JPH0910898A - Production of metallic thin wire - Google Patents

Production of metallic thin wire

Info

Publication number
JPH0910898A
JPH0910898A JP7157702A JP15770295A JPH0910898A JP H0910898 A JPH0910898 A JP H0910898A JP 7157702 A JP7157702 A JP 7157702A JP 15770295 A JP15770295 A JP 15770295A JP H0910898 A JPH0910898 A JP H0910898A
Authority
JP
Japan
Prior art keywords
wire
metal
cooling liquid
liquid layer
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7157702A
Other languages
Japanese (ja)
Inventor
Toshinori Kogashiwa
俊典 小柏
Hiroshi Murai
博 村井
Takatoshi Arikawa
孝俊 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP7157702A priority Critical patent/JPH0910898A/en
Publication of JPH0910898A publication Critical patent/JPH0910898A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45164Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20756Diameter ranges larger or equal to 60 microns less than 70 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20758Diameter ranges larger or equal to 80 microns less than 90 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20759Diameter ranges larger or equal to 90 microns less than 100 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Wire Bonding (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE: To provide a method capable of efficiently producing a metallic thin wire having 20-100μm diameter and using one kind among Au, Ag, Pt and Pd available to a bonding wire or a bumping wire. CONSTITUTION: In a process for obtaining a metallic wire by liquid quenching method, an introducing angle (θ) of a jet nozzle is controlled to 20-60 deg. and a jet velocity (V1 ) of molten metal to a rotating velocity (VW) of a rotating cooling liquid layer is controlled to 1>V1 /VW and -0.15<=(V1 /VW)-cosθ<=+0.15. Since the outer diameter of the obtd. metallic wire is thinner than that of the conventional wire and the crystal structure is columnar structure, the frequency of wire breakages in a drawing work is drasctically reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ICチップとリードフ
レーム又はICチップと基板を接続する際に用いるボン
ディングワイヤやバンプワイヤとして有用な金属細線の
製造方法に関し、さらに詳しくは、Au,Ag,Pt,
Pdのうち1種を用いた金属細線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine metal wire useful as a bonding wire or a bump wire used for connecting an IC chip and a lead frame or an IC chip and a substrate, and more specifically, Au, Ag, Pt. ,
The present invention relates to a method for manufacturing a thin metal wire using one of Pd.

【0002】[0002]

【従来の技術】従来、ボンディングワイヤ又はバンプワ
イヤとして有用なAu,Ag,Pt,Pdのうち1種を
用いた金属細線を製造する一般的な方法として、溶融金
属をインゴットに鋳造し、該インゴットに押出し又は溝
ロール圧延を施して金属素線を得、次いで伸線加工、焼
鈍を繰り返し、外径20〜100μmの金属細線を得て
いる。しかしながら、このような一般的な方法で20〜
100μmの金属細線を得る場合、インゴットに押出し
又は溝ロール圧延を施して得られた金属素線が外径数m
mのものであるため、伸線加工として数多くのダイスを
通す必要があり、長い工程を必要としている。よって近
年、長い工程を短縮して能率良く金属細線を製造するこ
とが求められている。
2. Description of the Related Art Conventionally, as a general method for producing a fine metal wire using one of Au, Ag, Pt, and Pd which is useful as a bonding wire or a bump wire, a molten metal is cast into an ingot and the ingot is cast into the ingot. Extrusion or groove roll rolling is performed to obtain a metal element wire, and then wire drawing and annealing are repeated to obtain a metal thin wire having an outer diameter of 20 to 100 μm. However, with such a general method,
When obtaining a metal fine wire of 100 μm, the metal wire obtained by extruding or groove-rolling an ingot has an outer diameter of several meters.
Since it is of m, it is necessary to pass many dies for wire drawing, which requires a long process. Therefore, in recent years, it has been required to shorten a long process and efficiently manufacture a fine metal wire.

【0003】前記要求に対応するには、伸線加工に供す
る金属素線に対して、その外径を従来より更に小さく
し、且つ能率良く伸線加工できることが効果的である。
このような要求、すなわち、インゴットに押出し又は溝
ロール圧延を施す従来の方法で得られる金属素線よりも
外径の小さい金属素線を得る方法として、回転する円筒
状ドラムの水槽に溶融金属を噴射して金属素線を製造す
る液中急冷法の採用が検討されている。
In order to meet the above requirements, it is effective that the outer diameter of the metal wire used for wire drawing can be made smaller than before and the wire drawing can be performed efficiently.
Such a requirement, namely, as a method of obtaining a metal wire having an outer diameter smaller than that of a metal wire obtained by a conventional method of subjecting an ingot to extrusion or groove roll rolling, molten metal is placed in a water tank of a rotating cylindrical drum. The adoption of a liquid quenching method for producing metal wires by jetting is under study.

【0004】この一例として、特開昭59−76829
号には、回転する円筒状ドラムの水槽に溶融金属を噴射
させて95μmの素線を作り、これを伸線加工して25
μmの線を作ったことが記載されている。しかしながら
当該技術のように、通常の溶融金属噴射により作った金
属素線は、その外径が小さくなっていることから伸線加
工の際に通すダイスの数を少なくできるものの、伸線加
工する際に断線が多く、かえって製造能率が低下すると
いう欠点を有している。
As an example of this, Japanese Patent Laid-Open No. 59-76829
In No. 5, a molten metal was injected into a water tank of a rotating cylindrical drum to make a wire of 95 μm, which was drawn and
It is described that a μm line was made. However, as in the related art, a metal wire produced by ordinary molten metal injection has a small outer diameter, and therefore the number of dies to be passed during wire drawing can be reduced. In addition, there are many breakages, and the manufacturing efficiency is rather lowered.

【0005】一方、特開昭60−247444号には、
Al合金を回転する液体層中で直径0.5mm以下の細
線に凝固させた後、伸線加工性を向上させるために、噴
射ノズルの導入角(θ)及び合金溶融物の温度を調整す
ることが開示されている。しかしながらこの方法をA
u,Ag,Pt,Pdのうちの1種からなる金属に適用
した場合、依然伸線加工する際に断線が多いためかえっ
て製造能率が低下するという欠点を有している。
On the other hand, JP-A-60-247444 discloses that
After solidifying an Al alloy into a fine wire having a diameter of 0.5 mm or less in a rotating liquid layer, adjusting an injection angle (θ) of an injection nozzle and a temperature of an alloy melt in order to improve drawability. Is disclosed. However, this method is
When applied to a metal composed of one of u, Ag, Pt, and Pd, there is a drawback that the production efficiency is rather reduced because there are still many disconnections during wire drawing.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述したよう
な従来事情に鑑みて成されたものであり、その目的とす
るところは、インゴットに押出し又は溝ロール圧延を施
す従来法で得られる金属素線より小さい外径であり、且
つ伸線加工時に断線の少ない伸線加工用金属素線を得る
ことを可能として、ボンディングワイヤやバンプワイヤ
として有用なAu,Ag,Pt,Pdのうち1種を用い
た20〜100μmの金属細線を能率良く製造できる方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and an object thereof is to obtain a metal obtained by a conventional method of extruding or groove-rolling an ingot. One of Au, Ag, Pt, and Pd, which is useful as a bonding wire or a bump wire, can be obtained because it is possible to obtain a metal wire for wire drawing that has an outer diameter smaller than that of the wire and has less breakage during wire drawing. It is an object of the present invention to provide a method capable of efficiently producing the used thin metal wire of 20 to 100 μm.

【0007】[0007]

【課題を解決するための手段】前述したように、液体急
冷法で作製した従来より細い金属素線を伸線加工に供し
た場合、伸線加工中の断線が多いため伸線加工用に適し
ないとされていたが、本発明者等は鋭意検討の結果、金
属素線の結晶組織に等軸晶組織が存在する時は断線が多
いものの、柱状晶組織のみになると断線が大幅に減少す
ることを見出し、本発明を完成するに至った。
[Means for Solving the Problems] As described above, when a thin metal wire produced by the liquid quenching method is used for wire drawing, it is suitable for wire drawing because many wire breaks occur during wire drawing. Although it was said that, the present inventors have earnestly studied, as a result, although there are many disconnections when the equiaxed crystal structure is present in the crystal structure of the metal element wire, the disconnection is significantly reduced when only the columnar crystal structure is present. This has led to the completion of the present invention.

【0008】すなわち本願第1発明は、回転する円筒状
ドラム内に遠心力により回転冷却液体層を形成し、溶湯
加圧装置付き金属溶解炉から噴射ノズルを経て溶融金属
ジェットを前記回転冷却液体層へ噴射して金属素線を得
た後、少なくとも断面減少率70%以上の伸線加工を行
う外径20〜100μmの金属細線の製造方法におい
て、前記金属素線を得る工程が、回転冷却液体層に対す
る噴射ノズルの導入角(θ)が20〜60度であり、回
転冷却液体層の回転速度(Vw )に対する溶融金属ジェ
ットの噴射速度(VJ )が、 1> VJ /Vw であり且つ、 −0.15≦ (VJ /Vw )−COSθ ≦+0.1
5 とすることにより金属素線を得る工程であることを特徴
とするAu,Ag,Pt,Pdのうち1種を用いた金属
細線の製造方法である。
That is, in the first invention of the present application, a rotating cooling liquid layer is formed in a rotating cylindrical drum by centrifugal force, and a molten metal jet is passed from a metal melting furnace with a molten metal pressurizing device through an injection nozzle to the rotating cooling liquid layer. In the method for producing a thin metal wire having an outer diameter of 20 to 100 μm, which comprises performing wire drawing at least at a cross-section reduction rate of 70% or more after spraying to obtain a metal wire, the step of obtaining the metal wire includes rotating cooling liquid. The injection angle (θ) of the injection nozzle to the layer is 20 to 60 degrees, and the injection speed (V J ) of the molten metal jet with respect to the rotation speed (V w ) of the rotating cooling liquid layer is 1> V J / V w Yes and −0.15 ≦ (V J / V w ) −COS θ ≦ + 0.1
5 is a step of obtaining a metal wire by setting the number of 5 in the method for producing a metal thin wire using one of Au, Ag, Pt, and Pd.

【0009】また本願第2発明は、回転する円筒状ドラ
ム内に遠心力により回転冷却液体層を形成し、溶湯加圧
装置付き金属溶解炉から噴射ノズルを経て溶融金属ジェ
ットを前記回転冷却液体層へ噴射して金属素線を得た
後、少なくとも断面減少率70%以上の伸線加工を行う
外径20〜100μmの金属細線の製造方法において、
前記金属素線を得る工程が、回転冷却液体層に対する噴
射ノズルの導入角(θ)が20〜60度であり、回転冷
却液体層の回転速度(Vw )に対する溶融金属ジェット
の噴射速度(VJ )が、 1> VJ /Vw であり且つ、 −0.09≦ (VJ /Vw )−COSθ ≦+0.0
9 とすることにより柱状晶組織の金属素線を得る工程であ
ることを特徴とするAu,Ag,Pt,Pdのうち1種
を用いた金属細線の製造方法である。
In the second invention of the present application, a rotating cooling liquid layer is formed in a rotating cylindrical drum by centrifugal force, and a molten metal jet is passed from a metal melting furnace with a molten metal pressurizing device through an injection nozzle to the rotating cooling liquid layer. In a method for producing a thin metal wire having an outer diameter of 20 to 100 μm, which is subjected to wire drawing with at least a cross-section reduction rate of 70% or more after being sprayed to obtain a metal element wire,
In the step of obtaining the metal wire, the injection angle (θ) of the injection nozzle with respect to the rotary cooling liquid layer is 20 to 60 degrees, and the injection speed (V) of the molten metal jet with respect to the rotation speed (V w ) of the rotary cooling liquid layer. J) is, 1> V J / V w a is and, -0.09 ≦ (V J / V w) -COSθ ≦ + 0.0
9 is a step of obtaining a metal element wire having a columnar crystal structure by setting 9 in the manufacturing method of a metal thin wire using one of Au, Ag, Pt, and Pd.

【0010】さらに本願第3発明は、前記第1発明又は
第2発明において、噴射ノズルから噴射する際の溶融金
属の温度が融点より10〜70℃高い温度であることを
特徴とする金属細線の製造方法である。
A third invention of the present application is the thin metal wire according to the first invention or the second invention, characterized in that the temperature of the molten metal when jetted from the jet nozzle is 10 to 70 ° C. higher than the melting point. It is a manufacturing method.

【0011】本発明が対象とする金属細線は、Au,A
g,Pt,Pdのうちの1種を用いたものである。これ
らの金属細線は、ICチップとリードフレーム又はIC
チップと基板を接続するためのボンディングワイヤやバ
ンプワイヤに用いる際、防錆効果が大きいことが好まれ
ている。またここでいうAu,Ag,Pt,Pdのうち
1種を用いた金属細線とは、99.999重量%の純金
属及びこれらに1〜200ppm重量%の添加元素を含
有したものをいう。
The thin metal wires targeted by the present invention are Au, A
One of g, Pt, and Pd is used. These thin metal wires are used for IC chips and lead frames or ICs.
When it is used as a bonding wire or a bump wire for connecting a chip and a substrate, it is preferred that it has a large rust preventive effect. The fine metal wire using one of Au, Ag, Pt, and Pd as used herein means 99.999% by weight of pure metal and those containing 1 to 200 ppm by weight of an additive element.

【0012】[0012]

【作用】前述の通り、本発明が対象とするAu,Ag,
Pt,Pdのうち1種を用いた金属細線の製造におい
て、通常の液体急冷法により作製した従来より細い金属
素線を用いて伸線加工すると断線が多く、本発明の課題
を達成するには至らない。本発明者等は鋭意検討の結
果、従来から知られた通常の液体急冷法で得られた従来
より細い金属素線はその結晶組織に等軸晶組織が存在
し、この結果伸線加工において断線が多く発生するこ
と、これに対し、金属素線の結晶組織が柱状晶組織のみ
になると断線が大幅に減少することを見出し、本発明に
至った。
As described above, the Au, Ag, and
In the production of a metal thin wire using one of Pt and Pd, wire drawing is often performed when a thin metal wire produced by an ordinary liquid quenching method is used for drawing, so that the object of the present invention is achieved. I can't reach it. As a result of intensive studies by the present inventors, the thinner metal wire obtained by the conventionally known normal liquid quenching method has an equiaxed crystal structure in its crystal structure, and as a result, wire breakage occurs in wire drawing. However, when the crystal structure of the metal element wire is only the columnar crystal structure, the disconnection is significantly reduced, and the present invention has been accomplished.

【0013】本発明においては、金属素線を得るための
工程として前述の構成を採用することで、インゴットに
押出し又は溝ロール圧延を施す従来法で得られる金属素
線より小さい外径であり、且つ結晶組織が柱状晶組織の
みであって、通常の液体急冷法で作製されその結晶組織
に等軸晶組織が存在する金属素線に比べて、伸線加工時
に断線の少ない伸線加工用金属素線を得ることができ
る。
In the present invention, by adopting the above-mentioned constitution as the step for obtaining the metal wire, the outer diameter is smaller than the metal wire obtained by the conventional method of extruding or groove-rolling an ingot, In addition, compared with a metal element wire having a crystal structure only in a columnar crystal structure and produced by a normal liquid quenching method and having an equiaxed crystal structure in the crystal structure, a metal for wire drawing with less breaking during wire drawing. You can get the wires.

【0014】柱状晶組織と等軸晶組織の模式図を図4に
夫々示す。図4(a)は本発明の液体急冷法で作製した
金属素線の縦断面、図4(b)は従来から知られた通常
の液体急冷法で作製した金属素線の縦断面である。ここ
でいう柱状晶組織とは図4(a)に示す様に、柱状晶が
金属素線外周部から中心に向かって成長したものであ
る。一方、等軸晶組織とは、粒状の結晶により形成され
たものであり、図4(b)にその状況を示す。尚、本願
においては柱状晶組織と等軸晶組織が混在して分布する
図4(c)の状態は柱状晶組織には含めない。
Schematic diagrams of the columnar crystal structure and the equiaxed crystal structure are shown in FIG. 4, respectively. FIG. 4 (a) is a vertical cross section of a metal wire produced by the liquid quenching method of the present invention, and FIG. 4 (b) is a vertical cross section of a metal wire produced by a conventionally known normal liquid quenching method. The columnar crystal structure referred to here is, as shown in FIG. 4A, a columnar crystal grown from the outer peripheral portion of the metal element wire toward the center. On the other hand, the equiaxed crystal structure is formed by granular crystals, and the situation is shown in FIG. 4 (b). In the present application, the state of FIG. 4C in which the columnar crystal structure and the equiaxed crystal structure are mixed and distributed is not included in the columnar crystal structure.

【0015】本発明において、金属素線は液体急冷法に
より製造する。本発明の金属素線を得る工程で使用され
る液体急冷装置の一例を、図1及び図2を参照して説明
すれば、図1は同装置の正面図、図2は同装置の縦断側
面図を示す。図中1は円筒状ドラム、2は溶融金属噴射
装置を示す。ドラム1は、中空の円筒部11と、その一
側に取り付けられ中心部に円形の開口部12を有する冷
却液体流出防止板13と、円筒部11の他側の全面を覆
う閉塞板14とを一体に形成したもので、閉塞板14の
中心にはモータ15の出力軸16を固定してドラム1が
高速で回転するよう構成する。高速で回転するドラム1
の内周には冷却液体が保持され、冷却液体はドラム1の
遠心力により回転冷却液体層Wを形成する。溶融金属噴
射装置2は、縦型の金属溶解炉21の下端に下向きに取
り付けられた溶湯噴射ノズル22と、金属溶解炉21の
上部に取り付けられた溶湯加圧装置23からなり、ドラ
ム1の開口部12から挿入され図1の紙面に対してX方
向(左右方向),Y方向(上下方向),Z方向(前後方
向)に移動できるようになっている。
In the present invention, the metal wire is manufactured by the liquid quenching method. An example of the liquid quenching device used in the step of obtaining the metal wire of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of the device, and FIG. The figure is shown. In the figure, 1 is a cylindrical drum, and 2 is a molten metal injection device. The drum 1 includes a hollow cylindrical portion 11, a cooling liquid outflow prevention plate 13 attached to one side thereof and having a circular opening 12 in the center, and a closing plate 14 covering the entire other side of the cylindrical portion 11. It is integrally formed, and the output shaft 16 of the motor 15 is fixed to the center of the closing plate 14 so that the drum 1 rotates at high speed. Drum 1 rotating at high speed
The cooling liquid is held on the inner periphery of the cooling liquid, and the cooling liquid forms a rotating cooling liquid layer W by the centrifugal force of the drum 1. The molten metal injection device 2 is composed of a molten metal injection nozzle 22 installed downward at the lower end of a vertical metal melting furnace 21 and a molten metal pressurizing device 23 installed above the metal melting furnace 21. It is inserted from the portion 12 and can be moved in the X direction (horizontal direction), the Y direction (vertical direction), and the Z direction (front and rear direction) with respect to the paper surface of FIG.

【0016】この液体急冷装置を用いてAu,Ag,P
t,Pdのうち1種を用いた金属素線を得るには、まず
ドラム1を回転して冷却液体を供給し、ドラム1の遠心
力により回転冷却液体層Wを形成する。次いで金属溶解
炉21に供給されたAu,Ag,Pt,Pdのうちの1
種を溶融し、溶融金属噴射装置2をドラム1の開口部1
2から挿入し、溶湯噴射ノズル22を回転冷却液体層W
の上部に位置せしめる。さらに不活性ガスを用いた溶湯
加圧装置23により、前記金属溶解炉21内の溶融金属
を溶湯噴射ノズル22から噴射させる。噴射された溶融
金属ジェットJは回転冷却液体層Wに噴出され、急冷凝
固して金属素線となる。この方法によって金属素線は連
続的に形成されて、ドラム1内の回転冷却液体層Wの中
に蓄積される。
Using this liquid quenching apparatus, Au, Ag, P
In order to obtain a metal element wire using one of t and Pd, first, the drum 1 is rotated to supply the cooling liquid, and the centrifugal force of the drum 1 forms the rotating cooling liquid layer W. Next, one of Au, Ag, Pt, and Pd supplied to the metal melting furnace 21
The seed is melted and the molten metal injection device 2 is installed in the opening 1 of the drum 1.
2 and insert the melt injection nozzle 22 into the rotating cooling liquid layer W.
Position it at the top of the. Further, the molten metal pressurizing device 23 using an inert gas is used to inject the molten metal in the metal melting furnace 21 from the molten metal injection nozzle 22. The jetted molten metal jet J is jetted into the rotary cooling liquid layer W and is rapidly cooled and solidified into a metal wire. By this method, the metal wire is continuously formed and accumulated in the rotating cooling liquid layer W in the drum 1.

【0017】以下、本発明における金属素線を得る工程
について、図3を参照して詳述する。図3は、噴射ノズ
ルの導入角(θ)と回転冷却液体層Wの回転速度
(VW )、溶融金属ジェットJの噴射速度(VJ )の関
係を示す。
Hereinafter, the process of obtaining the metal element wire in the present invention will be described in detail with reference to FIG. FIG. 3 shows the relationship between the introduction angle (θ) of the injection nozzle, the rotation speed (V W ) of the rotating cooling liquid layer W, and the injection speed (V J ) of the molten metal jet J.

【0018】噴射ノズルの方向(溶融金属ジェットJの
方向)は地面に対して垂直方向であることが好ましい。
本発明において噴射ノズルの導入角(θ)とは、溶融金
属ジェットJが回転冷却液体層Wの液面W1 に導入され
る点(O)における液面W1 の接線方向Lと、噴射ノズ
ルの方向のなす角度をいう。本発明において噴射ノズル
の導入角(θ)は20〜60度であることが必要であ
る。該導入角(θ)が20度未満の時、作業性が極端に
悪い。60度を超えると金属素線が扁平になる。このた
め噴射ノズルの導入角(θ)は20〜60度と定めた。
The direction of the injection nozzle (the direction of the molten metal jet J) is preferably perpendicular to the ground.
In the present invention, the injection angle (θ) of the injection nozzle means the tangential direction L of the liquid surface W 1 at the point (O) where the molten metal jet J is introduced to the liquid surface W 1 of the rotary cooling liquid layer W, and the injection nozzle. The angle formed by the direction of. In the present invention, the introduction angle (θ) of the injection nozzle needs to be 20 to 60 degrees. When the introduction angle (θ) is less than 20 degrees, workability is extremely poor. If it exceeds 60 degrees, the metal wire becomes flat. Therefore, the introduction angle (θ) of the injection nozzle is set to 20 to 60 degrees.

【0019】回転冷却液体層Wの回転速度(VW )と溶
融金属ジェットJの噴射速度(VJ)は、いずれも30
0〜500m/分が好ましく用いられる。回転冷却液体
層Wの回転速度(VW )はドラムの回転数から換算して
求める。溶融金属ジェットJの噴射速度(VJ )は金属
素線の外径、比重、噴出重量から求めた金属素線の長さ
と噴出時間から求める。
The rotation speed (V W ) of the rotary cooling liquid layer W and the injection speed (V J ) of the molten metal jet J are both 30.
0 to 500 m / min is preferably used. The rotation speed (V W ) of the rotary cooling liquid layer W is calculated from the rotation speed of the drum. The injection speed (V J ) of the molten metal jet J is obtained from the outer diameter of the metal wire, the specific gravity, and the length of the metal wire obtained from the ejection weight and the ejection time.

【0020】回転冷却液体層の回転速度(VW )に対す
る溶融金属ジェットの噴射速度(V J )は、 1> VJ /VW であり且つ、 +0.15≧ (VJ /VW )−COSθ ≧−0.1
5 であることが必要である。VJ /VW が1以上になる
と、金属素線に折れ重なった節部を発生し伸線加工に供
し得ない。また、VJ /VW =COSθの時、本発明の
Au,Ag,Pt,Pdのうち1種を用いる柱状晶組織
を有する金属線を安定製造でき、更に許容範囲は、 +0.15≧ (VJ /VW )−COSθ ≧−0.15・・・(1) である。更に好ましくは、 +0.09≧ (VJ /VW )−COSθ ≧−0.09・・・(2) である。(2)の条件の時、断線回数は更に大幅に減少
するため、(2)の条件で操業することが好ましい。
Rotational speed of the rotating cooling liquid layer (VWAgainst)
Injection velocity of molten metal jet (V J) Is 1> VJ/ VW And + 0.15 ≧ (VJ/ VW) -COSθ ≧ -0.1
It must be 5. VJ/ VWBecomes 1 or more
And a knot that overlaps with the metal element wire is generated for wire drawing.
I can't. Also, VJ/ VW= COSθ, the present invention
Columnar crystal structure using one of Au, Ag, Pt and Pd
Can stably manufacture a metal wire having, and the allowable range is + 0.15 ≧ (VJ/ VW) -COS (theta)> =-0.15 ... (1). More preferably, + 0.09 ≧ (VJ/ VW) -COS (theta)> =-0.09 ... (2). Under the condition of (2), the number of wire breaks is greatly reduced.
Therefore, it is preferable to operate under the condition (2).

【0021】また本発明においては、噴射ノズルから噴
射する際の溶融金属の温度が、融点より10〜70℃高
い温度であることが好ましい。前記溶融金属の温度が融
点より10℃未満高い場合溶融金属が凝固しやすくな
り、また前記溶融金属の温度が融点より70℃を超えて
高い場合等軸晶組織が生成し易くシビアな製造条件が要
求されてくる。
Further, in the present invention, it is preferable that the temperature of the molten metal when jetted from the jet nozzle is 10 to 70 ° C. higher than the melting point. When the temperature of the molten metal is higher than the melting point by less than 10 ° C., the molten metal is likely to solidify, and when the temperature of the molten metal is higher than the melting point by more than 70 ° C., an equiaxed crystal structure is easily generated and severe manufacturing conditions are required. Will be requested.

【0022】さらに本発明で用いる噴射ノズルの内径
は、安定した操業を行うために、0.1〜1.0mmが
好ましく用いられる。更に好ましくは0.1〜0.5m
mである。本発明の液体急冷法で得られる金属素線の外
径は噴射ノズルの内径に略等しいため噴射ノズルの内径
を0.1〜1.0mmの範囲で自由に設定することがで
きる。
Further, the inner diameter of the injection nozzle used in the present invention is preferably 0.1 to 1.0 mm for stable operation. More preferably 0.1 to 0.5 m
m. Since the outer diameter of the metal wire obtained by the liquid quenching method of the present invention is substantially equal to the inner diameter of the injection nozzle, the inner diameter of the injection nozzle can be freely set within the range of 0.1 to 1.0 mm.

【0023】而して、前記の様にして金属素線を得た
後、その金属素線に少なくとも断面減少率70%以上の
伸線加工を施して、0.02〜0.1mmφの金属素線
に加工する。
After obtaining the metal element wire as described above, the metal element wire is subjected to wire drawing with a cross-section reduction rate of at least 70% to obtain a metal element of 0.02 to 0.1 mmφ. Process into a line.

【0024】次に、従来法と本発明法とによる金属素線
の差異について説明する。下記表1は、インゴットに押
出し又は溝ロール圧延を施す従来法1で得られた金属素
線と、従来知られた通常の液体急冷法である従来法2で
得られた金属素線と、前記した本発明の液体急冷法によ
り得られた金属素線を、夫々0.3mmφから0.03
mmφへ伸線加工した場合の断線回数の測定結果を示
す。
Next, the difference in the metal wire between the conventional method and the method of the present invention will be described. The following Table 1 shows the metal wire obtained by the conventional method 1 of extruding or groove-rolling an ingot, the metal wire obtained by the conventional method 2 which is a conventionally known ordinary liquid quenching method, and Each of the metal wires obtained by the liquid quenching method of the present invention described above was changed from 0.3 mmφ to 0.03 mm.
The measurement results of the number of wire breakages in the case of wire drawing to mmφ are shown.

【0025】[0025]

【表1】 [Table 1]

【0026】上記表1から明らかな様に、現在実用に供
されている従来法1によれば、得られる金属素線はその
外径が最小3mm程度であるため伸線加工として数多く
のダイスを通す必要があり、しかも0.3mmφから
0.03mmφへ伸線加工する際の断線回数は23〜2
6程度である。また、本発明法と同様の液体急冷装置を
用いて等軸晶組織の金属素線を得る従来法2によれば、
従来法1と対比して従来より細い外径の金属素線を一工
程で製造できるものの、0.3mmφから0.03mm
φへ伸線加工する際の断線回数が大幅に増加するため好
ましくない。これに対し、本発明法によれば、従来法1
と対比して従来より細い外径の金属素線を一工程で製造
できると共に、従来から断線の多い0.3mmφから
0.03mmφへ伸線加工する際の断線回数を大幅に低
減することができる。また本発明法を従来法2と対比す
ると、従来法1より細い外径の金属素線を短い工程で製
造できる点では同様であるが、0.3mmφから0.0
3mmφへ伸線加工する際の断線回数が大幅に減少する
という優れた効果が得られる。
As is apparent from Table 1 above, according to the conventional method 1 currently put to practical use, the metal wire obtained has a minimum outer diameter of about 3 mm, so many dies are used for wire drawing. It is necessary to pass the wire, and the number of wire breaks during wire drawing from 0.3 mmφ to 0.03 mmφ is 23-2.
It is about 6. Further, according to the conventional method 2 for obtaining a metal element wire having an equiaxed crystal structure using the same liquid quenching apparatus as the method of the present invention,
Although it is possible to manufacture a metal element wire with an outer diameter smaller than that of the conventional method in one step compared with the conventional method 1, 0.3 mmφ to 0.03 mm
It is not preferable because the number of wire breakages during wire drawing to φ significantly increases. On the other hand, according to the method of the present invention, the conventional method 1
In contrast to the conventional method, it is possible to manufacture a metal element wire with a smaller outer diameter than in the past in one step, and it is possible to significantly reduce the number of wire breaks when wire drawing from 0.3 mmφ to 0.03 mmφ, which has many wire breakages in the past. . Further, when the method of the present invention is compared with the conventional method 2, it is the same in that a metal wire having an outer diameter smaller than that of the conventional method 1 can be manufactured in a short process, but from 0.3 mmφ to 0.0
An excellent effect that the number of wire breakages during wire drawing to 3 mmφ is significantly reduced can be obtained.

【0027】[0027]

【実施例】【Example】

(実施例1)図1,図2に示す液体急冷装置を用いて金
属素線を製造した。まず99.999重量%のAuに1
0重量ppmのYを添加して金属溶解炉で加熱溶解し
た。溶解温度を融点+50℃にセットし、内径0.30
mmの噴射ノズルを用いて回転する回転冷却液体層中に
噴出した。噴射ノズルの導入角(θ)は20度とした。
回転冷却液体層の回転速度(VW )に対する溶融金属ジ
ェットの噴射速度(V J )が、VJ /VW =0.99に
なるようにVW とVJ の速度を設定した。この時、(V
J /VW )−COSθ=+0.06となる。この様にし
て得られた金属素線の外径は0.30mmφであり、金
属素線の結晶組織は柱状晶組織であった。これを0.0
3mmφ迄伸線加工を行った。0.30mmφから0.
03mmφの金属細線へ伸線加工する際の断線回数は1
回であった。これらの製造条件及び測定結果を表2,表
3に示す。
 (Example 1) Using the liquid quenching apparatus shown in FIGS.
A metal element wire was manufactured. First of all 99.999% by weight of Au
Add 0 wtppm Y and heat and melt in a metal melting furnace.
Was. Melting temperature is set to melting point + 50 ° C, inner diameter 0.30
in a rotating cooling liquid layer rotating with a mm injection nozzle
It gushed. The injection angle (θ) of the injection nozzle was 20 degrees.
Rotational speed of rotating cooling liquid layer (VW) For molten metal
Jet speed (V J) Is VJ/ VW= 0.99
To be VWAnd VJSet the speed of. At this time, (V
J/ VW) -COSθ = + 0.06. Like this
The outer diameter of the obtained metal element wire is 0.30 mmφ,
The crystal structure of the metal element wire was a columnar crystal structure. 0.0
Wire drawing was performed up to 3 mmφ. 0.30 mmφ to 0.
The number of wire breaks when drawing a thin wire of 03 mmφ is 1
It was once. Table 2 shows the production conditions and measurement results.
3 is shown.

【0028】(実施例2〜35/比較例1〜16)金属
成分、溶湯加熱温度、VJ /VW 、ノズル導入角(θ)
を表2,表4中記載の様に変更したこと以外は、実施例
1と同様にして0.03mmφの金属細線を製造した。
これらの製造条件及び測定結果を表2〜表5に示す。
(Examples 2-35 / Comparative Examples 1-16) Metal components, molten metal heating temperature, V J / V W , nozzle introduction angle (θ)
A thin metal wire of 0.03 mmφ was manufactured in the same manner as in Example 1 except that the values were changed as described in Tables 2 and 4.
Tables 2 to 5 show these manufacturing conditions and measurement results.

【0029】(比較例17)99.999重量%のAu
に10重量ppmのYを添加し、10mmφ×長さ10
0mmのインゴットに鋳造し、溝ロール圧延機で断面積
3mmφと同等の寸度まで圧延した。これを焼鈍して金
属素線とした。該金属素線の結晶組織は再結晶組織であ
った。次に伸線加工、焼鈍を繰り返し0.30mmφで
焼鈍し、更に0.03mmφ迄伸線加工を行った。0.
30mmφから0.03mmφの金属細線へ伸線加工す
る際の断線回数は24回であった。これらの製造条件及
び測定結果を表4,表5に示す。
(Comparative Example 17) 99.999% by weight of Au
Y of 10 weight ppm is added to 10 mmφ x length 10
It was cast into a 0 mm ingot and rolled by a groove roll rolling machine to a dimension equivalent to a cross-sectional area of 3 mmφ. This was annealed to obtain a metal element wire. The crystal structure of the metal element wire was a recrystallized structure. Next, wire drawing and annealing were repeated and annealed at 0.30 mmφ, and wire drawing was further performed up to 0.03 mmφ. 0.
The number of wire breaks was 24 when the thin wire of 30 mmφ to 0.03 mmφ was drawn. Tables 4 and 5 show the manufacturing conditions and measurement results.

【0030】(比較例18〜21)金属成分を表4中記
載の様に変更したこと以外は、比較例17と同様にして
0.03mmφの金属細線を製造した。これらの製造条
件及び測定結果を表4,表5に示す。
(Comparative Examples 18 to 21) 0.03 mmφ fine metal wires were produced in the same manner as in Comparative Example 17 except that the metal components were changed as shown in Table 4. Tables 4 and 5 show the manufacturing conditions and measurement results.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】以上の測定結果から明らかなように、液体
急冷法により金属素線を得る工程において、回転冷却液
体層に対する噴射ノズルの導入角(θ)を20〜60度
とし、回転冷却液体層の回転速度(Vw )に対する溶融
金属ジェットの噴射速度(V J )を1> VJ /Vw
且つ−0.15≦ (VJ /Vw )−COSθ ≦+
0.15とし、これにより得られた金属素線に少なくと
も断面減少率70%以上の伸線加工を施す本発明の製造
方法によれば、外径0.30mmの金属素線を一工程で
製造できると共に、伸線加工工程における断線回数が従
来法(比較例17〜21)に比べて大幅に低減すること
が判る。またこの中でも、回転冷却液体層の回転速度
(Vw )に対する溶融金属ジェットの噴射速度(VJ
を1> VJ /Vw で且つ−0.09≦ (VJ
w )−COSθ ≦+0.09とした場合は、伸線加
工工程における断線回数がさらに低減することが判る。
As is clear from the above measurement results, liquid
In the process of obtaining metal wires by the quenching method, the rotating cooling liquid
The injection angle (θ) of the injection nozzle to the body layer is 20 to 60 degrees
And the rotation speed (Vw) To
Injection velocity of metal jet (V J) 1> VJ/ Vwso
And -0.15≤ (VJ/ Vw) -COS θ ≦ +
0.15, and at least the metal wire obtained by this
Production of the present invention in which wire drawing is performed with a cross-section reduction rate of 70% or more
According to the method, a metal wire having an outer diameter of 0.30 mm can be obtained in one step.
In addition to being manufactured, the number of wire breaks in the wire drawing process
Significant reduction compared to the conventional method (Comparative Examples 17 to 21)
I understand. Among these, the rotation speed of the rotating cooling liquid layer
(Vw) To the molten metal jet (VJ)
1> VJ/ VwAnd −0.09 ≦ (VJ/
Vw) -COSθ ≤ +0.09, wire drawing
It can be seen that the number of breaks in the working process is further reduced.

【0036】これに対し、液体急冷法により得られた金
属素線を伸線加工に供したとしても、噴射ノズルの導入
角(θ)、回転冷却液体層の回転速度(Vw )に対する
溶融金属ジェットの噴射速度(VJ )の関係のいずれか
一つが本発明の範囲から外れる比較例1〜16によれ
ば、外径0.30mmの金属素線を一工程で製造できる
ものの、得られた金属素線はその結晶組織が等軸晶組織
であり、伸線加工工程における断線回数が従来法よりも
増大することが判る。
On the other hand, even if the metal wire obtained by the liquid quenching method is subjected to wire drawing, the molten metal with respect to the introduction angle (θ) of the injection nozzle and the rotation speed (V w ) of the rotary cooling liquid layer According to Comparative Examples 1 to 16 in which any one of the jetting velocity (V J ) is out of the range of the present invention, a metal wire having an outer diameter of 0.30 mm can be manufactured in one step, but it was obtained. It can be understood that the crystal structure of the metal element wire is an equiaxed crystal structure, and the number of wire breakages in the wire drawing process is increased as compared with the conventional method.

【0037】また、インゴットに溝ロール圧延を施す従
来法で得られる金属素線に伸線加工を施す比較例17〜
21によれば、得られた金属素線の外径3mm程度であ
るため伸線加工として数多くのダイスを通す必要があ
り、しかも0.3mmφ〜0.03mmφへ伸線加工す
る際に限ったとしてもその断線回数は25回前後である
ことが判る。
Comparative Examples 17 to 17 in which a metal wire obtained by a conventional method of rolling an ingot on a groove roll is subjected to wire drawing.
According to No. 21, since the outer diameter of the obtained metal wire is about 3 mm, it is necessary to pass a large number of dies for wire drawing, and moreover, only when wire drawing is performed to 0.3 mmφ to 0.03 mmφ. It can be seen that the number of wire breaks is around 25.

【0038】[0038]

【発明の効果】以上説明したように本発明は、回転する
円筒状ドラム内に形成した回転冷却液体層に、Au,A
g,Pt,Pdのうちの1種を溶融金属ジェットとして
噴射して金属素線を作製し、該金属素線に少なくとも断
面減少率70%以上の伸線加工を施して外径20〜10
0μmの金属細線を得る製造方法であって、前記金属素
線を得る工程において、噴射ノズルの導入角(θ)を2
0〜60度とし、回転冷却液体層の回転速度(Vw )に
対する溶融金属ジェットの噴射速度(VJ )を1> V
J /Vw で且つ−0.15≦ (VJ /Vw )−COS
θ ≦+0.15としたので、従来より細い外径で、且
つ結晶組織が柱状晶組織のみであり伸線加工の際の断線
が少ない金属素線を一工程で製造することができる。よ
って、金属素線を得る工程がインゴットに押出し又は溝
ロール圧延を施すものであり、且つ得られた金属素線が
外径数mmのものであるため伸線加工として数多くのダ
イスを通す必要がある従来の製造方法に比べ、工程を大
幅に短縮することが可能になる。しかも、従来の液体急
冷法により得られる結晶組織に等軸晶組織が存在する金
属素線のように、伸線加工における断線回数が前記従来
の製造方法より増大するような虞れもない。従って、A
u,Ag,Pt,Pdのうち1種を用いた外径20〜1
00μmの金属細線を能率良く製造することができ、I
Cチップとリードフレーム又はICチップと基板を接続
する際に用いるボンディングワイヤやバンプワイヤの製
造に極めて好適に用いることができる。
As described above, according to the present invention, the rotating cooling liquid layer formed in the rotating cylindrical drum has Au, A
One of g, Pt, and Pd is injected as a molten metal jet to produce a metal wire, and the metal wire is subjected to wire drawing at least at a cross-section reduction rate of 70% or more to obtain an outer diameter of 20 to 10.
A manufacturing method for obtaining a metal fine wire of 0 μm, wherein the injection angle (θ) of the injection nozzle is 2 in the step of obtaining the metal element wire.
0 to 60 degrees, and the injection speed (V J ) of the molten metal jet with respect to the rotation speed (V w ) of the rotary cooling liquid layer is 1> V
And in the J / V w -0.15 ≦ (V J / V w) -COS
Since θ ≤ +0.15, it is possible to manufacture a metal element wire having a smaller outer diameter than the conventional one, a crystal structure only having a columnar crystal structure, and less disconnection during wire drawing in one step. Therefore, the step of obtaining the metal element wire is to perform extrusion or groove roll rolling on the ingot, and since the obtained metal element wire has an outer diameter of several mm, it is necessary to pass many dies as a wire drawing process. Compared with a certain conventional manufacturing method, it becomes possible to significantly shorten the process. Moreover, there is no fear that the number of wire breakages in the wire drawing process will increase as compared with the conventional manufacturing method as in the case of the metal wire having the equiaxed crystal structure in the crystal structure obtained by the conventional liquid quenching method. Therefore, A
Outer diameter 20 to 1 using one of u, Ag, Pt and Pd
A metal fine wire of 00 μm can be efficiently manufactured, and I
It can be very suitably used for manufacturing a bonding wire or a bump wire used when connecting a C chip and a lead frame or an IC chip and a substrate.

【0039】また、回転冷却液体層の回転速度(Vw
に対する溶融金属ジェットの噴射速度(VJ )を1>
J /Vw で且つ−0.09≦ (VJ /Vw )−CO
Sθ≦+0.09とした場合は、伸線加工工程における
断線回数がさらに低減し、前述した効果をより実効ある
ものとし得る。
Further, the rotation speed (V w ) of the rotary cooling liquid layer
The injection velocity (V J ) of the molten metal jet with respect to 1>
V J / V w and -0.09 ≤ (V J / V w ) -CO
When Sθ ≦ + 0.09, the number of wire breakages in the wire drawing process can be further reduced, and the above-described effects can be made more effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法における金属素線を得る工程
で使用される液体急冷装置の一例を示す正面図である。
FIG. 1 is a front view showing an example of a liquid quenching device used in a step of obtaining a metal element wire in a manufacturing method of the present invention.

【図2】図1に示す装置の縦断側面図である。2 is a vertical side view of the device shown in FIG. 1. FIG.

【図3】本発明における噴射ノズルの導入角(θ)と回
転冷却液体層Wの回転速度(VW )、溶融金属ジェット
Jの噴射速度(VJ )の関係を示す簡略図である。
FIG. 3 is a simplified diagram showing the relationship between the introduction angle (θ) of the injection nozzle, the rotation speed (V W ) of the rotary cooling liquid layer W, and the injection speed (V J ) of the molten metal jet J in the present invention.

【図4】(a)は本発明の液体急冷法で作製した金属素
線の縦断面(柱状晶組織)を示す模式図、(b)は従来
から知られた通常の液体急冷法で作製した金属素線の縦
断面(等軸晶組織)を示す模式図、(c)は柱状晶組織
と等軸晶組織が混在して分布する状態を示す模式図であ
る。
FIG. 4 (a) is a schematic view showing a vertical cross section (columnar crystal structure) of a metal wire produced by the liquid quenching method of the present invention, and FIG. 4 (b) is produced by a conventionally known ordinary liquid quenching method. FIG. 3 is a schematic diagram showing a vertical cross section (equiaxed crystal structure) of a metal element wire, and FIG. 6 (c) is a schematic diagram showing a state in which a columnar crystal structure and an equiaxed crystal structure are mixed and distributed.

【符号の説明】[Explanation of symbols]

1:円筒状ドラム 21:金属溶解炉 22:噴射ノズル 23:溶湯加圧装置 W:回転冷却液体層 J:溶融金属ジェット θ:噴射ノズルの導入角 Vw :回転冷却液体層の回転速度 VJ :溶融金属ジェットの噴射速度1: Cylindrical drum 21: Metal melting furnace 22: Injection nozzle 23: Molten metal pressurizing device W: Rotary cooling liquid layer J: Molten metal jet θ: Injection nozzle introduction angle V w : Rotational cooling liquid layer rotation speed V J : Injection velocity of molten metal jet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/60 301 H01L 21/60 301F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/60 301 H01L 21/60 301F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転する円筒状ドラム内に遠心力により
回転冷却液体層を形成し、溶湯加圧装置付き金属溶解炉
から噴射ノズルを経て溶融金属ジェットを前記回転冷却
液体層へ噴射して金属素線を得た後、少なくとも断面減
少率70%以上の伸線加工を行う外径20〜100μm
の金属細線の製造方法において、 前記金属素線を得る工程が、回転冷却液体層に対する噴
射ノズルの導入角(θ)が20〜60度であり、回転冷
却液体層の回転速度(Vw )に対する溶融金属ジェット
の噴射速度(VJ )が、 1> VJ /Vw であり且つ、 −0.15≦ (VJ /Vw )−COSθ ≦+0.1
5 とすることにより金属素線を得る工程であることを特徴
とするAu,Ag,Pt,Pdのうち1種を用いた金属
細線の製造方法。
1. A rotating cooling liquid layer is formed in a rotating cylindrical drum by centrifugal force, and a molten metal jet is jetted from the metal melting furnace with a molten metal pressurizing device to the rotating cooling liquid layer through an injection nozzle. After obtaining the strands, at least an outer diameter of 20 to 100 μm in which wire drawing is performed with a reduction in area of 70% or more
In the method for producing a thin metal wire, in the step of obtaining the metal wire, the introduction angle (θ) of the injection nozzle with respect to the rotating cooling liquid layer is 20 to 60 degrees, and the rotating speed (V w ) of the rotating cooling liquid layer is The injection velocity (V J ) of the molten metal jet is 1> V J / V w , and −0.15 ≦ (V J / V w ) −COS θ ≦ + 0.1.
5. The method for producing a metal thin wire using one of Au, Ag, Pt, and Pd, which is a step of obtaining a metal element wire by setting 5.
【請求項2】 回転する円筒状ドラム内に遠心力により
回転冷却液体層を形成し、溶湯加圧装置付き金属溶解炉
から噴射ノズルを経て溶融金属ジェットを前記回転冷却
液体層へ噴射して金属素線を得た後、少なくとも断面減
少率70%以上の伸線加工を行う外径20〜100μm
の金属細線の製造方法において、 前記金属素線を得る工程が、回転冷却液体層に対する噴
射ノズルの導入角(θ)が20〜60度であり、回転冷
却液体層の回転速度(Vw )に対する溶融金属ジェット
の噴射速度(VJ )が、 1> VJ /Vw であり且つ、 −0.09≦ (VJ /Vw )−COSθ ≦+0.0
9 とすることにより柱状晶組織の金属素線を得る工程であ
ることを特徴とするAu,Ag,Pt,Pdのうち1種
を用いた金属細線の製造方法。
2. A rotating cooling liquid layer is formed in a rotating cylindrical drum by centrifugal force, and a molten metal jet is jetted from the metal melting furnace with a molten metal pressurizing device to the rotating cooling liquid layer through an injection nozzle. After obtaining the strands, at least an outer diameter of 20 to 100 μm in which wire drawing is performed with a reduction in area of 70% or more
In the method for producing a thin metal wire, in the step of obtaining the metal wire, the introduction angle (θ) of the injection nozzle with respect to the rotating cooling liquid layer is 20 to 60 degrees, and the rotating speed (V w ) of the rotating cooling liquid layer is The injection velocity (V J ) of the molten metal jet is 1> V J / V w and −0.09 ≦ (V J / V w ) −COSθ ≦ + 0.0.
9. The method for producing a fine metal wire using one of Au, Ag, Pt, and Pd, which is a step of obtaining a metal element wire having a columnar crystal structure by setting 9.
【請求項3】 上記噴射ノズルから噴射する際の溶融金
属の温度が融点より10〜70℃高い温度であることを
特徴とする請求項1又は請求項2記載の金属細線の製造
方法。
3. The method for producing a thin metal wire according to claim 1, wherein the temperature of the molten metal when jetted from the jet nozzle is 10 to 70 ° C. higher than the melting point.
JP7157702A 1995-06-23 1995-06-23 Production of metallic thin wire Pending JPH0910898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7157702A JPH0910898A (en) 1995-06-23 1995-06-23 Production of metallic thin wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157702A JPH0910898A (en) 1995-06-23 1995-06-23 Production of metallic thin wire

Publications (1)

Publication Number Publication Date
JPH0910898A true JPH0910898A (en) 1997-01-14

Family

ID=15655515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157702A Pending JPH0910898A (en) 1995-06-23 1995-06-23 Production of metallic thin wire

Country Status (1)

Country Link
JP (1) JPH0910898A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218176A (en) * 2007-03-02 2008-09-18 Yazaki Corp Strand, electric wire, and strand manufacturing method
JP2008254056A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd Method for producing base material for bonding wire, and bonding wire
CN113241303A (en) * 2021-05-19 2021-08-10 合肥矽格玛应用材料有限公司 Packaging bonding platinum wire and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218176A (en) * 2007-03-02 2008-09-18 Yazaki Corp Strand, electric wire, and strand manufacturing method
US9492856B2 (en) 2007-03-02 2016-11-15 Yazaki Corporation Element wire, electric wire and process for producing element wire
JP2008254056A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd Method for producing base material for bonding wire, and bonding wire
CN113241303A (en) * 2021-05-19 2021-08-10 合肥矽格玛应用材料有限公司 Packaging bonding platinum wire and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0761831B1 (en) Thin gold alloy wire for bonding
JP2002120047A (en) Method for continuously casting aluminum alloy for bearing and its continuous casting apparatus
JPH0910898A (en) Production of metallic thin wire
US5035280A (en) Process and apparatus for the continuous casting of fine metal wire
JPH049621B2 (en)
JP3500518B2 (en) Manufacturing method of ultrafine gold alloy wire
JP2005138113A (en) Method for casting ingot for bonding wire and bonding wire produced by using the method
JP2593877B2 (en) Carbide precipitation hardening type Co-based alloy welding wire and method for producing the same
JPH04210854A (en) Production of fine alloy wire
JP4038784B2 (en) Non-metallic inclusion refinement method
KR100273702B1 (en) Process for preparing gold alloy wire for bonding
JPH0371956A (en) Manufacture of alloy fine wire
JPS62161443A (en) Casting method for fine metallic wire
JP2599177B2 (en) Metal wire manufacturing equipment
JPS6087952A (en) Production of fine cu-cr alloy wire
JP2002283009A (en) Method for casting rapidly cooled and solidified strip
JPS5976829A (en) Manufacture of bonding wire
JP3210507B2 (en) Manufacturing method of fine metal wire
JPH02290655A (en) Manufacture of cu-al-ni series alloy fine wire
JPH0331457A (en) Production of filament body of shape memory alloy
JPS613639A (en) Production of fine aluminum alloy wire
JP2001286991A (en) Method for continuously casting stainless steel thin cast slab excellent in surface characteristic and its apparatus
JPS60108143A (en) Production of quenched thin metallic strip by single roll method
JPH02310346A (en) Manufacture of co-base amorphous alloy wire
JPH05185190A (en) Production of metal fine wire