JP2006156129A - Method for manufacturing copper or copper alloy extrafine wire - Google Patents

Method for manufacturing copper or copper alloy extrafine wire Download PDF

Info

Publication number
JP2006156129A
JP2006156129A JP2004345015A JP2004345015A JP2006156129A JP 2006156129 A JP2006156129 A JP 2006156129A JP 2004345015 A JP2004345015 A JP 2004345015A JP 2004345015 A JP2004345015 A JP 2004345015A JP 2006156129 A JP2006156129 A JP 2006156129A
Authority
JP
Japan
Prior art keywords
copper
wire
copper alloy
raw material
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345015A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Yamada
剛志 山田
Kunihiro Naoe
邦浩 直江
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004345015A priority Critical patent/JP2006156129A/en
Publication of JP2006156129A publication Critical patent/JP2006156129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper or copper alloy extrafine wire which can not be broken easily while being drawn to a diameter of less than 30 μm. <P>SOLUTION: In case that a copper alloy extrafine wire having a diameter of less than 30 μm is manufactured from a base material, having a length of T (mm), of a copper alloy: at first, an inside of a reaction tube 1 is exhausted to a pressure of approximately 1×10<SP>-1</SP>Pa by a rotary pump; a raw material 5 is melted by heating whole of a crucible 3, filled with prescribed amount of copper wire and silver wire, to a temperature of 1,200°C by a heating element 4; and foreign matters like SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>or the like, included in the raw material 5, is floated by keeping a melted raw material being heated at a temperature of 1,200°C and for a period more than (T/15) hours. Thereafter, the heating element 4 is transferred upward along the reaction tube 1 with a speed of 5 to 50 mm/min, and a base material of the copper alloy is obtained by coagulating the melted material in one direction. After an upper part, containing the foreign matters, of the base material of the copper alloy is removed, a copper alloy fine wire is obtained by drawing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、携帯電話等の小型電子機器の極細同軸ケーブルに使用される直径が30μm未満の銅又は銅合金極細線の製造方法に関する。   The present invention relates to a method for producing a copper or copper alloy fine wire having a diameter of less than 30 μm used for a fine coaxial cable of a small electronic device such as a mobile phone.

近時、電子機器の小型化及び軽量化に伴い、電気的特性が優れた極細同軸ケーブルの需要が高まっている。現在、携帯電話等の小型電子機器には、直径が25乃至30μmの素線を使用した極細同軸ケーブルが一般的に使用されているが、このような電子機器は更に小型化が進行しており、同軸ケーブルにも細線化が求められている。   Recently, with the miniaturization and weight reduction of electronic devices, the demand for ultra-fine coaxial cables with excellent electrical characteristics is increasing. At present, micro coaxial cables using strands having a diameter of 25 to 30 μm are generally used for small electronic devices such as mobile phones. However, such electronic devices are being further miniaturized. Coaxial cables are also required to be thin.

同軸ケーブルを細線化するためには、同軸ケーブルを構成する素線も更に細くする必要がある。従来、同軸ケーブル用素線として使用されている銅又は銅合金極細線においては、母材として、SCR(Southwire Conti-Rod:連続鋳造圧延)法、ベルトリー及び連続鋳造機等により製造された銅又は銅合金線材を、直径が6乃至8mmに加工した後、皮むきダイスによりその表層を除去したものが使用されている。しかしながら、このような方法で作製された極細線の母材は、表層の異物は除去されるが、内部に存在する異物は除去されないため、直径が30μm未満になるように線引きダイスを使用して伸線加工すると、母材作製時に混入したSiO及びAl等の炉材、並びに伸線工程内で混入したFe粉等の異物により、断線が多発し、製造効率が低下してしまう。そこで、従来、酸洗いにより母材を縮径加工して極細線を製造する方法が提案されている(特許文献1及び2参照。)。 In order to make a coaxial cable thinner, it is necessary to make the strands of the coaxial cable thinner. Conventionally, in copper or copper alloy ultrafine wires used as coaxial cable strands, copper produced by the SCR (Southwire Conti-Rod: continuous casting and rolling) method, beltley, continuous casting machine, etc. as a base material Alternatively, a copper alloy wire that has been processed into a diameter of 6 to 8 mm and then removed from the surface layer by a peeling die is used. However, since the foreign material on the surface layer is removed from the base material of the ultrathin wire manufactured by such a method, the foreign material existing inside is not removed. Therefore, using a drawing die so that the diameter is less than 30 μm. When the wire drawing is performed, wire breakage occurs frequently due to furnace materials such as SiO 2 and Al 2 O 3 mixed at the time of forming the base material and foreign matters such as Fe powder mixed in the wire drawing process, resulting in a decrease in manufacturing efficiency. . In view of this, conventionally, a method of manufacturing an ultrafine wire by reducing the diameter of a base material by pickling has been proposed (see Patent Documents 1 and 2).

特許第2714922号公報Japanese Patent No. 2714922 特開2002−140935号公報JP 2002-140935 A

しかしながら、前述の従来の技術には以下に示す問題点がある。即ち、特許文献1及び2に記載されているように、酸洗いにより母材を縮径加工して極細線とする場合、処理速度が遅く、生産効率が低いという問題点がある。このため、極細線の製造工程においては、母材を伸線加工して極細線にする方法が多用されており、直径が30μm未満になるように伸線加工を施しても断線が発生しにくい銅又は銅合金母材が求められている。   However, the conventional techniques described above have the following problems. That is, as described in Patent Documents 1 and 2, when the base material is processed into a fine wire by pickling, there is a problem that the processing speed is slow and the production efficiency is low. For this reason, in the manufacturing process of ultrafine wires, a method of drawing a base material to make ultrafine wires is frequently used, and even if wiredrawing is performed so that the diameter is less than 30 μm, disconnection hardly occurs. There is a need for a copper or copper alloy matrix.

本発明はかかる問題点に鑑みてなされたものであって、直径30μm未満に伸線しても断線が発生しにくい銅又は銅合金極細線の製造方法を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the manufacturing method of the copper or copper alloy extra fine wire which is hard to generate | occur | produce a disconnection even if it draws to less than 30 micrometers in diameter.

本発明に係る銅又は銅合金極細線の製造方法は、長さがT(mm)の銅又は銅合金母材から直径が30μm未満の銅又は銅合金極細線を製造する方法において、銅又は銅合金からなる素材を含む原料を溶解して溶融状態で(T/15)時間以上保持する工程と、この溶融状態の原料を一方向凝固法により下方から上方に向かって凝固させて銅又は銅合金母材を得る工程と、この一方向凝固した銅又は銅合金母材を伸線加工する工程と、を有することを特徴とする。   The method for producing a copper or copper alloy fine wire according to the present invention is a method for producing a copper or copper alloy fine wire having a diameter of less than 30 μm from a copper or copper alloy base material having a length of T (mm). A step of melting a raw material including an alloy material and holding it in a molten state for (T / 15) hours or more, and solidifying the molten raw material from below to above by a unidirectional solidification method to form copper or a copper alloy The method includes a step of obtaining a base material, and a step of drawing the unidirectionally solidified copper or copper alloy base material.

本発明においては、原料を溶融状態で(T/15)時間以上保持することにより、原料中に含まれる異物を浮上させた後、一方向凝固法により下方から上方に向かって凝固させ、異物を極力排除した銅又は銅合金母材を使用しているため、直径が30μm未満の極細線に伸線加工する際の断線発生率を低減することができる。   In the present invention, by holding the raw material in a molten state for (T / 15) hours or more, the foreign matter contained in the raw material is levitated, and then solidified from below to above by a unidirectional solidification method. Since the copper or copper alloy base material excluded as much as possible is used, it is possible to reduce the occurrence rate of disconnection when the wire is drawn into an ultrafine wire having a diameter of less than 30 μm.

この銅又は銅合金極細線の製造方法においては、一方向凝固の凝固速度を5乃至50mm/分とすることができる。これにより、銅又は銅合金母材中に合金成分が偏析したり、原料が凝固する際に引き巣が発生して銅又は銅合金母材の内部に異物が引き込まれたりすることを防止できる。また、前記銅又は銅合金母材は、一方向凝固後にその上部を所定長除去した後、伸線加工してもよい。   In this method of manufacturing a copper or copper alloy ultrafine wire, the solidification rate of unidirectional solidification can be 5 to 50 mm / min. Thereby, it can prevent that an alloy component segregates in copper or a copper alloy base material, or when a raw material solidifies, a dent is generated and a foreign material is drawn into the inside of a copper or copper alloy base material. In addition, the copper or copper alloy base material may be drawn after a predetermined length of the upper portion is removed after unidirectional solidification.

本発明によれば、原料を溶融状態で一定時間以上保持することにより原料に含まれていた異物を浮上させた後、一方向凝固法により凝固することによって異物を除去した銅又は銅合金母材を使用しているため、極細線に伸線加工する際の断線発生率を低減することができる。   According to the present invention, after the foreign material contained in the raw material is levitated by holding the raw material in a molten state for a predetermined time or more, the foreign material is removed by solidification by a unidirectional solidification method. Since the wire is used, it is possible to reduce the occurrence rate of disconnection when the wire is drawn into an extra fine wire.

以下、本発明の実施形態に係る銅又は銅合金極細線の製造方法について、添付の図面を参照して具体的に説明する。本発明者等は前述の課題を解決するために、鋭意実験研究を行った結果、原料を溶融状態で一定時間以上保持した後、一方向凝固法を利用して凝固させることにより、原料に混入していた異物を凝固材の上部に集めることができ、この異物を含む部分を除去することにより、極細線への伸線加工性が優れた銅又は銅合金母材が得られることを見出した。   Hereinafter, the manufacturing method of the copper or copper alloy extra fine wire which concerns on embodiment of this invention is demonstrated concretely with reference to attached drawing. In order to solve the above-mentioned problems, the present inventors conducted extensive experimental research. As a result, the raw material was mixed in the raw material by holding it in a molten state for a certain period of time and then solidifying it using a unidirectional solidification method. It was found that the foreign material that had been collected can be collected on the upper part of the solidified material, and by removing the portion containing the foreign material, a copper or copper alloy base material having excellent wire drawing workability to ultrafine wires can be obtained. .

そこで、本実施形態の銅極細線の製造においては、一方向凝固法を利用して銅又は銅合金母材を製造する。図1は本実施形態の銅極細線の製造方法で使用する一方向凝固装置を模式的に示す断面図である。図1に示すように、本実施形態において使用する一方向凝固装置10には、石英等からなる反応管1が設けられており、この反応管1内に設けられた設置台2上には、原料5が充填されるるつぼ3が載置されている。また、反応管1の周囲には、Si等からなる発熱体4が配置されている。この発熱体4は、るつぼ3の全体を加熱することができる大きさであり、反応管1に沿って上下方向に移動可能になっている。この一方向凝固装置10を使用することにより、溶解した原料に適当な温度分布を発生させて、一方向凝固させることができる。 Therefore, in the manufacture of the copper fine wire of the present embodiment, a copper or copper alloy base material is manufactured using a unidirectional solidification method. FIG. 1 is a cross-sectional view schematically showing a unidirectional solidification apparatus used in the method for producing a copper fine wire according to the present embodiment. As shown in FIG. 1, a directional solidification apparatus 10 used in the present embodiment is provided with a reaction tube 1 made of quartz or the like, and on an installation table 2 provided in the reaction tube 1, A crucible 3 filled with the raw material 5 is placed. A heating element 4 made of Si 3 N 4 or the like is disposed around the reaction tube 1. The heating element 4 has a size capable of heating the entire crucible 3 and is movable in the vertical direction along the reaction tube 1. By using this unidirectional solidification apparatus 10, it is possible to generate a suitable temperature distribution in the melted raw material and solidify in one direction.

次に、この一方向凝固装置10を使用して長さがTmmの銅又は銅合金母材を製造する方法について説明する。先ず、るつぼ3内に原料5として銅線等の銅素材及び必要に応じて銀線等の添加成分材料を充填する。そして、るつほ3全体を加熱できる位置に発熱体4を配置し、ロータリーポンプ(図示せず)等により、反応管1内を例えば1×10−1Pa程度に真空引する。この真空度を維持した状態で発熱体4によりるつぼ3の全体を原料5の融点以上、例えば1100℃以上に加熱して原料5を溶解し、この温度条件下で(T/15)時間以上保持する。即ち、原料5を溶解した後、溶融した状態で(T/15)時間以上保持する。これにより、原料5中に含まれるSiO及びAl等の異物が浮上する。 Next, a method for producing a copper or copper alloy base material having a length of Tmm using the unidirectional solidification apparatus 10 will be described. First, the crucible 3 is filled with a copper material such as a copper wire as a raw material 5 and, if necessary, an additive component material such as a silver wire. And the heat generating body 4 is arrange | positioned in the position which can heat the whole rutuho 3, and the inside of the reaction tube 1 is evacuated to about 1 * 10 < -1 > Pa with a rotary pump (not shown) etc., for example. While maintaining this degree of vacuum, the entire crucible 3 is heated by the heating element 4 to the melting point of the raw material 5 or higher, for example, 1100 ° C. or higher, to melt the raw material 5 and kept under this temperature condition for (T / 15) hours or longer. To do. That is, after the raw material 5 is melted, it is held in a molten state for (T / 15) hours or more. Thus, foreign matter such as SiO 2 and Al 2 O 3 contained in the raw material 5 floats.

その後、反応管1に沿って、発熱体4を5乃至50mm/分の速さで上方に移動させる。そうすると、るつぼ3内の溶湯は、その下部の部分から上方に向けて連続的に、発熱体4による加熱域から外れていき、加熱域から外れた部分のるつぼ3内の溶湯が降温し、凝固点を超えると、凝固する。そして、発熱体4を上方に移動させることにより、るつぼ3内の溶湯は、凝固界面がほぼ水平の状態で上方に移動しつつ凝固していく。これにより、銅又は銅合金が一方向凝固する。この一方向凝固においては、凝固界面がほぼ水平で、引け巣が発生しないので、鋳塊の中心部に異物が取り込まれることがない。そして、最終的に凝固が完了した銅又は銅合金母材の上部に異物が集積する。従って、この異物が集積した上部を切り捨てると、残りの銅又は銅合金母材の部分は、異物を殆ど含まず、清浄度が高いものとなる。よって、この銅又は銅合金母材を極細線に伸線加工すると、断線が防止され、高品質の極細線を得ることができる。   Thereafter, the heating element 4 is moved upward along the reaction tube 1 at a speed of 5 to 50 mm / min. Then, the molten metal in the crucible 3 is continuously removed upward from the lower portion thereof from the heating area by the heating element 4, and the molten metal in the crucible 3 outside the heating area is cooled down, and the freezing point If it exceeds, it will solidify. Then, by moving the heating element 4 upward, the molten metal in the crucible 3 is solidified while moving upward with the solidification interface being substantially horizontal. Thereby, copper or a copper alloy is unidirectionally solidified. In this unidirectional solidification, the solidification interface is substantially horizontal and no shrinkage cavity is generated, so that no foreign matter is taken into the center of the ingot. Then, foreign matters accumulate on the upper part of the copper or copper alloy base material that has finally been solidified. Therefore, when the upper part where the foreign matter is accumulated is cut off, the remaining copper or copper alloy base material portion contains almost no foreign matter and has high cleanliness. Therefore, when this copper or copper alloy base material is drawn into an extra fine wire, disconnection is prevented and a high quality extra fine wire can be obtained.

次に、本実施形態の銅又は銅合金極細線の製造方法における数値限定理由について説明する。   Next, the reason for the numerical limitation in the method for manufacturing the copper or copper alloy fine wire of the present embodiment will be described.

原料を溶融状態で保持する時間:T/15時間以上
長さがTmmの銅又は銅合金母材を製造する場合、原料を溶融状態で保持する時間が(T/15)時間よりも短いと、異物が十分に浮上せず、凝固後の銅又は銅合金母材内部に残存してしまう。よって、原料を溶融状態で保持する時間は(T/15)時間以上とする。なお、原料を溶融状態で保持する時間の上限値は特に限定するものではないが、生産性を考慮すると、20時間以下とすることが好ましい。
Time for holding the raw material in the molten state: When producing a copper or copper alloy base material having a length of Tmm or more for T / 15 hours or more, when the time for holding the raw material in the molten state is shorter than (T / 15) time, The foreign matter does not sufficiently float and remains in the solidified copper or copper alloy base material. Therefore, the time for holding the raw material in a molten state is (T / 15) hours or more. In addition, although the upper limit of the time which hold | maintains a raw material in a molten state is not specifically limited, when productivity is considered, it is preferable to set it as 20 hours or less.

発熱体の移動速度(一方向凝固速度):5乃至50mm/分
発熱体4の移動速度が5mm/分未満であると、Cu−Ag合金材等の銅合金母材を製造する場合にAg等の合金成分が偏析してしまうことがある。また、発熱体4の移動速度が50mm/分を超えると、凝固時に引き巣が発生して異物が銅又は銅合金母材の内部に引き込まれてしまうことがある。よって、発熱体4の移動速度は5乃至50mm/分とすることが好ましい。なお、この程度の発熱体の移動速度であれば、発熱体の移動速度が、一方向凝固時の凝固速度と略一致する。
Heating element moving speed (unidirectional solidification speed): 5 to 50 mm / min When the heating speed of the heating element 4 is less than 5 mm / min, when producing a copper alloy base material such as a Cu-Ag alloy material, etc. The alloy components may segregate. Moreover, when the moving speed of the heating element 4 exceeds 50 mm / min, a nest is generated during solidification, and foreign matter may be drawn into the copper or copper alloy base material. Therefore, the moving speed of the heating element 4 is preferably 5 to 50 mm / min. If the moving speed of the heating element is about this level, the moving speed of the heating element substantially coincides with the solidification speed during unidirectional solidification.

以下、本発明の効果について、本発明の範囲から外れる比較例と比較して説明する。本発明の第1実施例として、図1に示す一方向凝固装置を使用してCu−Ag合金母材を作製した。先ず、SCR法により作製した直径が8mmの銅線と純度が99.99質量%の銀線とをるつぼ3内に充填した後、ロータリーポンプにより反応管1内を1×10−1Pa程度まで真空引きした。そして、この真空度を維持した状態で発熱体4によりるつぼ3の全体を1200℃に加熱して原料5を溶解し、更にこの溶融状態の原料5を1200℃で10時間保持した。その後、発熱体4を10mm/分の速度で上方に移動させて、直径が30mm、長さTが150mmで、Cu−Ag合金からなる一方向凝固材を作製した。この一方向凝固材のAg濃度を、EPMA(Electron Probe X-ray microanalyzer)により分析したところ、上部が1.1%、中央部が0.9%、下部が1.0%であり、Agが均一に分布したCu−Ag合金母材を作製することができた。 Hereinafter, the effect of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention. As a first example of the present invention, a Cu-Ag alloy base material was produced using the unidirectional solidification apparatus shown in FIG. First, after filling the crucible 3 with a copper wire having a diameter of 8 mm and a silver wire having a purity of 99.99% by mass produced by the SCR method, the inside of the reaction tube 1 is about 1 × 10 −1 Pa by a rotary pump. A vacuum was drawn. And while maintaining this degree of vacuum, the whole crucible 3 was heated to 1200 ° C. by the heating element 4 to melt the raw material 5, and further this molten raw material 5 was held at 1200 ° C. for 10 hours. Thereafter, the heating element 4 was moved upward at a speed of 10 mm / min to produce a unidirectional solidified material having a diameter of 30 mm and a length T of 150 mm and made of a Cu—Ag alloy. When the Ag concentration of this unidirectionally solidified material was analyzed by EPMA (Electron Probe X-ray microanalyzer), the upper part was 1.1%, the central part was 0.9%, and the lower part was 1.0%. A uniformly distributed Cu-Ag alloy base material could be produced.

また、本発明の比較例として、SCR法により、前述の実施例の一方向凝固材と組成が等しいCu−Ag合金母材を作製した。そして、実施例の一方向凝固材及び比較例のSCR材に対して伸線加工を施し、その伸線性を評価した。その際、比較例のSCR材は、直径が6.5mmになるまで伸線した後、皮むきダイスにより表層を除去する皮むき加工を行い、更に、単頭伸線機により直径が2.0mmになるまで伸線した。その後、3連伸線機を使用して直径が0.9mmになるまで伸線し、それ以降は、コーン型のスリップ伸線機を使用して、入口の直径が0.9mmで出口の直径が0.12mm、入口の直径が0.12mmで出口の直径が0.05mm、入口の直径が0.05mmで出口の直径が0.03mm、入口の直径が0.03mmから出口の直径が0.015mmであるダイスをこの順に配列して伸線した。伸線性の評価は、線材の直径が0.12mmになった段階でその長さを1000mにし、この線材を直径が0.015mmになるまで加工した場合の断線回数を測定した。一方、実施例の一方向凝固材は、異物の存在量が多いと思われる上から50mmまでの部分を切断して除去した後、スエージング法により直径が8.0mmになるまで縮径加工したものを、比較例のSCR材と同様の方法で伸線加工し、その伸線性を評価した。   Further, as a comparative example of the present invention, a Cu—Ag alloy base material having the same composition as the unidirectional solidified material of the above-described example was manufactured by the SCR method. And the wire drawing process was performed with respect to the unidirectional solidification material of an Example, and the SCR material of a comparative example, and the drawability was evaluated. At that time, the SCR material of the comparative example was drawn to a diameter of 6.5 mm, and then peeled to remove the surface layer with a peeling die, and further, the diameter was 2.0 mm with a single-head wire drawing machine. The wire was drawn until Then, using a triple wire drawing machine, the wire was drawn until the diameter became 0.9 mm. After that, using a cone-type slip wire drawing machine, the inlet diameter was 0.9 mm and the outlet diameter was Is 0.12 mm, the inlet diameter is 0.12 mm, the outlet diameter is 0.05 mm, the inlet diameter is 0.05 mm, the outlet diameter is 0.03 mm, the inlet diameter is 0.03 mm, and the outlet diameter is 0 The dies having a diameter of .015 mm were arranged in this order and drawn. The wire drawability was evaluated by measuring the number of breaks when the wire was processed to a diameter of 0.015 mm when the wire rod had a diameter of 0.12 mm and the length was 1000 m. On the other hand, the unidirectionally solidified material of Example was cut by removing the portion from the top to 50 mm, which seems to have a large amount of foreign matter, and then reduced in diameter to 8.0 mm by the swaging method. The wire was drawn by the same method as that of the SCR material of the comparative example, and the drawability was evaluated.

また、伸線後の各線材に対して、JIS規格C3002に規定されている方法に基づいて引張試験を行い、その引張強度及び伸びを測定した。以上の結果を、下記表1にまとめて示す。   Moreover, the tensile test was done with respect to each wire after drawing based on the method prescribed | regulated to JIS specification C3002, and the tensile strength and elongation were measured. The above results are summarized in Table 1 below.

Figure 2006156129
Figure 2006156129

上記表1に示すように、直径が0.03mm(30μm)までの伸線性については、SCR材(比較例1)と一方向凝固材(実施例1)とでほとんど差はみられなかったが、直径が0.015mm(15μm)になるまで伸線すると、SCR材(比較例2)では断線回数が15回であったのに対して、一方向凝固材(実施例2)は断線回数が1回であり、断線回数が大幅に低減していた。また、断線の原因を調査するために、破面の観察を行ったところ、比較例1及び比較例2の線材では、SiO及びAl等の異物が検出されたが、実施例1及び2の線材では異物は検出されなかった。このことから、SCR材(比較例1及び比較例2)は主に異物の残留によって断線が発生し、一方向凝固材(実施例1及び2)は異物の残留以外の原因で断線が発生したと考えられる。また、実施例1及び2の線材は、比較例1及び2の線材に比べて、伸びは同等であるが、引張強度が向上していた。このように、本実施例の一方向凝固材は、比較例のSCR材よりも内部に異物が少なく、伸線性及び強度が優れていた。 As shown in Table 1 above, there was almost no difference between the SCR material (Comparative Example 1) and the unidirectional solidified material (Example 1) in terms of wire drawing up to 0.03 mm (30 μm) in diameter. When the wire was drawn to a diameter of 0.015 mm (15 μm), the number of disconnections was 15 in the SCR material (Comparative Example 2), whereas the number of disconnections in the unidirectional solidified material (Example 2) was It was once and the number of disconnections was greatly reduced. Further, when the fracture surface was observed in order to investigate the cause of the disconnection, foreign matters such as SiO 2 and Al 2 O 3 were detected in the wires of Comparative Example 1 and Comparative Example 2, but Example 1 No foreign matter was detected in the wires 2 and 2. From this, the SCR material (Comparative Example 1 and Comparative Example 2) was disconnected mainly due to the remaining foreign matter, and the unidirectional solidified material (Examples 1 and 2) was disconnected due to a cause other than the remaining foreign matter. it is conceivable that. Moreover, although the elongation of the wire of Examples 1 and 2 was equivalent to the wire of Comparative Examples 1 and 2, the tensile strength was improved. As described above, the unidirectionally solidified material of this example had fewer foreign matters inside than the SCR material of the comparative example, and was excellent in drawability and strength.

次に、本発明の第2実施例として、原料を溶融状態で保持する時間を変えて、溶融状態で保持する時間と異物の浮上分離の効果について調べた。本実施例においては、図1に示す一方向凝固装置を使用し、原料を溶融状態で保持する際の温度を1200℃、時間を夫々1時間、5時間、10時間及び20時間とし、それ以外の条件は前述の第1の実施例と同様にして、直径が30mm、長さTが150mmで、Cu−Ag合金からなる一方向凝固材を作製した。そして、前述の第1の実施例と同様の方法で、これらの一方向凝固材の伸線性、並びに伸線後の各線材の引張強度及び伸びを評価した。その結果を下記表2に示す。   Next, as a second embodiment of the present invention, the time for holding the raw material in the molten state was changed, and the time for holding the raw material in the molten state and the effect of floating separation of the foreign matters were examined. In this example, the unidirectional solidification apparatus shown in FIG. 1 is used, the temperature when the raw material is held in a molten state is 1200 ° C., the time is 1 hour, 5 hours, 10 hours, and 20 hours, respectively. These conditions were the same as in the first embodiment, and a unidirectionally solidified material made of a Cu—Ag alloy having a diameter of 30 mm and a length T of 150 mm was prepared. And by the same method as the above-mentioned 1st Example, the drawability of these unidirectional solidification materials and the tensile strength and elongation of each wire after drawing were evaluated. The results are shown in Table 2 below.

Figure 2006156129
Figure 2006156129

上記表2に示すように、原料を溶融状態で保持する時間が(T/15)時間、即ち、10時間よりも短い一方向凝固材(比較例3乃至6)は、原料を溶融状態で保持する時間を10時間以上にした一方向凝固材(実施例3乃至6)よりも破断回数が多かった。特に、直径を0.015mm(15μm)にした場合の破断回数は、原料を溶融状態で保持する時間が1時間の一方向凝固材(比較例4)が9回、原料を溶融状態で保持する時間が5時間の一方向凝固材(比較例6)が6回であったのに対し、原料を溶融状態で保持する時間が10時間以上である一方向凝固材(実施例4及び実施例6)ではいずれも1回であり、断線回数が大幅に低減していた。   As shown in Table 2 above, the unidirectionally solidified material (Comparative Examples 3 to 6) in which the raw material is held in the molten state (T / 15) time, that is, shorter than 10 hours, holds the raw material in the molten state. The number of breaks was greater than that of the unidirectionally solidified material (Examples 3 to 6) in which the time to be used was 10 hours or more. In particular, when the diameter is 0.015 mm (15 μm), the number of breaks is 9 times for the one-way solidified material (Comparative Example 4) in which the raw material is held in the molten state for 1 hour, and the raw material is held in the molten state. Whereas the unidirectional solidified material (Comparative Example 6) was 6 times in 5 hours, the unidirectional solidified material (Example 4 and Example 6) in which the raw material was kept in a molten state for 10 hours or longer. ) In all cases, the number of disconnections was greatly reduced.

また、断線の原因を調査するために、破面の観察を行ったところ、比較例3乃至6の線材では、SiO及びAl等の異物が検出されたが、実施例3乃至6の線材では異物は検出されなかった。これにより、原料を溶融状態で保持する時間が10時間未満の一方向凝固材(比較例3乃至6)では、主に異物の残留により断線し、原料を溶融状態で保持する時間が10時間以上の一方向凝固材(実施例3乃至6)では、異物の残留以外の原因で断線したと考えられる。この結果から、原料を溶融状態で保持する時間を(T/15)時間以上にすることにより、異物が十分に浮上し、異物が少ない清浄なCu−Ag合金材を作製できることが確認された。なお、本実施例の結果より、異物の浮上速度はおおよそ15mm/時間であると考えられる。 Further, when the fracture surface was observed in order to investigate the cause of the disconnection, foreign substances such as SiO 2 and Al 2 O 3 were detected in the wires of Comparative Examples 3 to 6, but Examples 3 to 6 No foreign matter was detected in the wire. Thereby, in the unidirectionally solidified material (Comparative Examples 3 to 6) in which the raw material is kept in a molten state for less than 10 hours, the time for which the raw material is held in a molten state is broken mainly due to the remaining foreign matter. In the unidirectionally solidified material (Examples 3 to 6), it is considered that the wire was disconnected due to a cause other than the remaining foreign matter. From this result, it was confirmed that a clean Cu—Ag alloy material with a small amount of foreign matter can be produced by sufficiently raising the foreign matter by setting the time for holding the raw material in a molten state to (T / 15) time or longer. From the results of this example, it is considered that the flying speed of the foreign matter is approximately 15 mm / hour.

また、本実施例においては、原料を溶融状態で保持する時間を10時間よりも長くしても破断回数に大きな変化はみられなかった。これは、所定の時間以上原料を溶融状態で保持することで異物が完全に浮上することを示唆していると考える。更に、各線材の引張強度及び伸びは、原料を溶融状態で保持する時間にかかわらず、略同等であった。   Further, in this example, even if the time for holding the raw material in the molten state was longer than 10 hours, there was no significant change in the number of breaks. This is considered to suggest that the foreign matter completely floats by holding the raw material in a molten state for a predetermined time or more. Furthermore, the tensile strength and elongation of each wire were substantially the same regardless of the time during which the raw material was kept in the molten state.

次に、本発明の第3実施例として、図1に示す一方向凝固装置を使用し、原料を溶融状態で保持する際の温度を1200℃、時間を夫々1時間、10時間、20時間及び40時間とし、それ以外の条件は前述の第1の実施例と同様にして、銅合金母材として直径が30mm、長さTが300mmで、Cu−Ag合金からなる一方向凝固材を作製した。そして、前述の第1及び第2実施例と同様の方法で、これらの一方向凝固材の伸線性、並びに伸線後の各線材の引張強度及び伸びを評価した。その結果を下記表3に示す。   Next, as a third embodiment of the present invention, the unidirectional solidification apparatus shown in FIG. 1 is used, the temperature at which the raw material is held in a molten state is 1200 ° C., the time is 1 hour, 10 hours, 20 hours, and The other conditions were the same as in the first embodiment, and a unidirectional solidified material made of a Cu-Ag alloy having a diameter of 30 mm and a length T of 300 mm was prepared as a copper alloy base material. . And the wire drawing property of these unidirectionally solidified materials and the tensile strength and elongation of each wire material after wire drawing were evaluated by the same method as in the first and second examples. The results are shown in Table 3 below.

Figure 2006156129
Figure 2006156129

上記表3に示すように、原料を溶融状態で保持する時間が(T/15)時間、即ち、20時間よりも短い一方向凝固材(比較例7乃至10)は、原料を溶融状態で保持する時間を20時間以上にした一方向凝固材(実施例7乃至10)よりも破断回数が多かった。特に、直径を0.015mm(15μm)にした場合の破断回数は、原料を溶融状態で保持する時間が1時間の一方向凝固材(比較例8)が12回、原料を溶融状態で保持する時間が10時間の一方向凝固材(比較例10)が6回であったのに対し、原料を溶融状態で保持する時間が20時間以上である一方向凝固材(実施例8及び実施例10)ではいずれも1回であり、断線回数が大幅に低減していた。   As shown in Table 3 above, the unidirectionally solidified material (Comparative Examples 7 to 10) in which the raw material is held in the molten state (T / 15) time, that is, shorter than 20 hours, holds the raw material in the molten state. The number of breaks was greater than that of the unidirectionally solidified material (Examples 7 to 10) in which the time to be used was 20 hours or more. In particular, when the diameter is 0.015 mm (15 μm), the number of breaks is 12 times for the one-way solidified material (Comparative Example 8) in which the raw material is held in the molten state for 1 hour, and the raw material is held in the molten state. Whereas the unidirectional solidified material (Comparative Example 10) was 10 times in time, the unidirectional solidified material (Example 8 and Example 10) in which the time for holding the raw material in a molten state was 20 hours or more. ) In all cases, the number of disconnections was greatly reduced.

また、断線の原因を調査するために、各線材の破面の観察を行ったところ、比較例7乃至10の線材では、SiO及びAl等の異物が検出されたが、実施例7乃至10の線材では異物は検出されなかった。よって、原料を溶融状態で保持する時間が20時間未満の一方向凝固材(比較例7乃至10)では、主に異物の残留により断線し、原料を溶融状態で保持する時間が20時間以上である一方向凝固材(実施例7乃至10)では、異物の残留以外の原因で断線したと考えられる。この結果から、原料を溶融状態で保持する時間を(T/15)時間以上にすることにより、異物が十分に浮上し、異物が少ない清浄なCu−Ag合金母材を作製できることが確認された。また、本実施例においても、原料を溶融状態で保持する時間を20時間よりも長くしても破断回数に大きな変化はみられなかった。更に、各線材の引張強度及び伸びは、原料を溶融状態で保持する時間にかかわらず、略同等であった。 Moreover, in order to investigate the cause of disconnection, the fracture surface of each wire was observed, and in the wires of Comparative Examples 7 to 10, foreign substances such as SiO 2 and Al 2 O 3 were detected. No foreign matter was detected in the 7 to 10 wires. Therefore, in the unidirectionally solidified material (Comparative Examples 7 to 10) in which the raw material is held in a molten state for less than 20 hours, the breakage is mainly caused by residual foreign matter, and the raw material is held in a molten state for 20 hours or more. In a certain unidirectional solidified material (Examples 7 to 10), it is considered that the wire was disconnected due to a cause other than the remaining foreign matter. From this result, it was confirmed that by setting the time for holding the raw material in a molten state to (T / 15) time or more, a foreign material can sufficiently float and a clean Cu-Ag alloy base material with few foreign materials can be produced. . Also in this example, there was no significant change in the number of breaks even when the time for holding the raw material in the molten state was longer than 20 hours. Furthermore, the tensile strength and elongation of each wire were substantially the same regardless of the time during which the raw material was kept in the molten state.

本発明の銅又は銅合金極細線の製造方法は、携帯電話等に使用される直径が30μm未満の極細同軸ケーブル用素線を製造する場合に好適である。   The manufacturing method of the copper or copper alloy extra fine wire of this invention is suitable when manufacturing the strand for ultra fine coaxial cables whose diameter used for a mobile telephone etc. is less than 30 micrometers.

本発明の実施形態に係る銅又は銅合金極細細線の製造方法に使用する一方向凝固装置を模式的に示す断面図である。It is sectional drawing which shows typically the unidirectional solidification apparatus used for the manufacturing method of the copper or copper alloy ultrafine wire which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1;反応管
2;設置台
3;るつぼ
4;発熱体
5;原料
10;一方向凝固装置
1; reaction tube 2; installation base 3; crucible 4; heating element 5; raw material 10;

Claims (3)

長さがT(mm)の銅又は銅合金母材から直径が30μm未満の銅又は銅合金極細線を製造する方法において、銅又は銅合金からなる素材を含む原料を溶解して溶融状態で(T/15)時間以上保持する工程と、この溶融状態の原料を一方向凝固法により下方から上方に向かって凝固させて銅又は銅合金母材を得る工程と、この一方向凝固した銅又は銅合金母材を伸線加工する工程と、を有することを特徴とする銅又は銅合金極細線の製造方法。 In a method for producing a copper or copper alloy ultrafine wire having a diameter of less than 30 μm from a copper or copper alloy base material having a length of T (mm), a raw material containing a material made of copper or a copper alloy is melted and melted ( T / 15) a step of holding for a period of time, a step of solidifying the molten raw material from below to above by a unidirectional solidification method to obtain a copper or copper alloy base material, and this unidirectionally solidified copper or copper And a step of drawing an alloy base material. A method for producing a copper or copper alloy ultrafine wire. 一方向凝固の凝固速度は、5乃至50mm/分であることを特徴とする請求項1に記載の銅又は銅合金極細線の製造方法。 The method for producing a copper or copper alloy fine wire according to claim 1, wherein the solidification rate of the unidirectional solidification is 5 to 50 mm / min. 前記銅又は銅合金母材は、一方向凝固後にその上部を所定長除去した後、伸線加工されることを特徴とする請求項1又は2に記載の銅又は銅合金極細線の製造方法。 The method for producing a copper or copper alloy fine wire according to claim 1 or 2, wherein the copper or copper alloy base material is subjected to wire drawing after removing a predetermined length of the upper portion after unidirectional solidification.
JP2004345015A 2004-11-29 2004-11-29 Method for manufacturing copper or copper alloy extrafine wire Pending JP2006156129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345015A JP2006156129A (en) 2004-11-29 2004-11-29 Method for manufacturing copper or copper alloy extrafine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345015A JP2006156129A (en) 2004-11-29 2004-11-29 Method for manufacturing copper or copper alloy extrafine wire

Publications (1)

Publication Number Publication Date
JP2006156129A true JP2006156129A (en) 2006-06-15

Family

ID=36634150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345015A Pending JP2006156129A (en) 2004-11-29 2004-11-29 Method for manufacturing copper or copper alloy extrafine wire

Country Status (1)

Country Link
JP (1) JP2006156129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249660A (en) * 2008-04-02 2009-10-29 Sumitomo Electric Ind Ltd Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JP2013216979A (en) * 2013-06-07 2013-10-24 Sumitomo Electric Ind Ltd Method for manufacturing cast material for drawn wire material, method for manufacturing drawn wire material, method for manufacturing stranded wire, and method for manufacturing coaxial cable
JP2021042422A (en) * 2019-09-10 2021-03-18 日立金属株式会社 Metal wire, wire, cable and method for producing metal wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249660A (en) * 2008-04-02 2009-10-29 Sumitomo Electric Ind Ltd Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JP2013216979A (en) * 2013-06-07 2013-10-24 Sumitomo Electric Ind Ltd Method for manufacturing cast material for drawn wire material, method for manufacturing drawn wire material, method for manufacturing stranded wire, and method for manufacturing coaxial cable
JP2021042422A (en) * 2019-09-10 2021-03-18 日立金属株式会社 Metal wire, wire, cable and method for producing metal wire

Similar Documents

Publication Publication Date Title
JP5975493B2 (en) Method for producing copper alloy wire
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP5344070B2 (en) Copper wire for bonding wire and method for manufacturing copper wire for bonding wire
JP5975494B2 (en) Method for producing copper alloy foil
JP6001420B2 (en) Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method
US10421161B2 (en) High quality, void and inclusion free alloy wire
JP2006156129A (en) Method for manufacturing copper or copper alloy extrafine wire
CN106350696B (en) Copper alloy material and method for producing same
JP2008290122A (en) Method for producing copper alloy wire
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP2012179607A (en) Method for continuous casting of bronze or bronze alloy and casting ring used therefor
JP2996379B2 (en) Method for producing copper alloy rod for conductive wire rolled by cold rolling
JP4941065B2 (en) Manufacturing method of bonding wire base material and bonding wire
KR102098443B1 (en) Copper ingot, copper wire rod, and method for producing copper ingot
JP2005138113A (en) Method for casting ingot for bonding wire and bonding wire produced by using the method
JP6979454B2 (en) Manufacturing method for nozzles, casting equipment and castings
JPH0628796B2 (en) Method for manufacturing ultrafine wire conductor
JPS6340209A (en) Very fine wire for electronic equipment
JPH0453093B2 (en)