JP2008254056A - Method for producing base material for bonding wire, and bonding wire - Google Patents
Method for producing base material for bonding wire, and bonding wire Download PDFInfo
- Publication number
- JP2008254056A JP2008254056A JP2007101492A JP2007101492A JP2008254056A JP 2008254056 A JP2008254056 A JP 2008254056A JP 2007101492 A JP2007101492 A JP 2007101492A JP 2007101492 A JP2007101492 A JP 2007101492A JP 2008254056 A JP2008254056 A JP 2008254056A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- continuous casting
- bonding wire
- molten metal
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/741—Apparatus for manufacturing means for bonding, e.g. connectors
- H01L24/745—Apparatus for manufacturing wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/011—Groups of the periodic table
- H01L2924/01105—Rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Continuous Casting (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、半導体素子のチップと外部リードとを電気的に接続するために使用されるボンディングワイヤおよびボンディングワイヤ用母材の製造方法に関する。 The present invention relates to a bonding wire used for electrically connecting a chip of a semiconductor element and an external lead, and a method for manufacturing a bonding wire base material.
半導体素子上の電極とリードとを接続するために用いられるボンディングワイヤを製造するためには、まず、所定組成のインゴットを鋳造し、その後、得られたインゴットをロール加工または直接ダイス加工により、中間線径の線材まで加工する。得られた中間線径の線材をダイヤモンドダイス等により、例えば、15μm、30μmなどの所定線径まで縮径伸線加工し、さらに、最終焼鈍により加工歪みを除去して、ボンディングワイヤとする。 In order to manufacture a bonding wire used to connect an electrode on a semiconductor element and a lead, first, an ingot of a predetermined composition is cast, and then the obtained ingot is subjected to intermediate processing by roll processing or direct die processing. Processing up to wire diameter. The obtained wire having an intermediate wire diameter is subjected to wire drawing with a diamond die or the like to a predetermined wire diameter of, for example, 15 μm or 30 μm, and further, the processing strain is removed by final annealing to obtain a bonding wire.
ボンディングワイヤ用インゴットの製造方法としては、主成分となる元素、例えばAuと、添加元素とを、熔湯を収容する容器、例えば坩堝に装入し、該坩堝を、加熱装置が形成する加熱空間に配置し、約1200〜1250℃に加熱した後、該坩堝が下部から上部へ順に徐冷されるように、該坩堝を前記加熱空間から下方へ引き抜き、坩堝中の熔湯を凝固させる方法がある。 As a method for manufacturing an ingot for a bonding wire, an element that is a main component, for example, Au, and an additive element are charged into a container that contains molten metal, for example, a crucible, and the crucible is heated by a heating device. And the method of drawing the crucible downward from the heating space and solidifying the molten metal in the crucible so that the crucible is gradually cooled from the lower part to the upper part in order. is there.
図1は、かかるインゴットを鋳造する鋳造炉を示した縦断面図である。 FIG. 1 is a longitudinal sectional view showing a casting furnace for casting such an ingot.
図示のように、坩堝(1)を、加熱装置(2)が形成する加熱空間から下方へ引き抜くことにより、坩堝(1)が下部から上部へ順に徐冷され、坩堝(1)内の熔湯(3)も、下面から上面にかけて凝固する。これにより、引け巣(空洞)のないインゴットが鋳造される。この場合、引き抜き速度は10〜40mm/minである。 As shown in the drawing, the crucible (1) is gradually cooled from the lower part to the upper part by pulling the crucible (1) downward from the heating space formed by the heating device (2), and the molten metal in the crucible (1). (3) also solidifies from the lower surface to the upper surface. Thereby, the ingot without a shrinkage nest (cavity) is cast. In this case, the drawing speed is 10 to 40 mm / min.
得られたインゴットを前述の通り、中間線径の線材を経て、ボンディングワイヤまで加工する。 As described above, the obtained ingot is processed to the bonding wire through the intermediate wire diameter.
また、原料を熔解炉に装入し、約1200〜1250℃に加熱した後、該熔解炉の下部から、熔湯を水冷式ダイスを通して引き抜き、凝固させる工程を含む連続鋳造法がある。 Further, there is a continuous casting method including a step of charging a raw material into a melting furnace and heating it to about 1200 to 1250 ° C., and then drawing the molten metal from a lower part of the melting furnace through a water-cooled die and solidifying it.
図2は、連続鋳造炉を示した縦断面図である。連続鋳造法では、図示したように、加熱装置(5)内に設置された炉(4)の中に熔湯(6)を流し込み、水冷ジャケットにより冷却されたダイス(7)に、熔湯(6)を通過させて、凝固することにより、ダイス線径に応じた線材(9)が鋳造される。この場合、引き抜き速度は10〜300mm/minである。 FIG. 2 is a longitudinal sectional view showing a continuous casting furnace. In the continuous casting method, as shown in the figure, molten metal (6) is poured into a furnace (4) installed in a heating device (5), and the molten metal (6) is poured into a die (7) cooled by a water cooling jacket. By passing 6) and solidifying, a wire rod (9) corresponding to the die wire diameter is cast. In this case, the drawing speed is 10 to 300 mm / min.
その後、得られた線材を、所定線径まで縮径伸線加工し、さらに、最終焼鈍により加工歪みを除去して、ボンディングワイヤとする。 Thereafter, the obtained wire is drawn to a predetermined wire diameter, and further, the processing strain is removed by final annealing to obtain a bonding wire.
得られたボンディングワイヤは、例えば図3に斜視図を示したように、ワイヤボンディングを行って、半導体素子を得る。 The obtained bonding wire is subjected to wire bonding, for example, as shown in a perspective view in FIG. 3, to obtain a semiconductor element.
近年、半導体素子ならびにパッケージサイズの小型縮小化に対応させるため、ワイヤボンディングして得られるワイヤループ(10)において、ワイヤ間隔(ボンディングピッチ)が狭まり、また、ワイヤループ(10)のループ長も、4mmや5mmのように長くなってきている。そのため、角度にして極めて小さな曲がりやリーニング不良があると、隣り合うワイヤループ(10)同士が接触しやすくなり、ショート不良が多発するという問題がある。 In recent years, in order to cope with the reduction in size and size of semiconductor elements and packages, in the wire loop (10) obtained by wire bonding, the wire interval (bonding pitch) is narrowed, and the loop length of the wire loop (10) is also It is getting longer like 4mm and 5mm. For this reason, if there is an extremely small bend or leaning failure in an angle, adjacent wire loops (10) are likely to come into contact with each other, resulting in frequent short-circuit failures.
具体的には、リーニング不良とは、半導体素子のパッドに接着したボール(12)のすぐ上の部分であるボール直上部において、ワイヤループ(10)が伸長する方向に対して横に傾斜し、傾斜したワイヤループ(10)の上部が、隣接するワイヤループ(10)の上部に近接している状態をいう。リーニング不良は、次工程の樹脂封止にて電気ショートの危険性が増大するため、リーニング不良の発生したパッケージは、不良品として処理され、製品歩留まりを大きく低下させる要因となっている。 Specifically, the leaning failure is inclined laterally with respect to the direction in which the wire loop (10) extends, immediately above the ball, which is a portion immediately above the ball (12) bonded to the pad of the semiconductor element. The state where the upper part of the inclined wire loop (10) is close to the upper part of the adjacent wire loop (10) is said. Leaning defects increase the risk of electrical shorts in resin sealing in the next process, so that a package in which a leaning defect has occurred is treated as a defective product, which is a factor that greatly reduces the product yield.
さらに、半導体素子のパッドに接着したボール(12)の真円度が低くなる偏芯ボール不良の問題もある。 Furthermore, there is also a problem of eccentric ball failure in which the roundness of the ball (12) bonded to the pad of the semiconductor element is lowered.
具体的には、偏芯ボール不良は、長辺が規定寸法より長くなることを意味するため、隣接ボールとの接触の危険性が高くなり、ひいては電気ショートの原因となるため、同様に、偏芯ボール不良の発生したパッケージは、不良品として処理され、製品歩留まりを大きく低下させる要因となっている。 Specifically, the eccentric ball defect means that the long side becomes longer than the specified dimension, so that the risk of contact with an adjacent ball is increased, which in turn causes an electrical short circuit. A package in which a core ball defect has occurred is processed as a defective product, which is a factor that greatly reduces the product yield.
リーニング不良および偏芯ボール不良を低減する方法の1つとして、材料の均質化が挙げられる。しかし、ボンディングワイヤを製造する上で重要とされる添加元素の種類は多岐にわたり、また、添加総量もますます多くなる傾向にあるため、均質化を確保することが難しいという問題がある。 One method of reducing leaning defects and eccentric ball defects is to homogenize materials. However, since there are a wide variety of additive elements that are important in manufacturing a bonding wire and the total amount of additives tends to increase, there is a problem that it is difficult to ensure homogenization.
特に、ボンディングワイヤにおいては、PdやPt等のAuに固溶する元素は、他の固溶しない元素と比較して高濃度で添加できるため強度向上に有効であったり、半導体素子上のパッドとの接合部の信頼性が向上するために添加されるが、従来の製法により得られたPdやPtが添加されたボンディングワイヤでは、それらの融点がAuより高いために均質に分布されることが難しいと考えられ、これがリーニング不良および偏芯ボール不良が頻繁にみられる原因と考えた。
本発明は、添加元素を均一に分散させることが可能なボンディングワイヤ用インゴットまたは線材の製造方法を提供し、かかる添加元素が均一に添加されたインゴットまたは線材を母材とすることにより、狭いボンディングピッチであっても、ワイヤボンディング時におけるリーニング不良および偏芯ボール不良の発生を抑制できるボンディングワイヤを提供することを目的とする。 The present invention provides a method for manufacturing an ingot or wire rod for bonding wire capable of uniformly dispersing an additive element, and by using the ingot or wire rod to which the additive element is uniformly added as a base material, narrow bonding is achieved. It is an object of the present invention to provide a bonding wire that can suppress the occurrence of leaning defects and eccentric ball defects during wire bonding even with a pitch.
本発明に係るボンディングワイヤ用インゴットの製造方法は、Auと、Auより300℃以上融点の高い添加元素を0.1質量%以上添加するボンディングワイヤにおいて、Auと添加元素でAuより融点が300℃以上高い元素を坩堝に装入し、該坩堝を加熱空間に配置し、坩堝中の熔湯を1350℃以上、1500℃以下に加熱した後、該坩堝が下部から上部へ順に徐冷されるように、前記加熱空間から下方へ引き抜き、熔湯を凝固させてインゴットを作製後、連続鋳造炉に装入し、該連続鋳造炉を加熱し、連続鋳造炉中の熔湯を1350℃以上、1500℃以下とし、10〜15分間、熔湯の温度を保持した後、該連続鋳造炉の下部から、熔湯を水冷式ダイスを通して引き抜き、凝固させることを特徴とする。 The method for manufacturing an ingot for a bonding wire according to the present invention includes a bonding wire in which 0.1% by mass or more of Au and an additive element having a melting point of 300 ° C. or higher than Au are added. The above elements are charged in the crucible, the crucible is placed in the heating space, and the molten metal in the crucible is heated to 1350 ° C. or higher and 1500 ° C. or lower, and then the crucible is gradually cooled from the bottom to the top. Then, the molten metal is drawn downward from the heating space, and the molten metal is solidified to produce an ingot, which is then charged into a continuous casting furnace, the continuous casting furnace is heated, and the molten metal in the continuous casting furnace is heated to 1350 ° C. or more, 1500 After the temperature of the molten metal is maintained at 10 ° C. or lower for 10 to 15 minutes, the molten metal is drawn out from the lower part of the continuous casting furnace through a water-cooled die and solidified.
なお、Auよりも300℃以上融点の高い元素以外の所定の添加元素をさらに添加させる場合には、前記ボンディングワイヤ用インゴットとともに、これらの添加元素を、連続鋳造炉に装入する。 In addition, when further adding a predetermined additive element other than an element having a melting point of 300 ° C. or higher than Au, these additive elements are charged into a continuous casting furnace together with the bonding wire ingot.
本発明に係るボンディングワイヤは、前述の製造方法のいずれかを用いて得られたインゴットまたは線材を所定の線径まで加工することにより得られ、少なくともPdもしくはPtを含有し、PdもしくはPtの合計含有量が0.1〜2.0質量%であることを特徴とする。 The bonding wire according to the present invention is obtained by processing an ingot or wire obtained using any of the above-described manufacturing methods to a predetermined wire diameter, contains at least Pd or Pt, and is a total of Pd or Pt. Content is 0.1-2.0 mass%, It is characterized by the above-mentioned.
本発明により、ボンディングワイヤ用インゴットまたは線材の鋳造過程において、添加元素の均一な分散が図られ、もって、リーニング不良および偏芯ボール不良の発生が抑制されたボンディングワイヤが提供され、半導体素子のさらなる小型化、高密度化を達成することができる。 According to the present invention, in the process of casting a bonding wire ingot or wire, the additive element is uniformly dispersed, thereby providing a bonding wire in which the occurrence of leaning defects and eccentric ball defects is suppressed. Miniaturization and high density can be achieved.
ボンディングワイヤに求められる種々の特性を改良する目的で、ボンディングワイヤには、主成分となるAuに、種々の添加元素が添加され、合金としている。これらの添加元素としては、強度や信頼性の向上を目的として、PdやPtが0.1〜2.0質量%程度添加されることもある。 For the purpose of improving various characteristics required for bonding wires, various additive elements are added to Au as a main component for bonding wires to form alloys. As these additive elements, Pd and Pt may be added in an amount of about 0.1 to 2.0% by mass for the purpose of improving strength and reliability.
本発明者は、ボンディングワイヤの主成分となる金属に、添加元素であるPd等を0.1〜2.0質量%添加した場合、熔解温度が低いとPd等の偏析が発生し、かかる偏析によりPd等の均一な分散が損なわれ、リーニング不良および偏芯ボール不良といった問題が発生しうると想定した。 When the present inventors add 0.1 to 2.0% by mass of an additive element such as Pd to the metal as the main component of the bonding wire, the segregation of Pd occurs when the melting temperature is low. As a result, it was assumed that uniform dispersion of Pd and the like could be impaired and problems such as leaning failure and eccentric ball failure could occur.
かかる知見に基づき、種々実験を繰り返した結果、Pd等Auより高融点元素を添加したAuを、1350℃以上、1500℃以下で熔解させ、Pd等Auより高融点な元素をAu中に均一に分散させ、さらに、該インゴットを、1350℃以上、1500℃以下に設定した連続鋳造炉内で再熔融させる手段を採ることにより、上記リーニング不良及び偏芯ボール不良が減少したことから、Pd等Auより高融点な元素をAu中により均一に分散したと考えられるボンディングワイヤ用線材を適切な作業方法により製造された連続鋳造法により得られるとの知見を得た。 As a result of repeating various experiments based on such knowledge, Au added with a high melting point element from Au such as Pd was melted at 1350 ° C. or more and 1500 ° C. or less, and an element having a higher melting point than Au such as Pd was uniformly distributed in Au. Further, by adopting means for dispersing and re-melting the ingot in a continuous casting furnace set to 1350 ° C. or higher and 1500 ° C. or lower, the above-mentioned leaning defects and eccentric ball defects were reduced. The inventors have obtained knowledge that a wire for bonding wire, which is considered to have a higher melting point element dispersed more uniformly in Au, can be obtained by a continuous casting method manufactured by an appropriate working method.
炉内温度が1200℃程度の条件下で、Pdを0.5〜1.5質量%含むボンディングワイヤ用インゴットまたは線材を鋳造する場合、Pdの融点(1550℃付近)との関係で、完全に熔解せずに、PdがクラスターとなってAuバルク中に残存し、得られるインゴットまたは線材において、Pdの均一な分散が図られず、偏析している場合があると考えられる。 When casting a bonding wire ingot or wire containing 0.5 to 1.5% by mass of Pd under the condition where the furnace temperature is about 1200 ° C, it is completely related to the melting point of Pd (around 1550 ° C). It is considered that Pd is clustered and remains in the Au bulk without melting, and in the obtained ingot or wire rod, Pd is not uniformly dispersed and segregated.
このような現象は、微小領域に限定されるため、EPMA分析等により証明されているわけではないが、このような微小偏析が残存していることが原因となって、その後、縮径伸線加工および焼鈍を実施して、得られる最終線径のボンディングワイヤにおいて、リーニング不良や偏芯ボール不良が引き起こされているものと考えている。 Since such a phenomenon is limited to a minute region, it has not been proved by EPMA analysis or the like. It is considered that in the bonding wire having the final wire diameter obtained by processing and annealing, a leaning defect and an eccentric ball defect are caused.
そこで、本発明では、AuとPd等Auより高融点元素とを熔融するに際して、熔湯を1350℃以上、1500℃以下に加熱することとしている。熔湯が1350℃未満では、Pd等Auより高融点元素の偏析が大きくなってしまう。一方、熔湯が1500℃を超えると、製造コストも増大し、かつ、添加元素の濃度が製造ごとにばらついてしまう欠点がある
なお、インゴットの鋳造における加熱保持後の操業は、従来と同様に、坩堝を、10〜40mm/minの引き抜き速度で、坩堝の上部が加熱空間に残る位置まで、加熱空間から下方へ引き抜き、坩堝内の熔湯を、下面から上面にかけて凝固させ、その後、加熱空間における加熱を停止し、熔湯の上部も凝固させる。これにより、引け巣のないインゴットを鋳造する。引け巣のないインゴットを製造するのは、引け巣があるとインゴットから分離したスラグが引け巣に落ち込んで、次の連続鋳造で熔湯内に取り込まれる可能性があるためであり、凝固時の引き抜き速度をできるだけ遅くして引け巣発生を防止する必要がある。一方、凝固時の引き抜き速度が遅すぎると、凝固過程で濃度勾配が生じ、添加元素が一方に偏析する可能性があるため避けなければならない。以上を加味して凝固時の引き抜き速度は10〜40mm/minが適している。本インゴット作製では、Auより高融点元素を添加しAu中に固溶、分散させることが目的であるが、高融点元素がAu中に固溶するためにはある程度の時間がかかるため、加熱温度での保持時間も設定する必要がある。ただし、固溶するまでの時間は、添加元素の種類およびその添加量、強制攪拌の有無により変化するため、それらに応じて適切に保持時間を設定しなければならないが、Au中への分散を考慮すると、少なくとも5分以上は必要である。攪拌は保持時間を短くするには有効であるため、実施してもかまわない。
Therefore, in the present invention, when melting a high melting point element such as Au and Pd, the molten metal is heated to 1350 ° C. or higher and 1500 ° C. or lower. If the molten metal is less than 1350 ° C., segregation of high melting point elements becomes larger than Au such as Pd. On the other hand, if the molten metal exceeds 1500 ° C., the manufacturing cost also increases, and the concentration of the additive element varies from production to production. The crucible is drawn downward from the heating space to a position where the upper part of the crucible remains in the heating space at a drawing speed of 10 to 40 mm / min, and the molten metal in the crucible is solidified from the lower surface to the upper surface, and then the heating space The heating in is stopped and the upper part of the molten metal is solidified. Thereby, an ingot without a shrinkage nest is cast. Ingots without shrinkage are produced because there is a possibility that slag separated from the ingot may fall into the shrinkage and be taken into the molten metal in the next continuous casting. It is necessary to make the pulling speed as slow as possible to prevent shrinkage. On the other hand, if the drawing speed at the time of solidification is too slow, a concentration gradient is generated in the solidification process, and the added element may be segregated to one side, which must be avoided. In consideration of the above, the pulling speed during solidification is suitably 10 to 40 mm / min. In this ingot production, the object is to add a high melting point element from Au and dissolve and disperse it in Au. However, it takes some time for the high melting point element to dissolve in Au. It is also necessary to set the retention time at. However, since the time until solid solution varies depending on the type and amount of the additive element and the presence / absence of forced stirring, the retention time must be appropriately set according to them. Considering, at least 5 minutes or more is necessary. Stirring is effective for shortening the holding time, and may be carried out.
また、本発明では、Pd等高融点元素が添加されたインゴットを事前に鋳造しておき、該インゴットを再熔融することとしている。このように段階的に溶解を施すことにより、Pd等高融点元素のクラスターの偏析をさらに回避することができると考えられる。 In the present invention, an ingot to which a high melting point element such as Pd is added is cast in advance, and the ingot is remelted. It is considered that segregation of clusters of refractory elements such as Pd can be further avoided by performing dissolution stepwise in this way.
特に、本発明では、前記インゴットを、連続鋳造炉にて再熔融させることにより、AuにPd等高融点元素がより均一に分散しているボンディングワイヤ用線材を得ている。再熔融を連続鋳造炉にて行うのは、連続鋳造は高冷却速度で凝固させるので、添加元素の均一性が向上すると考えられるためである。 In particular, in the present invention, the wire for bonding wire in which the high melting point element such as Pd is more uniformly dispersed in Au is obtained by re-melting the ingot in a continuous casting furnace. Remelting is performed in a continuous casting furnace because continuous casting is solidified at a high cooling rate, and it is considered that the uniformity of the additive element is improved.
なお、連続鋳造法の操業についても、加熱温度を除き、従来と同様である。すなわち、10〜15分間、熔湯の温度を上記温度に保持した後、連続鋳造炉の下部から、熔湯を水冷式ダイスを通して引き抜くことで、凝固させる。 The operation of the continuous casting method is the same as the conventional one except for the heating temperature. That is, after maintaining the temperature of the molten metal at the above temperature for 10 to 15 minutes, the molten metal is solidified by being pulled out from the lower part of the continuous casting furnace through a water-cooled die.
ボンディングワイヤには、Pd等高融点元素以外にも所定の添加元素が、ボンディングワイヤの種々の特性を向上させるために、Auに添加される。これらのPd等高融点元素以外の所定の添加元素を添加する場合には、前記インゴットを連続鋳造炉に装入する際に、同時に装入する。これらのPd等高融点元素以外の所定の添加元素は、その融点がPd等程には高くないため、炉内温度を1350℃以上とすれば、一度の熔融により、Au中に均一に分散させることが可能であるからである。また、インゴットの鋳造工程においてこれらのPd等高融点元素以外の所定の添加元素を添加すると、比較的高い熔融温度のために、これらの添加元素が蒸散するためである。 In addition to the high melting point element such as Pd, a predetermined additive element is added to the bonding wire to Au in order to improve various characteristics of the bonding wire. When adding a predetermined additive element other than these high melting point elements such as Pd, the ingot is charged at the same time when it is charged into the continuous casting furnace. Predetermined additional elements other than these high melting point elements such as Pd have a melting point that is not as high as Pd, so if the furnace temperature is 1350 ° C. or higher, they are uniformly dispersed in Au by melting once. Because it is possible. Further, when a predetermined additive element other than these high melting point elements such as Pd is added in the casting process of the ingot, these additional elements evaporate due to a relatively high melting temperature.
さらに、前述のPd、Pt等高融点元素以外にも、ボンディングワイヤの諸特性を発揮させるために、Be(融点:1287℃)、Ca(融点:843℃)、希土類元素等が添加される。なお、これらの含有量は、全体で、0.01質量%未満が主流である。 Further, Be (melting point: 1287 ° C.), Ca (melting point: 843 ° C.), rare earth elements, and the like are added in addition to the above-described high melting point elements such as Pd and Pt. In addition, as for these content, less than 0.01 mass% is mainstream as a whole.
以上の製造方法により得られたインゴットまたは線材を所定の線径まで加工することにより、少なくとも添加元素としてPdやPtを含み、PdやPtの含有量が0.1〜2.0質量%であるAuボンディングワイヤにおいて、PdやPtが極めて均一に分散されているAuボンディングワイヤを得ることができる。本発明に係るAuボンディングワイヤを用いて、ボンディングにより得られるワイヤループでは、リーニング不良や偏芯ボール不良の発生が抑制される。 By processing the ingot or wire obtained by the above manufacturing method to a predetermined wire diameter, it contains at least Pd and Pt as additive elements, and the content of Pd and Pt is 0.1 to 2.0% by mass. In the Au bonding wire, an Au bonding wire in which Pd and Pt are extremely uniformly dispersed can be obtained. In the wire loop obtained by bonding using the Au bonding wire according to the present invention, the occurrence of leaning defects and eccentric ball defects is suppressed.
(実施例1)
図1に縦断面図を示す坩堝昇降機能を有する鋳造炉を用い、純度99.999%(5N)まで精製したAuを、内径25mmφ、長さ300mmの坩堝(1)に装入した。坩堝(1)を鋳造炉内にて1400℃まで加熱し、Auを熔解し、最終的に得られるボンディングワイヤにおいて0.8質量%となるようにPdを添加した。なお、実際のPdの添加量は、操業条件に応じて適宜決定される。その後、10分間、1400℃で保持した後、攪拌棒を用いて、熔解したPdを坩堝底面に押し込むようにして、均一に分散させ、2分間、攪拌した。その後、1分間、保持して、自己拡散させた後、坩堝を鋳造炉の加熱部の下方から、上部100mmが加熱部に残るように、20mm/minの引き抜き速度で、引き抜き、その後、加熱を止めることにより、熔湯を下方から凝固させた。鋳造で得られたインゴットは、25mmφであった。
Example 1
1 was charged into a crucible (1) having an inner diameter of 25 mmφ and a length of 300 mm using a casting furnace having a crucible raising / lowering function shown in FIG. 1 and having a purity of 99.999% (5N). The crucible (1) was heated to 1400 ° C. in a casting furnace, Au was melted, and Pd was added so that the final bonding wire was 0.8% by mass. The actual addition amount of Pd is appropriately determined according to the operating conditions. Then, after maintaining at 1400 ° C. for 10 minutes, the molten Pd was pushed into the bottom of the crucible using a stir bar, and the mixture was uniformly dispersed and stirred for 2 minutes. After that, after holding for 1 minute and self-diffusion, the crucible is drawn from the lower part of the heating part of the casting furnace at a drawing speed of 20 mm / min so that the upper part 100 mm remains in the heating part, and then heated. By stopping, the molten metal was solidified from below. The ingot obtained by casting was 25 mmφ.
その後、得られたインゴットと、Caとを、図2に縦断面図を示した連続鋳造炉内に装入した。なお、最終的に得られるボンディングワイヤにおいて、Caの添加量が、0.002質量%となるように決定された量である。熔解温度は、1400℃に設定し、インゴットの再熔融を確認後、10分間、設定温度にて保持することで、添加元素を自己拡散させた。 Thereafter, the obtained ingot and Ca were charged into a continuous casting furnace whose longitudinal sectional view is shown in FIG. In addition, in the bonding wire finally obtained, the added amount of Ca is an amount determined to be 0.002% by mass. The melting temperature was set to 1400 ° C., and after confirming re-melting of the ingot, the added element was self-diffused by holding at the set temperature for 10 minutes.
その状態から、炉の底部にあり、周囲に水冷ジャケットが配されている内径8mmφのダイスを通じて、中間線径(ダイスの内径と同様)の線材を、100mm/minの引き抜き速度で、引き出した。該線材に対して、縮径伸線加工および途中焼鈍を実施して、最終線径を25μmφとした後、常温での伸び率が4〜6%となるように、最終焼鈍(連続焼鈍)を施し、ボンディングワイヤを得た。 From that state, a wire having an intermediate wire diameter (similar to the inner diameter of the die) was drawn at a drawing speed of 100 mm / min through a die having an inner diameter of 8 mmφ at the bottom of the furnace and provided with a water-cooled jacket around it. The wire rod is subjected to reduced diameter drawing and intermediate annealing to make the final wire diameter 25 μmφ, and then final annealing (continuous annealing) so that the elongation at room temperature is 4 to 6%. To obtain a bonding wire.
得られたボンディングワイヤについて、内径30μmφのキャピラリーを用いて、ワイヤ間隔90μm、ループ長5mm、ループ高さ500μmにて、7200本のワイヤボンディングを行った後、得られたワイヤループについて、金属顕微鏡(オリンパス株式会社製)で観察を行い、隣接するワイヤループ同士の上部の間隔が40μm以下の場合をリーニング不良と判断した。また、パッド側接合部のボールの長辺と短辺を測定し長辺と短辺の差が5μm以上の場合を偏芯ボール不良と判断した。評価結果を表1に示す。 The obtained bonding wire was subjected to 7200 wire bonding using a capillary having an inner diameter of 30 μmφ at a wire interval of 90 μm, a loop length of 5 mm, and a loop height of 500 μm. (Olympus Co., Ltd.) was observed, and the case where the distance between the upper portions of adjacent wire loops was 40 μm or less was judged as a leaning defect. Further, the long side and the short side of the ball at the pad-side bonded portion were measured, and the case where the difference between the long side and the short side was 5 μm or more was judged as an eccentric ball defect. The evaluation results are shown in Table 1.
(実施例2)
Pdの添加を、最終的に得られるボンディングワイヤにおいて0.5質量%となるようにしたこと、Caの添加を、CaおよびBeの添加とし、最終的に得られるボンディングワイヤにおいて、Caの添加量が0.0005質量%となり、Beの添加量が0.001質量%となるようにしたこと以外は、実施例1と同様の製造方法で、ボンディングワイヤを作製し、同様の評価を行った。
(Example 2)
The addition of Pd was 0.5 mass% in the finally obtained bonding wire, the addition of Ca was the addition of Ca and Be, and the added amount of Ca in the finally obtained bonding wire A bonding wire was produced by the same manufacturing method as in Example 1 except that the amount of Be was 0.0005 mass% and the addition amount of Be was 0.001 mass%, and the same evaluation was performed.
(比較例1)
Auに、最終的に得られるボンディングワイヤにおける含有量がそれぞれ、Pd0.8質量%、Ca0.002質量%となるように添加元素を、連続鋳造炉内に同時に装入した。熔解温度を1250℃に設定し、装入物の熔解を確認後、10分間、設定温度にて保持することで、添加元素をAu中に自己拡散させた。
(Comparative Example 1)
The additive elements were simultaneously charged into the continuous casting furnace so that the final content of the bonding wire in Au was 0.8 mass% Pd and 0.002 mass% Ca, respectively. The melting temperature was set to 1250 ° C., and after confirming the melting of the charge, the additive element was self-diffused into Au by holding at the set temperature for 10 minutes.
その状態から、100mm/minの引き抜き速度で、中間線径の線材を引き出し、得られた線材に、縮径伸線加工および途中焼鈍を実施して、最終線径を25μmφとした後、常温での伸び率が4〜6%となるように、最終焼鈍(連続焼鈍)を施し、ボンディングワイヤを得た。 From that state, a wire with an intermediate wire diameter was drawn out at a drawing speed of 100 mm / min, and the obtained wire was subjected to reduced diameter drawing and intermediate annealing to a final wire diameter of 25 μmφ, and then at room temperature. Final annealing (continuous annealing) was performed so that the elongation percentage of the film became 4 to 6%, and a bonding wire was obtained.
得られたボンディングワイヤについて、実施例1と同様に評価を行った。評価結果を表1に示す。 The obtained bonding wire was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
表1に見られるように、本発明の実施例1、実施例2では、比較例1と比べて、リーニング不良数が30%以上減少し、本発明はリーニング不良の抑制に効果のあることが分かる。 As can be seen from Table 1, in Example 1 and Example 2 of the present invention, the number of leaning defects is reduced by 30% or more compared to Comparative Example 1, and the present invention may be effective in suppressing leaning defects. I understand.
さらに、偏芯ボール不良が、比較例1では不連続に多発する傾向が見られたが、実施例1、2では、一切、見受けられなかった。 Further, the eccentric ball defects tended to occur discontinuously and frequently in Comparative Example 1, but were not observed at all in Examples 1 and 2.
1 坩堝
2、5 加熱装置
3、6 熔湯
4 連続鋳造炉用坩堝
7 水冷式ダイス
8 スターティングロッド
9 ボンディングワイヤ
10 ワイヤループ
11 基板
12 ボール
1 crucible 2, 5
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007101492A JP4941065B2 (en) | 2007-04-09 | 2007-04-09 | Manufacturing method of bonding wire base material and bonding wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007101492A JP4941065B2 (en) | 2007-04-09 | 2007-04-09 | Manufacturing method of bonding wire base material and bonding wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008254056A true JP2008254056A (en) | 2008-10-23 |
JP4941065B2 JP4941065B2 (en) | 2012-05-30 |
Family
ID=39978178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007101492A Expired - Fee Related JP4941065B2 (en) | 2007-04-09 | 2007-04-09 | Manufacturing method of bonding wire base material and bonding wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4941065B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110883329A (en) * | 2019-11-18 | 2020-03-17 | 安徽省宁国市宁沪钢球有限公司 | Cooling and cleaning device for casting grinding balls |
KR102674057B1 (en) * | 2022-12-14 | 2024-06-11 | 엘티메탈 주식회사 | Mold for casting and manufacturing method of boding wire using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711356A (en) * | 1993-06-28 | 1995-01-13 | Tanaka Denshi Kogyo Kk | Production of ingot of au wire for bonding |
JPH0910898A (en) * | 1995-06-23 | 1997-01-14 | Tanaka Denshi Kogyo Kk | Production of metallic thin wire |
JP2003023030A (en) * | 2001-07-10 | 2003-01-24 | Tanaka Electronics Ind Co Ltd | Bonding wire and manufacturing method therefor |
JP2003023029A (en) * | 2001-07-09 | 2003-01-24 | Tanaka Electronics Ind Co Ltd | Gold wire for connecting semiconductor element and manufacturing method therefor |
JP2003059964A (en) * | 2001-08-10 | 2003-02-28 | Tanaka Electronics Ind Co Ltd | Bonding wire and manufacturing method therefor |
-
2007
- 2007-04-09 JP JP2007101492A patent/JP4941065B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711356A (en) * | 1993-06-28 | 1995-01-13 | Tanaka Denshi Kogyo Kk | Production of ingot of au wire for bonding |
JPH0910898A (en) * | 1995-06-23 | 1997-01-14 | Tanaka Denshi Kogyo Kk | Production of metallic thin wire |
JP2003023029A (en) * | 2001-07-09 | 2003-01-24 | Tanaka Electronics Ind Co Ltd | Gold wire for connecting semiconductor element and manufacturing method therefor |
JP2003023030A (en) * | 2001-07-10 | 2003-01-24 | Tanaka Electronics Ind Co Ltd | Bonding wire and manufacturing method therefor |
JP2003059964A (en) * | 2001-08-10 | 2003-02-28 | Tanaka Electronics Ind Co Ltd | Bonding wire and manufacturing method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110883329A (en) * | 2019-11-18 | 2020-03-17 | 安徽省宁国市宁沪钢球有限公司 | Cooling and cleaning device for casting grinding balls |
KR102674057B1 (en) * | 2022-12-14 | 2024-06-11 | 엘티메탈 주식회사 | Mold for casting and manufacturing method of boding wire using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4941065B2 (en) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201929994A (en) | Solder alloy | |
US10242762B2 (en) | Copper alloy wire rod and method for manufacturing copper alloy wire rod | |
JP2017002337A (en) | High flexural fatigue resistant copper-based alloy wire | |
JP3367544B2 (en) | Gold alloy fine wire for bonding and method of manufacturing the same | |
JP4941065B2 (en) | Manufacturing method of bonding wire base material and bonding wire | |
US10421161B2 (en) | High quality, void and inclusion free alloy wire | |
JP2873770B2 (en) | Palladium fine wire for wire bonding of semiconductor devices | |
JP3946966B2 (en) | Method for producing Sn-based alloy containing Sn-Ti compound | |
JP2010192497A (en) | Gold alloy thin wire for bonding and method of manufacturing the same | |
JP5793278B2 (en) | Method for producing Cr-containing copper alloy wire | |
JP2013071155A (en) | Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot | |
JP2005138113A (en) | Method for casting ingot for bonding wire and bonding wire produced by using the method | |
JP6493047B2 (en) | Copper alloy material and method for producing the same | |
CN104752235A (en) | Copper palladium silver alloy high-precision superfine bonding wire manufacturing method | |
JP2000061585A (en) | Method for casting solder material | |
JP2011012300A (en) | Copper alloy and method for producing copper alloy | |
JP2013231222A (en) | Method for producing alloy ingot, alloy ingot and melting furnace | |
JP5607459B2 (en) | Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom | |
JP4147088B2 (en) | Copper alloy having excellent strength stability and method for producing the same | |
JP6361194B2 (en) | Copper ingot, copper wire, and method for producing copper ingot | |
KR100273702B1 (en) | Process for preparing gold alloy wire for bonding | |
JP2007270269A (en) | Copper alloy having excellent hot workability and its production method | |
JP5157889B2 (en) | Copper alloy ingot manufacturing method and active element addition method | |
JP2866510B2 (en) | Melting casting method of copper alloy containing iron | |
JP2006156129A (en) | Method for manufacturing copper or copper alloy extrafine wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |