた液滴を瞬時に気化させ原料粒子を凝集させて得られる原料凝集粒子を回収して原料凝集粒子粉末を作製することをいう。比較例2においては、アルコールとしてエタノールに原料粒子を分散させたスラリーを140℃の窒素ガス気流中の円筒型間接加熱式炉内に噴霧し、バッグフィルタ回収方式で回収することにより、原料凝集粒子粉末を作製した。   Here, the wet spray method refers to droplets generated by spraying a slurry in which raw material particle powder is dispersed in a volatile solvent such as alcohol into a furnace in a high temperature (for example, 120 ° C. to 240 ° C.) airflow. This means that raw material aggregated particles obtained by instantaneously vaporizing and aggregating the raw material particles are collected to produce a raw material aggregated particle powder. In Comparative Example 2, the raw material aggregated particles are obtained by spraying a slurry in which raw material particles are dispersed in ethanol as an alcohol into a cylindrical indirect heating furnace in a nitrogen gas stream at 140 ° C. and collecting the slurry by a bag filter recovery method. A powder was prepared.

Figure 2007001820
Figure 2007001820

表1の実施例1においては、原料粒子粉末を構成する原料粒子を、二酸化炭素ガスおよび水分を除去したドラム内に配置し、このドラムを回転させて、原料粒子が凝集して粒状の原料凝集粒子が形成された。この原料凝集粒子から構成される原料凝集粒子粉末は、原料粒子粉末よりもかさ密度が高く(比較例1における原料粒子粉末のかさ密度は0.7g/cm3、実施例1における原料凝集粒子粉末のかさ密度は0.95g/cm3)、流動性も高いため、タッピングをすることなく金属シースに均一にかつ高密度に充填することができ、臨界電流の高い超電導線材(比較例1における超電導線材の臨界電流は100A、実施例1における超臨界電流の臨界電流は130A)を製造することができた。 In Example 1 of Table 1, the raw material particles constituting the raw material particle powder are arranged in a drum from which carbon dioxide gas and moisture have been removed, and the drum is rotated so that the raw material particles are aggregated to form a granular raw material aggregate. Particles were formed. The raw material agglomerated powder composed of the raw material agglomerated particles has a higher bulk density than the raw material particle powder (the bulk density of the raw material particle powder in Comparative Example 1 is 0.7 g / cm 3 , and the raw material agglomerated particle powder in Example 1 Since the bulk density is 0.95 g / cm 3 ) and the fluidity is high, the metal sheath can be filled uniformly and densely without tapping, and the superconducting wire having a high critical current (superconductivity in Comparative Example 1) The critical current of the wire was 100 A, and the critical current of the supercritical current in Example 1 was 130 A).

一方、表1の比較例2によると、原料粒子を湿式スプレー法により凝集させて得られた原料凝集粉末から構成される原料凝集粉末も、原料粒子粉末よりもかさ密度が高く(比較例1における原料粒子粉末のかさ密度は0.7g/cm3、実施例1における原料凝集粒子粉末のかさ密度は1.2g/cm3)、流動性が高いため、タッピングすることなく金属シースに均一にかつ高密度に充填できたが、得られた超電導線材の臨界電流は低くかった(比較例1における超電導線材の臨界電流は100A、比較例2における超臨界電流の臨界電流は90A)。 On the other hand, according to Comparative Example 2 in Table 1, the raw material aggregated powder composed of the raw material aggregated powder obtained by aggregating the raw material particles by the wet spray method also has a higher bulk density than the raw material particle powder (in Comparative Example 1). The bulk density of the raw material particle powder is 0.7 g / cm 3 , the bulk density of the raw material aggregated particle powder in Example 1 is 1.2 g / cm 3 ), and the fluidity is high. Although the superconducting wire obtained could be filled with high density, the critical current of the obtained superconducting wire was low (the critical current of the superconducting wire in Comparative Example 1 was 100 A, and the critical current of the supercritical current in Comparative Example 2 was 90 A).

これは、湿式スプレー法による粒子凝集方法においては、溶媒であるアルコールを気化させる際の熱によりアルコールの分解または酸化により生じる二酸化炭素ガスが原料凝集粒子に吸着して残存するため、原料凝集粒子から構成される原料凝集粒子粉末を充填した金属シースを塑性変形し熱処理により焼結して超電導線材を製造する際に、残存した二酸化炭素ガスにより超電導体結晶間の結合が弱くなり、臨界電流が低下したものと考えられる。   This is because in the particle agglomeration method by the wet spray method, carbon dioxide gas generated by decomposition or oxidation of alcohol due to heat generated when vaporizing the alcohol as a solvent is adsorbed and remains on the material agglomerated particles. When a superconducting wire is manufactured by plastically deforming a metal sheath filled with the raw material aggregated particle powder and sintering it by heat treatment, the residual carbon dioxide gas weakens the bond between the superconductor crystals and lowers the critical current. It is thought that.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる原料凝集粒子粉末の製造方法において用いられる装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus used in the manufacturing method of the raw material aggregated particle powder concerning this invention. 図1のII方向の断面を示す模式図である。It is a schematic diagram which shows the cross section of the II direction of FIG.

符号の説明Explanation of symbols

1 原料粒子粉末、1a,1b 原料粒子、2 原料凝集粒子粉末、2a,2b 原料凝集粒子、10 回転造粒装置、11 ドラム、12 ローラ。   1 Raw material particle powder, 1a, 1b Raw material particle, 2 Raw material agglomerated particle powder, 2a, 2b Raw material agglomerated particle, 10 rotary granulator, 11 drum, 12 roller.

Claims (7)

Bi、Pb、Sr、CaおよびCuからなる群から選ばれる1つ以上の元素を含む酸化物または複合酸化物で形成される原料粒子の集合物である原料粒子粉末を二酸化炭素ガスおよび水分が除去されたドラム内に配置する工程と、前記ドラムを回転させることにより前記原料粒子を凝集させて原料凝集粒子を形成する工程とを含む原料凝集粒子粉末の製造方法。   Carbon dioxide gas and moisture remove raw material particle powder, which is an aggregate of raw material particles formed of an oxide or composite oxide containing one or more elements selected from the group consisting of Bi, Pb, Sr, Ca and Cu A method for producing agglomerated raw material powder comprising a step of arranging in a drum and a step of aggregating the raw material particles to form raw material agglomerated particles by rotating the drum. 前記ドラム内における二酸化炭素ガス残存濃度が10ppm未満、水分残存濃度が1ppm未満である請求項1に記載の原料凝集粒子粉末の製造方法。   The method for producing a raw material aggregated particle powder according to claim 1, wherein the carbon dioxide gas residual concentration in the drum is less than 10 ppm and the moisture residual concentration is less than 1 ppm. 前記ドラムの内圧が101kPa以下である請求項1または請求項2に記載の原料凝集粒子粉末の製造方法。   The method for producing a raw material aggregated particle powder according to claim 1 or 2, wherein an internal pressure of the drum is 101 kPa or less. 請求項1から請求項3までのいずれかに記載の製造方法により得られる原料凝集粒子粉末。   Raw material aggregated particle powder obtained by the production method according to any one of claims 1 to 3. 請求項4に記載の原料凝集粒子粉末を金属シースに充填する工程と、前記原料凝集粒子粉末が充填された前記金属シースを塑性加工して線材を形成する工程と、前記線材を熱処理する工程とを含む超電導線材の製造方法。   Filling a metal sheath with the raw material aggregated particle powder according to claim 4, forming a wire by plastic working the metal sheath filled with the raw material aggregated particle powder, and heat-treating the wire A method of manufacturing a superconducting wire including 請求項5に記載の製造方法により得られる超電導線材。   A superconducting wire obtained by the production method according to claim 5. 請求項6に記載の超電導線材を含む超電導機器。   A superconducting device comprising the superconducting wire according to claim 6.
JP2005184753A 2005-06-24 2005-06-24 Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment Expired - Fee Related JP4982975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184753A JP4982975B2 (en) 2005-06-24 2005-06-24 Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184753A JP4982975B2 (en) 2005-06-24 2005-06-24 Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment

Publications (2)

Publication Number Publication Date
JP2007001820A true JP2007001820A (en) 2007-01-11
JP4982975B2 JP4982975B2 (en) 2012-07-25

Family

ID=37687758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184753A Expired - Fee Related JP4982975B2 (en) 2005-06-24 2005-06-24 Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment

Country Status (1)

Country Link
JP (1) JP4982975B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469518A (en) * 1987-09-09 1989-03-15 Sumitomo Spec Metals Grinding of calcined powder for superconducting ceramics
JPH09118522A (en) * 1995-10-25 1997-05-06 Dowa Mining Co Ltd Oxide superconductor having high critical current density
JPH09118525A (en) * 1995-10-25 1997-05-06 Dowa Mining Co Ltd Calcined powder for producing bi-containing oxide superconducting material and its production
JPH11171547A (en) * 1997-09-25 1999-06-29 Hoechst Res & Technol Deutsche Gmbh & Co Kg Production of high temperature superconducting powder containing bi(pb)srcacuo and method for using same
JPH11199232A (en) * 1998-01-09 1999-07-27 Dowa Mining Co Ltd Calcined powder for superconductor and superconducting polycrystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469518A (en) * 1987-09-09 1989-03-15 Sumitomo Spec Metals Grinding of calcined powder for superconducting ceramics
JPH09118522A (en) * 1995-10-25 1997-05-06 Dowa Mining Co Ltd Oxide superconductor having high critical current density
JPH09118525A (en) * 1995-10-25 1997-05-06 Dowa Mining Co Ltd Calcined powder for producing bi-containing oxide superconducting material and its production
JPH11171547A (en) * 1997-09-25 1999-06-29 Hoechst Res & Technol Deutsche Gmbh & Co Kg Production of high temperature superconducting powder containing bi(pb)srcacuo and method for using same
JPH11199232A (en) * 1998-01-09 1999-07-27 Dowa Mining Co Ltd Calcined powder for superconductor and superconducting polycrystal

Also Published As

Publication number Publication date
JP4982975B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP2721189B2 (en) Method for producing oxide superconductor, composite oxide powder as precursor of oxide superconductor, and method for producing the same
JP2008140769A (en) METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD
JP4706309B2 (en) Method for producing bismuth oxide superconductor and superconducting wire
JP4982975B2 (en) Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment
JP2008171666A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4038813B2 (en) Superconducting wire manufacturing method
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4211454B2 (en) Method for producing bismuth oxide superconducting wire
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JPH11199232A (en) Calcined powder for superconductor and superconducting polycrystal
JP4894852B2 (en) Precursor powder for metal-coated superconducting wire, method for producing metal-coated superconducting wire precursor powder, metal-coated superconducting wire
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
JP5105314B2 (en) Method for producing bismuth oxide superconducting wire
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
JP2590157B2 (en) Manufacturing method of superconductor wire
JP2009289502A (en) CERAMIC SHEET, MANUFACTURING METHOD FOR Bi2223 OXIDE SUPERCONDUCTIVE WIRE, AND Bi2223 OXIDE SUPERCONDUCTIVE WIRE
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JP2009217967A (en) Precursor powder for superconducting wire material, manufacturing method for the same, and the superconducting wire material
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH01115015A (en) Manufacture of superconductor wire material
JPH04179006A (en) Manufacture of ceramic superconductive wire materials
JP2008153140A (en) Manufacturing method of oxide superconductive wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4982975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees