JPS6087952A - Production of fine cu-cr alloy wire - Google Patents

Production of fine cu-cr alloy wire

Info

Publication number
JPS6087952A
JPS6087952A JP19470283A JP19470283A JPS6087952A JP S6087952 A JPS6087952 A JP S6087952A JP 19470283 A JP19470283 A JP 19470283A JP 19470283 A JP19470283 A JP 19470283A JP S6087952 A JPS6087952 A JP S6087952A
Authority
JP
Japan
Prior art keywords
alloy
wire
fine
liquid fluid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19470283A
Other languages
Japanese (ja)
Other versions
JPH059184B2 (en
Inventor
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19470283A priority Critical patent/JPS6087952A/en
Publication of JPS6087952A publication Critical patent/JPS6087952A/en
Publication of JPH059184B2 publication Critical patent/JPH059184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a titled alloy wire which is easy to work and has an excellent characteristic by ejecting a Cu-Cr alloy contg. a specific amt. of Cr through a fine hole or slit from a molten state into a liquid fluid and forming a slender long-sized casting ingot. CONSTITUTION:A raw material 1 for a Cu-Cr alloy contg. 0.2-1.5% Cr is charged into a crucible 2 and is melted by a heater 4 in a nonoxidative atmosphere. The molten alloy is steadily ejected from the nozzle 5 in the bottom of the crucible 2 and is injected into liquid fluid 7 forming laminar flow on the inside of a rotary drum 6, by which the molten material is quickly solidified and a slender long-sized casting ingot 8 is obtd. The cooling rate is controlled in the stage of casting to eliminate segregation of Cr and to provide substantially the effect of soln. heat treatment thereto. The wire rod is subjected to annealing for the purpose of precipitation and tempering after cold drawing. The process for production is thus extremely simplified and the Cu-Cr alloy having the extremely excellent and uniform characteristic is obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は、機械、器具等の導体等として曲用きれる刹1
1物Cu−Cr系合金線の製造方法に関するものである
[Detailed description of the invention] (Technical field) The present invention can be used as a conductor for machines, appliances, etc.
The present invention relates to a method for manufacturing a one-component Cu-Cr alloy wire.

(背景技術) 近年、電気機器、電子機器の小型化に伴ない電線導体に
ふ・いても細線化が進行しつつある。
(Background Art) In recent years, with the miniaturization of electrical and electronic devices, wire conductors have also become thinner.

このため導体にはより高強度かつ耐屈曲特性に優されて
きた。その一つとしてCu−Cr合金線と、弓°った時
効硬化型銅合金線等が倹8]され、実用されている。
For this reason, conductors have been improved in strength and bending resistance. As one of these, Cu-Cr alloy wire and curved age-hardening copper alloy wire have been developed and put into practical use.

しかし、Cu−Cr合金線は銅線に比べて焼入れ処理を
必要とする他、加工性が良くないので、絹物線の製造に
は多数の工程を必要とした。
However, compared to copper wire, Cu-Cr alloy wire requires quenching treatment and has poor workability, so a large number of steps are required to manufacture silk wire.

第1図(イ)は0.05〜0.1 mmΦ程度のCu 
−Cr合金線の製造工程の例を示す工程図である。図に
示すように、従来インゴット鋳造、圧延、熱処理(溶体
化焼入れ処理)、伸線、軟化(時効)処理等の多数の工
程を経て製造されていた。
Figure 1 (a) shows Cu of about 0.05 to 0.1 mmΦ.
It is a process diagram showing an example of a manufacturing process of a -Cr alloy wire. As shown in the figure, conventional wires have been manufactured through a number of steps such as ingot casting, rolling, heat treatment (solution heat treatment), wire drawing, and softening (aging) treatment.

そしてこの場合、鋳造時にCrの偏析を生じたり、鋳造
欠陥を生じ易く、溶解時Crの酸化物を生じ易く、又鋳
造時これを巻き込み易く、溶体化焼入れ処理待表面酸化
し易く、又極細線に伸線するのに大きい冷間加工度を必
要としたため、伸線加工性が悪く、断線、傷等による歩
留りの低下、上述の溶体化焼入れ処理等の工程増加によ
り製造コストが高くなる欠点があった。
In this case, Cr is likely to segregate during casting and cause casting defects, Cr oxides are likely to be generated during melting, Cr oxides are likely to be involved during casting, the surface during solution hardening is likely to oxidize, and ultra-fine wires are likely to occur. Because a large degree of cold working is required to draw the wire, the wire drawability is poor, the yield decreases due to wire breakage, scratches, etc., and the production cost increases due to the additional steps such as the solution quenching treatment mentioned above. there were.

(発明の開示) 本発明は、上述の欠点を解消するため成されたもので、
製造工程を極度に簡素化して、設備費、王が容易で欠陥
が少なく、特性の優れた細物Cu−Cr系合金線を製造
する方法を提供せんとするものである。
(Disclosure of the Invention) The present invention has been made in order to eliminate the above-mentioned drawbacks.
It is an object of the present invention to provide a method of manufacturing a thin Cu--Cr alloy wire with excellent characteristics by extremely simplifying the manufacturing process, reducing equipment costs, easy maintenance, and having few defects.

本発明は、CrO,2〜15%を含有し、COを主成分
とするCu−Cr系合金を、溶融状態より細孔又はスリ
ットから液体流体中に噴出させることにより、細物長尺
鋳塊を作成することを特徴とする細物Cu−Cr系合金
線の製造方法である。
The present invention produces a fine long ingot by ejecting a Cu-Cr alloy containing 2 to 15% of CrO and mainly consisting of CO from a molten state into a liquid fluid through pores or slits. This is a method for manufacturing a thin Cu-Cr alloy wire.

本発明において、Cu−Cr系合金とは、Cr02〜1
5%を含有し、銅を主成分とする銅合金で、Cr以外に
Ag、 Sn、 Mg、 Al1. Be、 Pおよび
L’i より成るグループから選ばれた1種以上の元素
をそれぞれ05%以下含有していても良い。
In the present invention, Cu-Cr alloy refers to Cr02-1
It is a copper alloy containing 5% of copper as a main component, and in addition to Cr, it also contains Ag, Sn, Mg, Al1. It may contain 0.5% or less of each of one or more elements selected from the group consisting of Be, P, and L'i.

本発明により製造される細物Cu −Cr系合金線は、
線径0.2 mm以下のものである。
The fine Cu-Cr alloy wire produced according to the present invention is
The wire diameter is 0.2 mm or less.

本発明において、合金中のCrは、導電率を損なうこと
を少なくして、耐軟化性、機械的特性を数音し、引張強
さと伸びの特性を両立せしめるものであり、Cr含有量
を0.2〜1.5%と規定したのけ、02%未満では絹
物線にした場合の機械的特性の改善効果が不十分であり
、1.5%を越えると細物線にした場合の機械的特性の
改善効果が飽和すると共に、いたずらに原料コストを高
騰させたり、溶解に困難を伴なうのみであるためである
In the present invention, Cr in the alloy reduces the loss of electrical conductivity, improves softening resistance and mechanical properties, and achieves both tensile strength and elongation properties. If it is less than 0.2%, the effect of improving mechanical properties when made into a silk wire is insufficient, and if it exceeds 1.5%, the improvement effect on the mechanical properties when made into a thin wire is insufficient. This is because the effect of improving mechanical properties is saturated, and the cost of raw materials is unnecessarily increased and the melting process becomes difficult.

以下、本発明を図面を用いて実施例により説明する。第
1図(ロ)は本発明方法の実施例の製造工程を示す図で
ある。本発明方法では、Cu −Cr系合金を溶解し、
溶融状態より細孔又はスリットから液体流体中に噴出さ
せることにより、絹物長尺鋳塊に急冷凝固させ、急速に
冷却する。この場合、100℃の温度となるまでの冷却
は、500〜b供の凝固冷却法には種々の方法が適用さ
れ、特に制限はない。
Hereinafter, the present invention will be explained by examples using the drawings. FIG. 1(B) is a diagram showing the manufacturing process of an embodiment of the method of the present invention. In the method of the present invention, a Cu-Cr alloy is melted,
By jetting the molten material into a liquid fluid through pores or slits, it is rapidly solidified into a long silk ingot and rapidly cooled. In this case, cooling to a temperature of 100° C. may be performed by various methods for solidification cooling of 500° C., and there is no particular restriction.

第2図は本発明方法の実施例における凝固冷却法の一例
を説明するための図で、(イ)図は正面断面図、(ロ)
図は側面断面図である。図において2はるつぼで、合金
原料1が装入され、加熱ヒーター4により溶解される。
Figure 2 is a diagram for explaining an example of the solidification cooling method in the embodiment of the method of the present invention, (a) is a front cross-sectional view, and (b) is a front sectional view.
The figure is a side sectional view. In the figure, reference numeral 2 denotes a crucible, into which the alloy raw material 1 is charged and melted by a heating heater 4 .

溶解後溶湯はるつぼ2の底部のノズル5より定常的に噴
出され、回転ドラム6の内側に存看する層流をなす液体
流体7中に注入されて、急冷凝固に引続き急冷され、絹
物長尺鋳塊8とされる。3は加圧ガス流入口である。
After melting, the molten metal is constantly ejected from the nozzle 5 at the bottom of the crucible 2, and is injected into the laminar liquid fluid 7 existing inside the rotating drum 6, where it is rapidly solidified and then quenched to form silk into a length. It is said to be a shaku ingot 8. 3 is a pressurized gas inlet.

液体流体7は層流をなす液体流が望ましく、かくするこ
とにより、急速かつ均一な冷却が行なわれる。図では回
転による遠心力により層流が形成される。
The liquid fluid 7 is preferably a laminar liquid flow, thereby achieving rapid and uniform cooling. In the figure, laminar flow is formed due to centrifugal force due to rotation.

この場合、凝固後100℃の温度となるまでの冷却速度
を500〜aoooo℃/秒とする。このような冷却速
度とするのは、以後の冷間加工性も保証しながら溶体化
処理の効果を十分にするためであり、500℃/秒未満
では溶体化処理の効果が不十分となり易く、Crの偏析
防止効果も不十分であり、又30000℃/秒を越える
と得られた鋳塊としての線が脆くなり易い。
In this case, the cooling rate until the temperature reaches 100°C after solidification is 500 to aooooo°C/sec. The purpose of setting such a cooling rate is to ensure the effect of the solution treatment while ensuring subsequent cold workability.If the cooling rate is less than 500°C/sec, the effect of the solution treatment tends to be insufficient. The effect of preventing segregation of Cr is also insufficient, and when the temperature exceeds 30,000° C./sec, the obtained wire as an ingot tends to become brittle.

かような凝固冷却はJqられた鋳塊としての線の加工性
を良好にするため、非酸化雰囲気、例えば真空中、N2
.Arガス雰囲気中等で行なわれることが好ましい。
In order to improve the workability of the wire as a Jqed ingot, such solidification cooling is performed in a non-oxidizing atmosphere, for example in a vacuum, with N2
.. It is preferable to carry out the process in an Ar gas atmosphere or the like.

絹物長尺鋳塊8は回転ドラム6より取出され、第1図(
ロ)に示すように、最終サイズに冷間伸線を施された後
、時効析出と調質のための焼鈍処理を施して製品とする
。又必要により時効調質焼鈍処理後冷間伸線を施しても
良い。
The long silk ingot 8 is taken out from the rotating drum 6 and is shown in Fig. 1 (
As shown in b), after being cold drawn to the final size, it is subjected to annealing treatment for aging precipitation and tempering to produce a product. If necessary, cold wire drawing may be performed after the aging temper annealing treatment.

これらの冷間伸線(加工)は、サイズ調整と強度の向上
のためであり、通常冷間加工度最大95%まで可能であ
る。又時効調質熱処理は温度300〜700℃で時間1
0秒〜12時間の条件で行なわれる。
These cold wire drawings (processes) are performed to adjust the size and improve strength, and usually the degree of cold working can be up to 95%. In addition, aging heat treatment is performed at a temperature of 300 to 700℃ for 1 hour.
It is carried out under conditions of 0 seconds to 12 hours.

上述のような本発明方法によると、従来の第1図(イ)
に示すような多くの工程を必要とせず、3〜4工程です
み、しかも簡単な設備を設けるだけで良いので、エネル
ギー、工数が極度に低減される。
According to the method of the present invention as described above, the conventional method shown in FIG.
This method does not require as many steps as shown in Figure 1, and requires only 3 to 4 steps, and requires only simple equipment, so energy and man-hours are extremely reduced.

(実施例1) Ar雰囲気チャンバー内に第2図に示す装置を収容し、
Cu−0,5%Cr合金を約1300℃の溶融状態から
5℃の冷水による液体流体7中に噴出させ、直径約0.
15mmの長尺鋳塊に凝固、冷却させた。この場合の凝
固後100℃の温度となるまでの冷却速度は大略800
0℃/秒であった。
(Example 1) The apparatus shown in FIG. 2 was housed in an Ar atmosphere chamber,
A Cu-0.5% Cr alloy is jetted from a molten state at about 1300°C into a liquid fluid 7 made of cold water at 5°C, and the alloy has a diameter of about 0.5%.
The ingot was solidified and cooled into a 15 mm long ingot. In this case, the cooling rate until the temperature reaches 100℃ after solidification is approximately 800℃.
The temperature was 0°C/sec.

鋳塊の状態での導電率は約40%lAC3で、Crは十
分固溶状態になっていると推定きれた。
The electrical conductivity in the ingot state was about 40% lAC3, and it was estimated that Cr was sufficiently in a solid solution state.

この長尺鋳塊をQ、Q8mmΦまで冷間伸線した後、こ
れを炉温600℃に保持されたN2ガス雰囲気のトンネ
ル炉内を通過させて時効調質焼鈍を施した。
After this long ingot was cold drawn to Q, Q8 mmΦ, it was passed through a tunnel furnace in an N2 gas atmosphere maintained at a furnace temperature of 600°C to undergo aging temper annealing.

得られた0、08mmΦのCu−Cr合金線の性能は表
1に示す通りである。
The performance of the obtained Cu-Cr alloy wire with a diameter of 0.08 mm is shown in Table 1.

表 1 なお、この製造二[程において伸線時の断線はほとんど
無く、又原材料の歩留りも非常に高かった。
Table 1 Note that during the second manufacturing step, there were almost no wire breaks during wire drawing, and the yield of raw materials was also very high.

この工うにして作成した0、08mmΦの合金線に錫を
溶融めっきしたものの7本を撚合せ、前部用電線を作成
した所、強度、しなやかさ、耐屈曲性といった特性の優
れたものが得られた。
Seven wires of 0.08mmΦ alloy wires made in this way were hot-dipped with tin and twisted together to make a front wire, which had excellent properties such as strength, flexibility, and bending resistance. Obtained.

(実施例2) 表2にノ1、す組成のCu−Cr 系合金を実施例1と
同4.′&の方法により加工し、Q、08mmΦのCu
−Cr系合金線を作成した。
(Example 2) A Cu-Cr alloy having the composition No. 1 in Table 2 and No. 4 as in Example 1 was used. Processed by the method of '&, Q, 08mmΦ Cu
-Cr-based alloy wire was created.

11)られた0、08mmΦの合金線の性能は表2に示
す通りである。
11) The performance of the alloy wire with a diameter of 0.08 mm is shown in Table 2.

表 2 表2より、いずれも合金線として十分な特性のは ものがl!)られ、又伸線時の断線判はとんで無かった
Table 2 From Table 2, all of the wires have sufficient characteristics as alloy wires! ), and there was no chance of wire breakage during wire drawing.

(発明の効果) 上述の上うに構成された本発明の細物Cu−Cr系合金
線の製造方法は次のような効果がある。
(Effects of the Invention) The method for manufacturing a fine Cu-Cr alloy wire of the present invention configured as described above has the following effects.

(イ)CrO,2〜1.5%を含有し、Cuを主成分と
するC u −Cr系合金を、溶融状態より2411孔
又はスリットから液体流体中に噴出させることにより、
却i物長尺鋳塊を作成するから、鋳造時にCrを過4M
和に固溶させるので、溶体化のための面倒な溶体化処理
が不要であり、又鋳造時にCrの偏析を生じたりしに<
<、さらに最終線径に近い鋳塊に冷間加工を施し、しか
る後時効析出と調質のための焼鈍処理を施すため、細線
への冷間加工が容易である。
(a) By ejecting a Cu-Cr alloy containing 2 to 1.5% CrO and mainly containing Cu from a molten state into a liquid fluid from a 2411 hole or slit,
Since a long ingot is created, Cr is added to 4M during casting.
Since Cr is dissolved in solid solution, there is no need for troublesome solution treatment, and there is no need for Cr segregation during casting.
Furthermore, since the ingot close to the final wire diameter is cold-worked and then annealed for aging precipitation and tempering, it is easy to cold-work into fine wire.

従って工程が従来に比べ著しく r:ci JL化され
るので、設6iii費、製造コストが著しく低減される
Therefore, the process is significantly reduced to r:ci JL compared to the conventional method, and the installation cost and manufacturing cost are significantly reduced.

(ロ)鋳造時にCrの偏析を生ぜず、均質な4′fl物
長尺Iヶ塊が得られるので、伸線時の断線がほとんど;
ijr (、特性の優れた均一なCu −Cr系合金、
線を歩留り良く製造し得る。
(b) Since Cr segregation does not occur during casting and a homogeneous 4'fl long I block is obtained, there is almost no wire breakage during wire drawing;
ijr (, uniform Cu-Cr alloy with excellent properties,
Wires can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

HJ 1図(イ)、(ロ)はそれぞれCu −Cr系合
金、腺の製造工程の例を示す工程図で、(イ)図は従来
方法、(cff)図は本発明の実施例を示す。 第2図(イ)、(ロ)は本発明方法の実施例における凝
固冷却方法の一例を説明するための図で、(イ)図は正
面1青面−1(ロ)図は側面:訴面図である。 l・・・原、1′1.2・るつぼ、3・・加圧ガス流入
1」、4 加熱ヒーター、5・・ノズル、6・・・回転
ドラム、7 メfダ体流体、8 ・絹物長尺鋳塊。 膏 1 図 (イ) (bン
HJ 1 Figures (a) and (b) are process diagrams showing examples of manufacturing processes for Cu-Cr alloys and glands, respectively, where (a) shows the conventional method and (cff) shows the embodiment of the present invention. . Figures 2 (a) and 2 (b) are diagrams for explaining an example of the solidification cooling method in the embodiment of the method of the present invention, in which (a) is the front 1 blue side and 1 (b) is the side view: It is a front view. l... Original, 1'1.2 Crucible, 3... Pressurized gas inflow 1'', 4 Heating heater, 5... Nozzle, 6... Rotating drum, 7 Meda body fluid, 8 - Silk Long ingot. 1 Figure (a) (b)

Claims (5)

【特許請求の範囲】[Claims] (1) Cr O,2〜15%を含有し、Cuを主成分
とするCu Cr系合金を、溶融状態より細孔又はスリ
ットから液体流体中に噴出させることにより、細物長尺
シj7塊を作成することを特徴とする細物Cu−Cr、
YNN全金線製造方法。
(1) By ejecting a CuCr-based alloy containing 2 to 15% of CrO and mainly containing Cu from a molten state into a liquid fluid through pores or slits, a long thin block is produced. A fine Cu-Cr characterized by creating
YNN all gold wire manufacturing method.
(2)溶融状態より液体流体中に噴出させる際、合金を
溶融状態より急冷凝固させ、100℃の温度となるまで
の冷却速度を500〜aoooo℃/秒 とする1、旨
′1晶求の範囲第1項記載の細物Cu−Cr系合金線の
製ノ告方法。
(2) When ejecting the alloy from the molten state into a liquid fluid, the alloy is rapidly solidified from the molten state, and the cooling rate is 500 to aooooo °C/sec until it reaches a temperature of 100 °C. A method for producing a fine Cu-Cr alloy wire according to Scope 1.
(3) Cu−Cr系合金が、Cr以外にAg + S
nr Mg +AU、Be、PおよびLiより成るグル
ープから選ばれ/こl J’i(i以」二の元素をそれ
ぞれ0.5%以下含有する鋼合金である特許請求の範囲
第1項又は第2項記載の細物Cu−Cr系合金線の製造
方法。
(3) Cu-Cr alloy contains Ag + S in addition to Cr.
nr Mg + AU, Be, P and Li selected from the group consisting of 2. The method for producing a fine Cu-Cr alloy wire according to item 2.
(4)液体流体が、回転ドラムの内側に存在する層流を
なす液体である特許請求の範囲第1項、第2項又は第3
項記載の細物Cu−Cr系合金線の製造方法。
(4) Claim 1, 2 or 3, wherein the liquid fluid is a laminar flow liquid existing inside the rotating drum.
A method for producing a fine Cu-Cr alloy wire as described in 1.
(5)合金の溶解から細物長尺鋳塊の冷却までの工程が
、非酸化雰囲気中で行なわれる特許請求の範囲第1項、
第2項、第3項又は第4項記載の細物Cu −Cr系合
金の製造方法。
(5) Claim 1, wherein the steps from melting the alloy to cooling the thin long ingot are performed in a non-oxidizing atmosphere;
A method for producing a fine Cu-Cr alloy according to item 2, 3, or 4.
JP19470283A 1983-10-17 1983-10-17 Production of fine cu-cr alloy wire Granted JPS6087952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19470283A JPS6087952A (en) 1983-10-17 1983-10-17 Production of fine cu-cr alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19470283A JPS6087952A (en) 1983-10-17 1983-10-17 Production of fine cu-cr alloy wire

Publications (2)

Publication Number Publication Date
JPS6087952A true JPS6087952A (en) 1985-05-17
JPH059184B2 JPH059184B2 (en) 1993-02-04

Family

ID=16328840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19470283A Granted JPS6087952A (en) 1983-10-17 1983-10-17 Production of fine cu-cr alloy wire

Country Status (1)

Country Link
JP (1) JPS6087952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667199A1 (en) * 1994-02-14 1995-08-16 UNIMETAL, Société Française des Aciers Longs Process and apparatus for continuously casting a metal filament directly from a melt
EP1911856A1 (en) * 2006-10-04 2008-04-16 Fisk Alloy Wire, Inc. Copper alloys
WO2012014654A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135820A (en) * 1972-11-14 1974-12-27 Allied Chem
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135820A (en) * 1972-11-14 1974-12-27 Allied Chem
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667199A1 (en) * 1994-02-14 1995-08-16 UNIMETAL, Société Française des Aciers Longs Process and apparatus for continuously casting a metal filament directly from a melt
FR2716130A1 (en) * 1994-02-14 1995-08-18 Unimetall Sa Method and device for the continuous casting of very small diameter metal wires directly from liquid metal.
US5524704A (en) * 1994-02-14 1996-06-11 Unimetal, Societe Francaise Des Aciers Longs Process and device for the continuous casting of very small-diameter wires directly from liquid metal
EP1911856A1 (en) * 2006-10-04 2008-04-16 Fisk Alloy Wire, Inc. Copper alloys
WO2012014654A1 (en) 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector

Also Published As

Publication number Publication date
JPH059184B2 (en) 1993-02-04

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
SU1237082A3 (en) Method of producing semifinished items from disperse solidifying alloy of aluminium-magnesium-silicon system
JP2006028614A (en) Copper alloy material, method of manufacturing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable or trolley wire using the copper alloy conductor
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPS6087952A (en) Production of fine cu-cr alloy wire
JPS6144149B2 (en)
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPH0435538B2 (en)
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JP3759053B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JPH08277447A (en) Production of conductive aluminum alloy wire
JPS5887236A (en) Manufacture of heat resistant aluminum alloy conductor
JP2004188429A (en) Method for producing copper rough-drawn wire and copper wire
JPH049621B2 (en)
JPS5910522B2 (en) copper coated aluminum wire
JP3768899B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JPS61288036A (en) Copper alloy for lead frame and its production
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness
JP2932726B2 (en) Manufacturing method of copper alloy wire
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire
JPH0125383B2 (en)
JPS5931585B2 (en) Manufacturing method of conductive aluminum alloy
JPH04254558A (en) Production of copper wire for electric conduction