JPS6340209A - Very fine wire for electronic equipment - Google Patents

Very fine wire for electronic equipment

Info

Publication number
JPS6340209A
JPS6340209A JP18298486A JP18298486A JPS6340209A JP S6340209 A JPS6340209 A JP S6340209A JP 18298486 A JP18298486 A JP 18298486A JP 18298486 A JP18298486 A JP 18298486A JP S6340209 A JPS6340209 A JP S6340209A
Authority
JP
Japan
Prior art keywords
wire
ultra
fine
oxygen
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18298486A
Other languages
Japanese (ja)
Inventor
篠原 正秀
中野 耕作
奥野 道雄
秀雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18298486A priority Critical patent/JPS6340209A/en
Publication of JPS6340209A publication Critical patent/JPS6340209A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器用極細線に関するもので、特に導体抵
抗が小さく高品質な巻線、ボンディングワイヤ等として
使用される極細線導体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to ultra-fine wires for electronic devices, and particularly to ultra-fine wire conductors with low conductor resistance and used as high-quality winding wires, bonding wires, etc. be.

〔従来の技術〕[Conventional technology]

巻線、ボンディングワイヤ等として使用される極細線導
体は、従来水冷鋳型を用いて製造された酸素1300〜
500ppm含有するタフピッチ銅鋳塊を熱間加工後伸
線若しくは伸線加工のみによシ極細線に迄加工し、更に
伸線途中で中間焼鈍を行うことによって製造されていた
。而して最近機器の小型化、軽量化の傾向が強くなるに
つれ、前記導体の外径は益々細径化する傾向にあり、現
在ではα05+am以下の超極細線も多く使用されるに
至っている。即ちマイクロコイル、リレー等の巻線、ボ
ンディングワイヤ或いは超極細ケーブル導体として上記
超極細線が使用されている。而してこれらの用途に使用
される導体には、表面品質即ち伸線加工性の他に内部品
質即ち導体抵抗が低いことが要求されている。例えばマ
イクロコイル等の巻線として使用される場合は、コイル
の一層の軽量化のため、或いは使用中の発熱を防止する
ために導体抵抗が低いことが必要である。
Ultrafine wire conductors used as winding wires, bonding wires, etc. are conventionally manufactured using water-cooled molds.
It was manufactured by hot working a tough pitch copper ingot containing 500 ppm and then processing it into an extremely fine wire by wire drawing or wire drawing alone, and then performing intermediate annealing during the wire drawing. Recently, as the trend toward smaller and lighter equipment has become stronger, the outer diameter of the conductor tends to become smaller and smaller, and now ultra-fine wires of α05+am or less are often used. That is, the above-mentioned ultra-fine wires are used as winding wires for microcoils, relays, etc., bonding wires, or ultra-fine cable conductors. Therefore, conductors used for these applications are required to have not only surface quality, ie, wire drawability, but also internal quality, ie, low conductor resistance. For example, when used as a winding wire for a microcoil or the like, it is necessary that the conductor resistance be low in order to further reduce the weight of the coil or to prevent heat generation during use.

〔発明が解決しようとする問題点9 以上に述べた様に、極細線特に0.05 mm以下の超
極細線においては、表面品質の他に導体抵抗が低いこと
が必要であるが、従来の極細線は線径がα05m以下に
なると導電率の低下、従って導体抵抗の増加が著しく、
超極細線領域でも導体抵抗が低い材料の開発が望まれて
いた。
[Problem to be solved by the invention 9 As mentioned above, ultra-fine wires, especially ultra-fine wires of 0.05 mm or less, require low conductor resistance in addition to surface quality. When the wire diameter of ultra-fine wire is less than α05m, the conductivity decreases and the conductor resistance increases significantly.
There has been a desire to develop materials with low conductor resistance even in the ultra-fine wire range.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の点に鑑みなされたものであり、その目的
とするところは、線径が005m+以下の超極細線領域
でも導体抵抗が小さい、高品質な極細線を提供すること
である。即ち本発明は、一方向凝固させた無酸素銅鋳塊
より伸線加工されたことを特徴とする電子機器用極細線
である。
The present invention has been made in view of the above points, and its purpose is to provide a high-quality ultra-fine wire with low conductor resistance even in the ultra-fine wire region with a wire diameter of 005 m+ or less. That is, the present invention is an ultra-fine wire for electronic devices characterized by being wire-drawn from a unidirectionally solidified oxygen-free copper ingot.

〔作 用〕[For production]

本発明者等は線径0.05 rm以下における導体抵抗
増加の原因を種々検討した結果、従来の極細線は材質及
び製造方法に問題があり、不純物及び内部欠陥によって
導体抵抗が著しく増加していることが判明した。
The inventors of the present invention investigated various causes of increased conductor resistance when the wire diameter is 0.05 rm or less, and found that conventional ultra-fine wires have problems with their materials and manufacturing methods, and impurities and internal defects significantly increase conductor resistance. It turned out that there was.

即ち、第一に、電子機器用極細線として従来使用されて
きたタフピッチ銅は、酸素f500〜1400ppm含
有しており、該酸素は銅の約101倍の比抵抗を有する
Gum 0粒子として鋼中に分散しているが、線径か細
くなると共に横断蘭内においてCut 0粒子が占める
割合が大きくなり、従って導体抵抗が増加する。
First, tough pitch copper, which has been conventionally used as ultra-fine wire for electronic devices, contains 500 to 1,400 ppm of oxygen, and the oxygen is contained in steel as Gum 0 particles, which have a resistivity about 101 times that of copper. However, as the wire diameter becomes smaller, the proportion of Cut 0 particles in the transverse run increases, and therefore the conductor resistance increases.

第二に、従来の水冷鋳型を用いて製造された多方向凝固
組織の鋳塊は、凝固収縮の際にブローホール、収縮巣、
芯割れ等の内部欠陥が生じやすぐ、これらが極細線サイ
ズ迄残存し、導体抵抗増加の原因となっている。
Second, ingots with a multi-directional solidification structure produced using conventional water-cooled molds suffer from blowholes, shrinkage cavities, etc. during solidification and shrinkage.
As soon as internal defects such as core cracks occur, they remain up to the size of ultra-fine wires, causing an increase in conductor resistance.

第三に、線径α05m以下の超極細線領域では、格子欠
陥特に結晶粒界が導体抵抗増加の大きな原因となってい
るが、従来材は伸線途中で中間焼鈍を行う必要があるた
め、通常10−40μ、程度の比較的細かい再結晶粒を
生じており、該再結晶粒の粒界によって導体抵抗が増加
する。
Thirdly, in the ultra-fine wire region with a wire diameter of α05m or less, lattice defects, especially grain boundaries, are a major cause of increased conductor resistance, but conventional materials require intermediate annealing during wire drawing. Relatively fine recrystallized grains of about 10-40 μm are usually produced, and the conductor resistance increases due to the grain boundaries of the recrystallized grains.

本発明者等はかかる点に鑑み種々検討の結果、鋼中の酸
素量を少なくした無酸素銅を用い、又内部欠陥がほとん
どない一方向凝固組織の鋳塊を用いれば、極細線特に線
径がα05yrm以下の超極細線領域においても導体抵
抗増加が少なくなることを見出したものである。
In view of this, the present inventors have conducted various studies and found that if oxygen-free copper with a reduced amount of oxygen in the steel is used and an ingot with a unidirectionally solidified structure with almost no internal defects is used, ultra-fine wire, especially wire diameter It has been found that the increase in conductor resistance is small even in the ultra-fine wire region where α05yrm or less.

即ち一方向凝固させた鋳塊は、鋳塊内部より凝固を始め
て長手方向(鋳造方向)に粒成長するために、収縮巣、
芯割れ等の内部欠陥を生じることがなく、又鋳塊の長手
方向に結晶粒界が存在しないのみでなく、加工性が良く
て中間焼鈍が必要ないため、再結晶粒界も生じない。
In other words, in a unidirectionally solidified ingot, solidification starts from inside the ingot and grains grow in the longitudinal direction (casting direction), so shrinkage cavities,
Internal defects such as core cracks do not occur, and not only are there no grain boundaries in the longitudinal direction of the ingot, but the processability is good and intermediate annealing is not required, so no recrystallization grain boundaries occur.

前記一方向凝固鋳塊を得る方法としては、鋳型加熱鋳造
法、鋳型無し回転引き上げ鋳造法、ブリッジマン法等の
内いずれを用いても差しつかえないが、鋳塊品質、生産
性等を考慮すると鋳型加熱鋳造法が最も好ましい。
As a method for obtaining the unidirectionally solidified ingot, any of the mold heating casting method, moldless rotary pulling casting method, Bridgman method, etc. may be used, but considering the ingot quality, productivity, etc. Most preferred is the hot mold casting method.

又本発明の極細線における酸素量に関しては、水素脆化
を起さない範囲である10ppm以下に限定することが
好ましいが、例えばDip材の様に20〜30ppm程
度酸素を含有している無酸素銅であっても、従来のタフ
ピッチ銅に比べれば導体抵抗はかなり低くなる。
Regarding the amount of oxygen in the ultrafine wire of the present invention, it is preferable to limit it to 10 ppm or less, which is a range that does not cause hydrogen embrittlement. Even with copper, the conductor resistance is considerably lower than that of conventional tough pitch copper.

開本発明の極細線は、特に線径が0.05 mm以下の
超極細線領域において従来材よりも導体抵抗が小さく優
れた特性を有しているが、線径が0.05ツより大きい
場合でも従来材よりは優れた導電性を有しているもので
ある。
The ultra-fine wire of the present invention has excellent properties such as lower conductor resistance than conventional materials, especially in the ultra-fine wire region with a wire diameter of 0.05 mm or less, but when the wire diameter is larger than 0.05 mm. Even in this case, it has better conductivity than conventional materials.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。第1図は本発明
に用いた鋳型加熱連続鋳造装置の説明図である。1は鋳
造炉、2は鋳型、5は加熱装置、4は溶湯、5は鋳塊、
6はピンチロール、7は水冷装置である。
Next, examples of the present invention will be described. FIG. 1 is an explanatory diagram of a mold heating continuous casting apparatus used in the present invention. 1 is a casting furnace, 2 is a mold, 5 is a heating device, 4 is a molten metal, 5 is an ingot,
6 is a pinch roll, and 7 is a water cooling device.

鋳造炉1の壁部には黒鉛からなる内径15mm、外径3
0mの鋳型2が取付けられており、該鋳型2はその周囲
にセットされたカンタル線を発熱体とする加熱装置5に
よって鋳造金属の融点以上に迄加熱されている。前記鋳
造炉1に導入された溶湯ヰは鋳型2内に入った後冷却さ
れて鋳塊5となり、ピンチロール6によって引き出され
る。この際鋳型2内の溶湯4は、周囲から加熱されてい
るため鋳型2の内面では凝固の核生成を起こさなく、鋳
型出口部にセットされた水冷装置7によって鋳塊5を通
じて冷却されるため一方向凝固組織となる。
The wall of the casting furnace 1 is made of graphite with an inner diameter of 15 mm and an outer diameter of 3 mm.
A mold 2 with a length of 0 m is attached, and the mold 2 is heated to a temperature higher than the melting point of the cast metal by a heating device 5 set around the mold 2, which uses a Kanthal wire as a heating element. The molten metal introduced into the casting furnace 1 enters the mold 2 and is cooled to form an ingot 5, which is pulled out by pinch rolls 6. At this time, since the molten metal 4 in the mold 2 is heated from the surroundings, solidification nucleation does not occur on the inner surface of the mold 2, and the molten metal 4 in the mold 2 is cooled through the ingot 5 by the water cooling device 7 set at the mold outlet. It becomes a directionally solidified tissue.

次に本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

前記鋳型加熱連続鋳造装置音用いて、酸素を3PPm含
有する無酸素銅であって、単結晶状の一方向凝固組織を
有する直径15瓢の棒状鋳塊を得た。
Using the sound of the mold heating continuous casting apparatus, a rod-shaped ingot of oxygen-free copper containing 3 PPm of oxygen and having a single-crystal unidirectional solidification structure and having a diameter of 15 gourds was obtained.

該棒状鋳塊を中間焼鈍を入れないで、線径2.6.0.
9.0,25.0.1.0,05.0,03、α02咽
の各サイズ迄冷間で伸線加工して導電率を測定し、その
結果を第2図に実線(・印)で示した。又比較のため、
水冷鋳型を用いて製造した従来の無酸素銅(酸素量:3
ppm)及びタフピッチ銅の鋳塊より熱間溝ロール圧延
された線径81mの荒引線を前記各サイズ迄伸線加工し
て導電重金測定し、その結果を第2図に夫々一点鎖線(
×印)及び破線(○印)で示した。同第2図において横
軸には、本発明材、比較材(無酸素銅)、従来材(タフ
ピッチ銅)における導電率を測定した各サイズ並びに本
発明材における上記各サイズ塩の加工率にnSo/ s
 ) f表示しである。ここでSOは直径15燗におけ
る断面積、Sは各サイズ迄伸線加工後の断面積である。
The rod-shaped ingot was heated to a wire diameter of 2.6.0 without intermediate annealing.
The conductivity was measured by cold drawing to each size of 9.0, 25.0.1.0, 05.0, 03, and α02, and the results are shown as solid lines (marked with *) in Figure 2. It was shown in Also, for comparison,
Conventional oxygen-free copper manufactured using a water-cooled mold (oxygen content: 3
ppm) and rough drawn wire with a wire diameter of 81 m hot-groove rolled from an ingot of tough pitch copper were drawn to the above-mentioned sizes and measured for conductive heavy metals.
(x mark) and a broken line (○ mark). In Fig. 2, the horizontal axis shows each size for which the conductivity was measured in the inventive material, comparative material (oxygen-free copper), and conventional material (tough pitch copper), as well as the nSo /s
) f is displayed. Here, SO is the cross-sectional area at a diameter of 15 mm, and S is the cross-sectional area after wire drawing to each size.

第2図から明らかな様に線径が細くなる程導電率が低下
しているが、本発明材は0.05 mm以下では導電率
の低下がほとんど見られず、従来の製造方法で製造した
タフピッチ銅(従来材)は勿論のこと、無酸素銅(比較
材)よりも導電率が大きく、従って導体抵抗が小さくな
っている。
As is clear from Figure 2, the conductivity decreases as the wire diameter becomes thinner, but with the present invention material, there is almost no decrease in conductivity when the wire diameter is 0.05 mm or less. It has higher conductivity than tough pitch copper (conventional material) as well as oxygen-free copper (comparative material), and therefore has lower conductor resistance.

又α9〜0. O25rtmの各導体サイズにおける材
質及び質別が導電率(%工AC8)に及ぼす影響音調べ
た結果を第1表に示す。ここで質別Hは加工材、質別A
は各サイズで3507: x 30 min焼鈍した焼
鈍材である。
Also α9~0. Table 1 shows the results of investigating the influence of sound on conductivity (% engineering AC8) by material and temper for each conductor size of O25 rtm. Here, temper H is processed material, temper A
is an annealed material annealed for 3507: x 30 min for each size.

第1表から明らかな様に、本発明材Nalは、従来の製
造法で製造した無酸素銅随2及び従来電子機器用極細線
として使用されてきたタフピッチ銅N(111に比較し
て、線径0.05 tmで導電率が夫々LO係、18%
高くなっておシ、α025tmsではこの差は更に拡大
している。又従来法で製造した無酸素銅及びタフピッチ
銅を焼鈍したNa5及びNα5と比較しても、o、o5
.以下のサイズでは、本発明材Nα1の方が導電率は高
く、従って導体抵抗は小さくなっている。
As is clear from Table 1, the present invention material Nal has a higher resistance to wire than oxygen-free copper No. The diameter is 0.05 tm and the conductivity is LO and 18%, respectively.
This difference has widened further with α025tms. Also, compared to Na5 and Na5 obtained by annealing oxygen-free copper and tough pitch copper produced by conventional methods, o, o5
.. In the following sizes, the present invention material Nα1 has a higher electrical conductivity and therefore a smaller conductor resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の電子機器月極Mi線は、線径α05ma以下の
超甑細線領域においても導体抵抗が小さい高品質な極細
線であって、自動巻きカメラ、時計のマイクロコイル、
リレー等の巻線、ボンディングワイヤ或いは超極細ケー
ブル導体等広範囲な用途が期待出来、工業上顕著な効果
を奏するものである。
The electronic device monthly Mi wire of the present invention is a high-quality ultra-fine wire with low conductor resistance even in the ultra-fine wire region with a wire diameter of α05ma or less, and is suitable for use in automatic cameras, micro coils for watches, etc.
It can be expected to be used in a wide range of applications, such as winding wires for relays, bonding wires, and ultra-fine cable conductors, and has a remarkable industrial effect.

