JPH0125383B2 - - Google Patents

Info

Publication number
JPH0125383B2
JPH0125383B2 JP3424083A JP3424083A JPH0125383B2 JP H0125383 B2 JPH0125383 B2 JP H0125383B2 JP 3424083 A JP3424083 A JP 3424083A JP 3424083 A JP3424083 A JP 3424083A JP H0125383 B2 JPH0125383 B2 JP H0125383B2
Authority
JP
Japan
Prior art keywords
temperature
heat resistance
aluminum alloy
strength
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3424083A
Other languages
Japanese (ja)
Other versions
JPS59159946A (en
Inventor
Kenichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3424083A priority Critical patent/JPS59159946A/en
Publication of JPS59159946A publication Critical patent/JPS59159946A/en
Publication of JPH0125383B2 publication Critical patent/JPH0125383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、耐熱性と導電性に優れた導電用耐熱
アルミ合金の製造方法に関するものである。 (背景技術) 近年、例えば送電容量の増大、2回線運転時の
事故時の1回線運用による電力系統の信頼性向上
のため、耐熱鋼心アルミ合金撚線(以下、
TACSRと称す)が使用されている。これには60
%導電率耐熱アルミ合金(以下、60TAlと称す)
が我が国の基幹送電線に60TACSRとして採用さ
れている。 従来から、Alに0.04%程度の微量のZrを添加
し、製造工程中にZrを固溶させる処理を施して
耐熱性を付与させた導電用耐熱アルミ合金は上述
の60TAlとして知られており、これは連続使用温
度が150℃であり、近年さらに耐熱性を高めて送
電容量を増加させたいという要望がある。 しかしただ単に耐熱性を高めるだけなら、Zr
の添加量を多くして行くことが考えられるが、こ
れではZr添加量の増加に従つて導電率が低下し
てしまうので、導電性、耐熱性共に高い導体の開
発が望まれていた。 (発明の開示) 本発明は、上述の問題点を解決するため、本発
明者らが種々の合金、製法について検討した結果
得られたものであつて、特定組成範囲のアルミ合
金に、特定の製法と特定の熱処理を組合せること
により、高導電率で高い耐熱性を有する導電用耐
熱アルミ合金を製造する方法を提供せんとするも
のである。 本発明は、Zr0.15〜0.35%,Fe0.08〜0.5%,
Si0.04〜0.15%を含有し、残部Alと通常の不純物
とから成るアルミ合金を、700℃以上の温度から
5℃/秒以上の冷却速度で鋳造し、ひき続き熱間
加工を施した後、100℃/時以下の昇温速度で加
熱し、300〜480℃の温度範囲で10〜300時間の時
効処理を施すことを特徴とする導電用耐熱アルミ
合金の製造方法である。 本発明において、アルミ合金中のZr量を0.15〜
0.35%と規定したのは、0.15%未満では耐熱性が
低く、強度も低く、又0.35%を越えると耐熱性が
飽和すると同時に、溶湯の温度を上げないと鋳造
時に固溶せず、Al3Zrの粗大な粒子として晶出し
て、返つて耐熱性を低下させるためである。 又Feはアルミ合金中に固溶する部分とAl3Fe,
Al6Feとして微細に析出する部分が強度、耐熱性
を向上させるものであり、Fe量を0.08〜0.5%と
規定したのは、0.08%未満では耐熱性が低く、強
度も低く、又0.5%を越えると耐熱性が低下する
と共に、導電率が低下するためである。 又SiはAl―Fe―Si系、Al―Zr―Si系の晶出物、
析出物として微細に分散し、強度、耐熱性、導電
性を改良するものであり、Si量を0.04〜0.15%と
規定したのは、0.04%未満では強度が低く、高い
導電率、高い耐熱性を得るための時効時間が長く
なり、工業生産上使用できないからであり、又
0.15%を越えると耐熱性が劣化すると共に、鋳造
割れが著しいためである。 次に、本発明において、連続鋳造とそれに続く
熱間加工は、例えば回転鋳型と無端ベルトにより
構成される連続鋳造機とそれに続く熱間圧延機を
用いるプロペルチ法、SCR法、セシム法などや、
双ロール法、キヤタビラ法などの連続鋳造機とそ
れに続く熱間圧延機を用いるヘズレー法、ハンタ
ー法などの連続鋳造圧延法が利用できるが、鋳造
条件として700℃以上の鋳込温度から5℃/秒以
上の冷却速度で鋳造できるものであれば特に制限
がない。 本発明において、鋳込温度を700℃以上と規定
したのは、700℃未満では溶湯段階で粗大な
Al3Zr粒子が晶出し、耐熱性の大幅な低下を招く
ためである。 又冷却速度を5℃/秒以上と規定したのは、鋳
造時のAl3Fe,Al6Feの晶出物を微細分散させて、
強度、耐熱性を上げると共に、鋳造時強制固溶さ
れたZrを析出させないためで、5℃/秒未満で
は耐熱性が低下する。 又本発明における熱間加工としては通常の熱間
加工で良いが、上述の鋳造材を480℃以上の開始
温度から熱間加工することが耐熱性の面で好まし
く、鋳造材の温度が480℃未満の場合は、ガスバ
ーナー、誘導加熱、赤外線加熱法などにより、加
熱すれば良い。このように熱間加工された後、素
材は好ましくは150℃以下の温度で巻取られる。
例えば最近の巻取機によると、線材の場合2〜3
トンの大型コイルとなり、300℃程度の高温で巻
取ると、コイル中心部には線材自体の温度によ
り、高温の状態が保持され、コイル内外部での特
性のばらつきが大きくなり、製品としての歩留り
が極めて悪くなる。 本発明においては、熱間加工を施した後、又は
必要によりさらに冷間伸線などの冷間加工を施し
た後、100℃/時以下の昇温速度で加熱し、300〜
480℃の温度範囲で10〜300時間の時効処理を施さ
れる。なお上述の冷間加工を加える場合には、熱
間加工された素材の巻取温度を150℃以下にする
ことは特に重要であり、特性のばらつきを無くす
ると共に、冷間加工性のためにも必要である。こ
れに対し、高温で巻取ると、熱間加工時の潤滑剤
がコイル中心部で変質して強く付着し、冷間加工
時の焼付きやソゲ発生を生じ、甚しい時には破断
にまで至らしめる。 本発明における時効処理においては、時効温
度、時効時間の管理と共に時効温度にまで加熱す
る昇温速度が重要であり、これを100℃/時以下
に制御することにより、その後の素材の強度、耐
熱性、導電性の3者共に改良することが可能であ
る。このような特性の向上は、前述のような鋳
造、熱間加工条件と組合せることにより初めて得
られるものである。 この昇温速度を100℃/時以下に制御すること
により強度、耐熱性、導電性が改良されるメカニ
ズムは定かでないが、次のように考えられる。即
ち、これにより、熱間加工組織や冷間加工組織に
微細なAlFeSi,Al3Fe,Al3Zr,Zr5Si3などの第
一次析出処理を施して、その後300〜480℃の時効
処理において、析出サイトの増加した組織に多量
のAl3Zr,Al3Fe,Zr5Si3などの微細な第二次析
出処理が施されることにより、強度、耐熱性、導
電性に優れた素材が得られる。 時効処理の条件を300〜480℃の温度範囲で10〜
300時間と規定したのは、300未満では導電率、耐
熱性、強度共に改善されず、480℃を越えると耐
熱性、強度が劣化し、又10時間未満では導電率、
耐熱性、強度共に改善されず、300時間を越える
と効果が飽和するのみでなく、特に高温での時効
の場合、過時効となり、強度、耐熱性の劣化を招
くからである。時効時間については、一般的に時
効温度の高い程、時間は短かくて良い関係にある
が、目標とする特性を得るため、温度と時間を調
節することが可能である。 次に、本発明においては、上述の時効処理を施
した素材は、通常さらに冷間伸線などの冷間加工
を施され、所望の最終サイズに仕上げられる。 上述の方法により製造された本発明によるアル
ミ合金は、導電率60%IACS以上、硬アルミニウ
ム線と同等の強度を有し、300℃以上の耐熱性を
保有することができる。 ここで耐熱性とは、1時間の加熱により引張強
さが10%低下する最低の加熱温度を示す。 (実施例) 表1に示す組成のアルミ合金を溶解し、脱ガス
処理をした後、鋳型断面積2800mm2の銅合金製回転
鋳型とスチールベルトで構成される連続鋳造機へ
溶湯温度720〜740℃で送りこみ、冷却速度8〜12
℃/秒の冷却条件に管理しながら鋳造した。 この鋳造材の温度が520〜550℃になつてからひ
き続き熱間圧延を開始し、9.5mmの荒引線に熱
間圧延した後、70〜90℃の温度で巻取つた。
(Technical Field) The present invention relates to a method for manufacturing a heat-resistant aluminum alloy for electrical conduction that has excellent heat resistance and electrical conductivity. (Background technology) In recent years, heat-resistant steel core aluminum alloy stranded wires (hereinafter referred to as
(referred to as TACSR) is used. 60 for this
% conductivity heat-resistant aluminum alloy (hereinafter referred to as 60TAl)
has been adopted as 60TACSR in Japan's main power transmission lines. Conventionally, the heat-resistant aluminum alloy for conductive use is known as the above-mentioned 60TAl, which is made by adding a small amount of Zr of about 0.04% to Al and performing a treatment to dissolve Zr as a solid solution during the manufacturing process to impart heat resistance. It has a continuous operating temperature of 150°C, and in recent years there has been a desire to further improve heat resistance and increase power transmission capacity. However, if you just want to increase heat resistance, Zr
It is conceivable to increase the amount of Zr added, but in this case, the electrical conductivity decreases as the amount of Zr added increases, so there has been a desire to develop a conductor with high both electrical conductivity and heat resistance. (Disclosure of the Invention) The present invention was obtained as a result of studies conducted by the present inventors on various alloys and manufacturing methods in order to solve the above-mentioned problems. The present invention aims to provide a method for manufacturing a conductive heat-resistant aluminum alloy having high conductivity and high heat resistance by combining a manufacturing method and a specific heat treatment. The present invention has Zr0.15~0.35%, Fe0.08~0.5%,
After casting an aluminum alloy containing 0.04 to 0.15% Si and the balance Al and normal impurities from a temperature of 700°C or higher at a cooling rate of 5°C/second or higher and subsequently hot working. , a method for producing a heat-resistant aluminum alloy for conductive use, characterized by heating at a temperature increase rate of 100° C./hour or less, and performing an aging treatment in a temperature range of 300 to 480° C. for 10 to 300 hours. In the present invention, the amount of Zr in the aluminum alloy is 0.15~
The reason for specifying 0.35% is that if it is less than 0.15%, the heat resistance and strength will be low, and if it exceeds 0.35%, the heat resistance will be saturated, and at the same time, it will not form a solid solution during casting unless the temperature of the molten metal is raised, and Al 3 This is because Zr crystallizes as coarse particles, which in turn reduces heat resistance. In addition, Fe is a solid solution part in aluminum alloy and Al 3 Fe,
The finely precipitated portion as Al 6 Fe improves strength and heat resistance, and the reason why the Fe amount is specified as 0.08 to 0.5% is that if it is less than 0.08%, heat resistance and strength will be low, and if 0.5% This is because if it exceeds 100%, the heat resistance will decrease and the electrical conductivity will also decrease. Also, Si is a crystallized product of Al-Fe-Si system, Al-Zr-Si system,
It is finely dispersed as a precipitate and improves strength, heat resistance, and conductivity.The reason why the amount of Si is specified as 0.04 to 0.15% is that if it is less than 0.04%, the strength will be low, but it will have high conductivity and high heat resistance. This is because the aging time required for obtaining
This is because if it exceeds 0.15%, heat resistance will deteriorate and casting cracks will be significant. Next, in the present invention, continuous casting and subsequent hot processing are carried out by, for example, the Propelch method, the SCR method, the Sesim method, etc., which use a continuous casting machine consisting of a rotating mold and an endless belt, and a subsequent hot rolling mill.
Continuous casting and rolling methods such as the Hesley method and the Hunter method, which use a continuous casting machine such as the twin roll method and the caterpillar method followed by a hot rolling mill, can be used, but the casting conditions are as follows: There is no particular restriction as long as it can be cast at a cooling rate of seconds or more. In the present invention, the casting temperature is specified as 700°C or higher because if it is lower than 700°C, coarse particles will form in the molten metal stage.
This is because Al 3 Zr particles crystallize, resulting in a significant decrease in heat resistance. In addition, the cooling rate was specified as 5°C/second or more because the crystallized substances of Al 3 Fe and Al 6 Fe were finely dispersed during casting.
This is to increase the strength and heat resistance and to prevent the precipitation of Zr, which was forcibly dissolved during casting, and if the speed is less than 5° C./sec, the heat resistance will decrease. Further, the hot working in the present invention may be normal hot working, but it is preferable to hot work the above-mentioned cast material from a starting temperature of 480°C or higher in terms of heat resistance. If the temperature is less than 1, it may be heated using a gas burner, induction heating, infrared heating, or the like. After being hot-worked in this way, the material is preferably wound at a temperature below 150°C.
For example, according to recent winding machines, in the case of wire rods, 2 to 3
When a large coil of 1,000 tons is wound and wound at a high temperature of about 300℃, the center of the coil remains at a high temperature due to the temperature of the wire itself, resulting in large variations in characteristics inside and outside the coil, which reduces the yield of the product. becomes extremely bad. In the present invention, after hot working or, if necessary, further cold working such as cold wire drawing, heating is performed at a temperature increase rate of 100°C/hour or less,
It is aged at a temperature range of 480℃ for 10 to 300 hours. In addition, when applying the above-mentioned cold working, it is especially important to keep the coiling temperature of the hot worked material below 150℃, to eliminate variations in properties and to improve cold workability. is also necessary. On the other hand, when the coil is wound at high temperatures, the lubricant during hot working changes its quality at the center of the coil and adheres strongly, causing seizure and flaking during cold working, and in severe cases, even breakage. . In the aging treatment of the present invention, it is important to control the aging temperature and aging time as well as the rate of temperature increase to reach the aging temperature.By controlling this to 100℃/hour or less, the strength and heat resistance of the material after that It is possible to improve both properties and conductivity. Such improvements in properties can only be obtained by combining the above-mentioned casting and hot working conditions. The mechanism by which strength, heat resistance, and conductivity are improved by controlling the temperature increase rate to 100° C./hour or less is not clear, but it is thought to be as follows. That is, by this, the hot-worked structure and the cold-worked structure are subjected to the primary precipitation treatment of fine AlFeSi, Al 3 Fe, Al 3 Zr, Zr 5 Si 3, etc., and then subjected to aging treatment at 300 to 480°C. In this process, a fine secondary precipitation treatment of a large amount of Al 3 Zr, Al 3 Fe, Zr 5 Si 3 , etc. is applied to the structure with an increased number of precipitation sites, resulting in a material with excellent strength, heat resistance, and electrical conductivity. is obtained. The aging treatment conditions are 10 to 300℃ in the temperature range of 300 to 480℃.
300 hours is specified because if it is less than 300 hours, the conductivity, heat resistance, and strength will not improve, and if it exceeds 480℃, the heat resistance and strength will deteriorate, and if it is less than 10 hours, the conductivity,
This is because neither the heat resistance nor the strength is improved, and the effect not only becomes saturated after 300 hours, but also, especially in the case of aging at high temperatures, overaging occurs, leading to deterioration of the strength and heat resistance. Regarding the aging time, generally speaking, the higher the aging temperature, the shorter the time, which is a better relationship, but it is possible to adjust the temperature and time in order to obtain the target characteristics. Next, in the present invention, the material subjected to the above-mentioned aging treatment is usually further subjected to cold working such as cold wire drawing to be finished into a desired final size. The aluminum alloy according to the present invention manufactured by the above method has an electrical conductivity of 60% IACS or more, a strength equivalent to that of hard aluminum wire, and can have heat resistance of 300° C. or more. Here, heat resistance refers to the lowest heating temperature at which the tensile strength decreases by 10% after heating for 1 hour. (Example) After melting an aluminum alloy with the composition shown in Table 1 and degassing it, it was transferred to a continuous casting machine consisting of a copper alloy rotary mold with a mold cross-sectional area of 2800 mm 2 and a steel belt at a temperature of 720 to 740. Feeding at ℃, cooling rate 8-12
Casting was performed while controlling the cooling conditions at ℃/second. After the temperature of this cast material reached 520 to 550°C, hot rolling was continued, and after hot rolling to a rough wire of 9.5 mm, it was coiled at a temperature of 70 to 90°C.

【表】 これらの荒引線を表2に示す条件で、時効前後
の冷間加工、時効処理を施し、引張強さ、導電
率、耐熱性を調査した結果は表3に示す通りであ
る。
[Table] These rough wires were subjected to cold working and aging treatment before and after aging under the conditions shown in Table 2, and the tensile strength, electrical conductivity, and heat resistance were investigated. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】 表3より、本発明による試料No.1,2,5〜
12,14,16,18,20,21は、その他の比較例に比
べ、同一成分、同一時効条件のものでは強度、導
電率、耐熱性が優れ、ほぼ硬アルミニウム線と同
等の強度、60%IACS以上の高い導電率および300
℃以上の耐熱性を有することが分る。特に時効処
理における昇温速度の影響が大きい。 (発明の効果) 上述のように構成された本発明の導電用耐熱ア
ルミ合金の製造方法は次のような効果がある。 アルミ合金がZr0.15〜0.35%,Fe0.08〜0.5%,
Si0.04〜0.15%を含有するため、Zrにより耐熱
性、強度を向上し、Fe,Siにより導電率を低下
させずに強度、耐熱性を改善し、この合金を700
℃以上の鋳込温度から5℃/秒以上の冷却速度で
連続鋳造し、ひき続き熱間加工を施すため、鋳造
時強制固溶されたZrが析出することなく固溶さ
れ、その後時効処理時100℃/時以下の昇温速度
で加熱するため、前述のような微細な化合物粒子
の第一次析出を生じ、さらに、300〜480℃の温度
範囲で10〜300時間の時効処理を施すため、前述
のような微細な化合物粒子の第二次析出を生ずる
ので、強度、耐熱性、導電性共に優れたアルミ合
金が得られ、導電率60%IACS以上、硬アルミニ
ウム線と同等の強度を有し、かつ300℃以上の耐
熱性を保有させることができる。 特に導電率の高いものが得られることは、電線
の抵抗損を大幅に減少でき、その効果は大きい。
[Table] From Table 3, samples No. 1, 2, 5 ~ according to the present invention
12, 14, 16, 18, 20, and 21 have superior strength, electrical conductivity, and heat resistance compared to other comparative examples with the same composition and aging conditions, and have approximately the same strength as hard aluminum wire, 60% High conductivity over IACS and 300
It can be seen that it has heat resistance of ℃ or higher. In particular, the temperature increase rate during aging treatment has a large influence. (Effects of the Invention) The method for manufacturing a conductive heat-resistant aluminum alloy of the present invention configured as described above has the following effects. Aluminum alloy contains Zr0.15~0.35%, Fe0.08~0.5%,
Since it contains 0.04 to 0.15% Si, Zr improves heat resistance and strength, and Fe and Si improve strength and heat resistance without reducing conductivity.
Continuous casting is performed at a cooling rate of 5°C/sec or higher from a casting temperature of 10°C or higher, followed by hot working, so the Zr that was forced into solid solution during casting is dissolved without precipitation, and then during aging treatment. Because it is heated at a temperature increase rate of 100℃/hour or less, the primary precipitation of fine compound particles as described above occurs, and further, an aging treatment is performed at a temperature range of 300 to 480℃ for 10 to 300 hours. As mentioned above, secondary precipitation of fine compound particles occurs, resulting in an aluminum alloy with excellent strength, heat resistance, and electrical conductivity, with electrical conductivity of 60% IACS or higher and strength equivalent to hard aluminum wire. It can also have heat resistance of 300°C or higher. In particular, the ability to obtain a wire with high conductivity can significantly reduce the resistance loss of the wire, which has a great effect.

Claims (1)

【特許請求の範囲】 1 Zr0.15〜0.35%,Fe0.08〜0.5%,Si0.04〜
0.15%を含有し、残部Alと通常の不純物とから成
るアルミ合金を、700℃以上の鋳込温度から5
℃/秒以上の冷却速度で連続鋳造し、ひき続き熱
間加工を施した後、100℃/時以下の昇温速度で
加熱し、300〜480℃の温度範囲で10〜300時間の
時効処理を施すことを特徴とする導電用耐熱アル
ミ合金の製造方法。 2 熱間加工が、加工開始温度480℃以上、巻取
温度150℃以下として行なわれる特許請求の範囲
第1項記載の導電用耐熱アルミ合金の製造方法。
[Claims] 1 Zr0.15~0.35%, Fe0.08~0.5%, Si0.04~
An aluminum alloy containing 0.15% Al with the balance being Al and normal impurities is heated at a casting temperature of 700°C or higher for 5
Continuous casting at a cooling rate of ℃/second or more, followed by hot working, followed by heating at a temperature increase rate of 100℃/hour or less, and aging treatment for 10 to 300 hours in a temperature range of 300 to 480℃. A method for manufacturing a heat-resistant aluminum alloy for conductive use, characterized by subjecting it to. 2. The method for producing a conductive heat-resistant aluminum alloy according to claim 1, wherein the hot working is performed at a processing start temperature of 480°C or higher and a coiling temperature of 150°C or lower.
JP3424083A 1983-03-01 1983-03-01 Manufacture of heat resistant aluminum alloy for electric conduction Granted JPS59159946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424083A JPS59159946A (en) 1983-03-01 1983-03-01 Manufacture of heat resistant aluminum alloy for electric conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424083A JPS59159946A (en) 1983-03-01 1983-03-01 Manufacture of heat resistant aluminum alloy for electric conduction

Publications (2)

Publication Number Publication Date
JPS59159946A JPS59159946A (en) 1984-09-10
JPH0125383B2 true JPH0125383B2 (en) 1989-05-17

Family

ID=12408631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424083A Granted JPS59159946A (en) 1983-03-01 1983-03-01 Manufacture of heat resistant aluminum alloy for electric conduction

Country Status (1)

Country Link
JP (1) JPS59159946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299305A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Heat resistant aluminum alloy wire, and method for producing the same
JP2011063884A (en) * 2010-10-21 2011-03-31 Sumitomo Electric Ind Ltd Heat-resistant aluminum alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299305A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Heat resistant aluminum alloy wire, and method for producing the same
JP2011063884A (en) * 2010-10-21 2011-03-31 Sumitomo Electric Ind Ltd Heat-resistant aluminum alloy wire

Also Published As

Publication number Publication date
JPS59159946A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
US4151896A (en) Method of producing machine wire by continuous casting and rolling
JP4279203B2 (en) Aluminum alloy for conductive wire of automobile
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPS6143425B2 (en)
JPS6144149B2 (en)
JPH0125383B2 (en)
JP2944907B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JPH0125822B2 (en)
JPS623228B2 (en)
JPS6123852B2 (en)
JPS5887236A (en) Manufacture of heat resistant aluminum alloy conductor
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0568536B2 (en)
JPH0152468B2 (en)
JPH06240426A (en) Production of high strength copper alloy trolley wire
JPH042664B2 (en)
JPS6143424B2 (en)
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPS5931585B2 (en) Manufacturing method of conductive aluminum alloy
JPS5827949A (en) Electrically conductive heat-resistant aluminum alloy wire
JPS607702B2 (en) Manufacturing method of heat-resistant aluminum alloy for conductive use
JP2932726B2 (en) Manufacturing method of copper alloy wire
JPS6087952A (en) Production of fine cu-cr alloy wire