【図面の簡単な説明】 第1図は本発明に用いた鋳型加熱連続鋳造装置の説明図
、第2図は線径と導電率との関係を示す説明図である。 1・・・鋳造炉、2・・・鋳型、5・・・加熱装置、4
・・・溶湯、5・−・鋳塊、6・・・ピンチロール、7
・・・水冷装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a mold heating continuous casting apparatus used in the present invention, and FIG. 2 is an explanatory diagram showing the relationship between wire diameter and electrical conductivity. 1... Casting furnace, 2... Mold, 5... Heating device, 4
... Molten metal, 5 ... Ingot, 6 ... Pinch roll, 7
...Water cooling device.

Claims (3)

【特許請求の範囲】[Claims] (1)一方向凝固させた無酸素銅鋳塊より伸線加工され
たことを特徴とする電子機器用極細線。
(1) Ultra-fine wire for electronic devices, characterized by being wire-drawn from a unidirectionally solidified oxygen-free copper ingot.
(2)酸素量が10ppm以下である無酸素銅鋳塊より
伸線加工されたことを特徴とする特許請求の範囲第1項
記載の電子機器用極細線。
(2) The ultrafine wire for electronic devices according to claim 1, which is drawn from an oxygen-free copper ingot having an oxygen content of 10 ppm or less.
(3)線径が0.05mm以下であることを特徴とする
特許請求の範囲第1項記載の電子機器用極細線。
(3) The ultrafine wire for electronic devices according to claim 1, wherein the wire diameter is 0.05 mm or less.
JP18298486A 1986-08-04 1986-08-04 Very fine wire for electronic equipment Pending JPS6340209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18298486A JPS6340209A (en) 1986-08-04 1986-08-04 Very fine wire for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18298486A JPS6340209A (en) 1986-08-04 1986-08-04 Very fine wire for electronic equipment

Publications (1)

Publication Number Publication Date
JPS6340209A true JPS6340209A (en) 1988-02-20

Family

ID=16127726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18298486A Pending JPS6340209A (en) 1986-08-04 1986-08-04 Very fine wire for electronic equipment

Country Status (1)

Country Link
JP (1) JPS6340209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237042A (en) * 1991-06-12 1993-08-17 Korea Institute Of Science And Technology Process for the preparation of polybutylene terephthalate based polymer
JP2002320576A (en) * 2001-04-25 2002-11-05 Kana Flex Corporation Kk Cleaner hose

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286650A (en) * 1986-06-04 1987-12-12 Nippon Mining Co Ltd Production of electric wire for audio use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286650A (en) * 1986-06-04 1987-12-12 Nippon Mining Co Ltd Production of electric wire for audio use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237042A (en) * 1991-06-12 1993-08-17 Korea Institute Of Science And Technology Process for the preparation of polybutylene terephthalate based polymer
JP2002320576A (en) * 2001-04-25 2002-11-05 Kana Flex Corporation Kk Cleaner hose

Similar Documents

Publication Publication Date Title
KR101317096B1 (en) Cu-Co-Si COPPER ALLOY FOR USE IN ELECTRONICS, AND MANUFACTURING METHOD THEREFOR
KR20130093469A (en) Cu-ag alloy wire and method for producing cu-ag alloy wire
WO2011030898A1 (en) Copper alloy wire and process for producing same
JP6209986B2 (en) Cu-Fe alloy
JP2004160543A (en) Method of manufacturing ingot for manufacturing ti-containing copper alloy plate or bar of excellent workability
US4927467A (en) Method for producing thin plate of phosphor bronze
JPS6340209A (en) Very fine wire for electronic equipment
EP2963139A2 (en) Iron-based soft magnetic material
US5064611A (en) Process for producing copper alloy
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP2507723B2 (en) Copper wire for signal transmission
JPH0313935B2 (en)
JPH0249169B2 (en)
JP2915596B2 (en) Production method of extra fine wire
JPH0413496A (en) Phosphor copper brazing wire and production thereof
JP2996379B2 (en) Method for producing copper alloy rod for conductive wire rolled by cold rolling
JPH0112579B2 (en)
JPS6123752A (en) Manufacture of high strength and heat resistant aluminum alloy conductor
JPS6355806A (en) Conductor for video cable
JPS62101355A (en) Production of wire
JPS63148501A (en) Signal transmission conductor
JPH0332628B2 (en)
JPS6351005A (en) Conductive wire for signal communication
JP2010201505A (en) Casting material, method for producing the same, copper wire for magnet wire using the same, magnet wire and method for producing the same
JPS6372077A (en) Pin connector material