JPH0332628B2 - - Google Patents

Info

Publication number
JPH0332628B2
JPH0332628B2 JP26239085A JP26239085A JPH0332628B2 JP H0332628 B2 JPH0332628 B2 JP H0332628B2 JP 26239085 A JP26239085 A JP 26239085A JP 26239085 A JP26239085 A JP 26239085A JP H0332628 B2 JPH0332628 B2 JP H0332628B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
recrystallization temperature
slab
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26239085A
Other languages
Japanese (ja)
Other versions
JPS62124264A (en
Inventor
Tadamichi Nakazato
Atsumi Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OO SHII SHII KK
TOOKIN KK
Original Assignee
OO SHII SHII KK
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OO SHII SHII KK, TOOKIN KK filed Critical OO SHII SHII KK
Priority to JP26239085A priority Critical patent/JPS62124264A/en
Publication of JPS62124264A publication Critical patent/JPS62124264A/en
Publication of JPH0332628B2 publication Critical patent/JPH0332628B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はNi−Feの合金の製造方法に関し、特
にNi−Feの合金を発熱鋳型を有する連続鋳造法
で製造する方法に関するものである。 〔従来技術と発明が解決すべき問題点〕 従来のNi−Feの系合金の製造方法は、本合金
を溶解後インゴツトに鋳造し、熱間加工、冷間加
工により所定の寸法に加工される。そのため高い
透磁率(μm)、高い角型比(Bγ/B10)を得よ
うとする場合には高い冷間加工率(90%以上)を
材料に付与する方法が一般的にとられている。即
ち、従来の加工方法においては、低い加工率では
高透磁率、高角型比という優れた磁気的性質を付
与することはできない。ここにμmは最大透磁
率、Bγは残留磁束密度、B10は外部磁界10(O¨e)
における磁束密度をしめす。 したがつて本発明は、冷間加工率が低くても高
透磁率、高角型比の優れた磁気特性を付与するこ
とのできるNi−Fe合金の製造方法を提供するに
ある。 〔問題点を解決するための手段〕 本発明は上記の問題点を解決するために、鋳型
として後に説明する発熱鋳型を用い、さらに熱処
理条件を適正に選択して上記の目的を達成するよ
うにしたものである。 すなわち本発明によれば、Ni35−85重量%−
残部Feよりなる組成の合金を、一端から溶鋼を
供給し、他端から鋳片を連続的に得るため鋳型出
口の内壁を、内蔵する発熱体で凝固温度以上に保
ちながら連続鋳造する製造方法において、前記鋳
片に一軸異方性を付与し、得られた鋳片のまま、
もしくは冷間加工を施した後、一次再結晶温度以
上、二次再結晶温度未満の温度で熱処理を行うこ
とを特徴とするNi−Fe合金の製造方法が得られ
る。 尚、本発明で規定している再結晶温度は、Ni
−Fe合金の場合、一般に一次再結晶温度が約600
℃、二次再結晶温度は約1050℃である。この温度
は溶解条件や鋳造条件による、微量不純物(酸
素、窒素、介在物)の量により変化することは一
般的に認められることであるが、いずれにしても
一次再結晶温度以上、二次再結晶温度未満の温度
で熱処理することが磁気特性を改善させるために
必要である。 〔実施例〕 はじめに本発明において使用する発熱鋳型を用
いた鋳造装置について説明する。 第1図は特公昭55−46265号で開示されている
装置の第1図をそのまた示した図であり、タンデ
シユ6からの溶湯7は、鋳型1を通つて下方に流
れるが、鋳型1の出口の内壁面を発熱体2により
加熱して溶湯が鋳型1の内では凝固穀を形成せ
ず、鋳型の出口を出ると同時に凝固穀9の形成が
開始されるようになつている。従つて鋳型中空部
の断面形状を最終製品の断面形状を同じにするか
相似形にしておけば、得られる鋳塊10は加工す
ることなく又は僅かの加工で製品とすることがで
き、而も表面に亀裂が生じることもない。なお4
はスプレーノズル、5は冷却水、8はピンチロー
ラである。 次に実施例につき説明する。 実施例 1 50%Ni−0.5%Mn−0.2%Si−残Fe(上記%は全
て重量%)の合金を上記の発熱鋳型により連続鋳
造された5.5φの鋳片に95%の冷間加工率を付与
し、熱処理条件を変えた場合の磁気特性を表−1
に示す。
[Industrial Application Field] The present invention relates to a method for producing a Ni-Fe alloy, and particularly to a method for producing a Ni-Fe alloy by a continuous casting method using a heat-generating mold. [Problems to be solved by the prior art and the invention] The conventional method for manufacturing Ni-Fe alloys involves melting the alloy, casting it into an ingot, and processing it into predetermined dimensions by hot working and cold working. . Therefore, when trying to obtain high magnetic permeability (μm) and high squareness ratio (Bγ/B 10 ), it is common to apply a high cold working rate (90% or more) to the material. . That is, in conventional processing methods, excellent magnetic properties such as high magnetic permeability and high squareness ratio cannot be imparted at low processing rates. Here, μm is the maximum magnetic permeability, Bγ is the residual magnetic flux density, and B 10 is the external magnetic field 10 (O¨e).
shows the magnetic flux density at Therefore, the present invention provides a method for producing a Ni--Fe alloy that can provide excellent magnetic properties such as high magnetic permeability and high squareness ratio even at a low cold working rate. [Means for Solving the Problems] In order to solve the above problems, the present invention uses a heat-generating mold, which will be described later, as a mold, and furthermore, appropriately selects heat treatment conditions to achieve the above objects. This is what I did. That is, according to the present invention, Ni35-85% by weight-
In a production method in which an alloy with a composition consisting of the remainder Fe is continuously cast by supplying molten steel from one end and continuously obtaining slabs from the other end while keeping the inner wall of the mold outlet above the solidification temperature with a built-in heating element. , imparting uniaxial anisotropy to the slab, and leaving the obtained slab as it is,
Alternatively, a method for producing a Ni-Fe alloy can be obtained, which is characterized in that after cold working, heat treatment is performed at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature. Note that the recrystallization temperature specified in the present invention is
-For Fe alloys, the primary recrystallization temperature is generally around 600
°C, the secondary recrystallization temperature is about 1050 °C. It is generally accepted that this temperature varies depending on the melting and casting conditions and the amount of trace impurities (oxygen, nitrogen, inclusions); Heat treatment at a temperature below the crystallization temperature is necessary to improve the magnetic properties. [Example] First, a casting apparatus using a heat-generating mold used in the present invention will be described. FIG. 1 is a second view of FIG. 1 of the apparatus disclosed in Japanese Patent Publication No. 55-46265, in which the molten metal 7 from the tundish 6 flows downward through the mold 1. The inner wall surface of the outlet is heated by a heating element 2 so that the molten metal does not form solidified grains in the mold 1, but starts forming solidified grains 9 as soon as it exits the mold outlet. Therefore, if the cross-sectional shape of the hollow part of the mold is made to be the same or similar to the cross-sectional shape of the final product, the obtained ingot 10 can be made into a product without any processing or with only a small amount of processing. No cracks will occur on the surface. Note 4
5 is a spray nozzle, 5 is a cooling water, and 8 is a pinch roller. Next, an example will be explained. Example 1 An alloy of 50%Ni-0.5%Mn-0.2%Si-remaining Fe (all percentages are by weight) was continuously cast into a 5.5φ slab using the above exothermic mold, and a 95% cold working rate was applied. Table 1 shows the magnetic properties when the heat treatment conditions are changed.
Shown below.

【表】 この合金では600℃が一次再結晶温度で、1050
℃が二次再結晶温度であり、表−1で明らかなよ
うに、600℃以上、1050℃以下で熱処理を行うこ
とによりμmは50×103以上で角型比が80%以上
を同時に満足できる。 なお、比較例として従来のインゴツト法によつ
て得た鋳片と同時に熱処理した時のデータも併せ
て記している。 本発明は従来法に比し、明らかにμmでも角型
比でも格段に優れていることが分かる。即ち、従
来法でも600−1050℃での熱処理により、μmも
角型比も向上はする。しかし、μmが50×103
上、角型比80%以上を同時に満足するには、本発
明で言う、一次再結晶温度以上、二次再結晶温度
未満での熱処理が必要である事が明らかである。 なお一次再結晶温度未満の熱処理温度において
も、従来法より優れた磁気特性が得られるもの
の、このような低温で処理した場合材料の硬さが
高く、二次加工(曲げ、潰し)が困難となり実用
的に不適である。又、二次再結晶温度以上では従
来法の方がむしろ磁気特性が優れている。 なお上記の試料であるNi−Fe合金には、Mn、
Siが含まれているが、この様なNi−Fe合金には
一般的に脱酸剤、脱硫剤、特性改善の為の添加元
素として、上記のほかにC、Al、Ti、Zr、Ca、
Mg、MM、Cr、Mo、Cu、Nd、Ta等が添加さ
れている。しかしながらこの様な添加元素はNi、
Feに比べ僅かであり、上記の一次再結晶温度以
上、二次再結晶温度以下という条件を変えるもの
ではない。 実施例 2 表−2に示すような組成のNi−Feの系合金5
種類を発熱鋳型を有する連続鋳造法で鋳片を得
た。比較のために従来のインゴツト法による鋳片
も各々用意した。
[Table] For this alloy, 600℃ is the primary recrystallization temperature, and 1050℃ is the primary recrystallization temperature.
℃ is the secondary recrystallization temperature, and as shown in Table 1, by performing heat treatment at 600℃ or higher and 1050℃ or lower, μm can be 50×10 3 or higher and the squareness ratio can be 80% or higher at the same time. can. As a comparative example, data obtained when the slab was heat treated at the same time as the slab obtained by the conventional ingot method is also shown. It can be seen that the present invention is clearly much superior to the conventional method in terms of μm and squareness ratio. That is, even with the conventional method, both μm and squareness ratio can be improved by heat treatment at 600-1050°C. However, in order to simultaneously satisfy μm of 50×10 3 or more and squareness ratio of 80% or more, it is clear that heat treatment at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature is required in the present invention. It is. Although magnetic properties superior to conventional methods can be obtained even at heat treatment temperatures below the primary recrystallization temperature, the hardness of the material increases when treated at such low temperatures, making secondary processing (bending, crushing) difficult. Practically unsuitable. Further, at temperatures above the secondary recrystallization temperature, the conventional method has better magnetic properties. The Ni-Fe alloy sample above contains Mn,
Although Si is included, such Ni-Fe alloys generally contain C, Al, Ti, Zr, Ca,
Mg, MM, Cr, Mo, Cu, Nd, Ta, etc. are added. However, such additive elements include Ni,
It is small compared to Fe, and does not change the above-mentioned conditions of being above the primary recrystallization temperature and below the secondary recrystallization temperature. Example 2 Ni-Fe alloy 5 having the composition shown in Table 2
A slab was obtained using a continuous casting method with a heat-generating mold. For comparison, slabs produced using the conventional ingot method were also prepared.

【表】【table】

【表】 こちらの鋳片を冷間加工率を0%、30%、60
%、95%に変化させ、それを900℃×2時間(水
素中)で熱処理を施した。そのときのμm(左)
と角型比Bγ/B10(右)の特性を表−3に従来の
インゴツト法によるものと併せて示した。
[Table] The cold working rate of this slab is 0%, 30%, 60
% and 95%, and heat treated at 900°C for 2 hours (in hydrogen). μm at that time (left)
and squareness ratio Bγ/B 10 (right) are shown in Table 3 together with those obtained by the conventional ingot method.

〔発明の効果〕〔Effect of the invention〕

以上、本発明について説明したが、発熱鋳型を
用いて鍛造し、一次再結晶温度(600℃)以上、
二次再結晶温度(1050℃)未満で熱処理すること
により、従来法に比し低加工率側で透磁率が約2
〜3倍、角形比で約1.1〜1.3倍の優れた磁気特性
を得ることができ、最終製品を得るまでのコスト
が、装置の面から又時間の面から大きく低減され
る。
As mentioned above, the present invention has been explained, but by forging using a heat-generating mold,
By heat-treating below the secondary recrystallization temperature (1050℃), the magnetic permeability is approximately 2 on the low processing rate side compared to the conventional method.
It is possible to obtain excellent magnetic properties of ~3 times and squareness ratio of approximately 1.1 to 1.3 times, and the cost to obtain the final product is greatly reduced in terms of equipment and time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造方法において使用す
る鍛造装置の構成の断面を示す図である。 記号の説明:1は鋳型、2は発熱体、4にスプ
レーノズル、6はタンデシユ、7は溶湯、8はピ
ンチロール、9は凝固殻、10は鋳塊をそれぞれ
あらわしている。
FIG. 1 is a cross-sectional view of the configuration of a forging device used in the manufacturing method according to the present invention. Explanation of symbols: 1 represents the mold, 2 represents the heating element, 4 represents the spray nozzle, 6 represents the tundish, 7 represents the molten metal, 8 represents the pinch roll, 9 represents the solidified shell, and 10 represents the ingot.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni35−85重量%−残部Feよりなる組成の合
金を、一端から溶鋼を供給し、他端から鋳片を連
続的に得るための鋳型出口の内壁を、内蔵する発
熱体で凝固温度以上に保ちながら連続鋳造する製
造方法において、前記鋳片に一軸異方性を付与
し、得られた鋳片のまま、もしくは冷間加工を施
した後、一次再結晶温度以上、二次再結晶温度未
満の温度で熱処理を行うことを特徴とするNi−
Fe合金の製造方法。
1 An alloy with a composition of 35-85% Ni by weight and the balance Fe is supplied with molten steel from one end, and the inner wall of the mold outlet for continuously obtaining slabs from the other end is heated above the solidification temperature using a built-in heating element. In the production method of continuous casting while maintaining the temperature, uniaxial anisotropy is imparted to the slab, and the resulting slab is used as it is, or after cold working, at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature. Ni−, which is characterized by being heat treated at a temperature of
Method of manufacturing Fe alloy.
JP26239085A 1985-11-25 1985-11-25 Manufacture of ni-fe alloy Granted JPS62124264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26239085A JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26239085A JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Publications (2)

Publication Number Publication Date
JPS62124264A JPS62124264A (en) 1987-06-05
JPH0332628B2 true JPH0332628B2 (en) 1991-05-14

Family

ID=17375098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26239085A Granted JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Country Status (1)

Country Link
JP (1) JPS62124264A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318658A (en) * 2020-03-24 2020-06-23 山西太钢不锈钢股份有限公司 Invar alloy and continuous casting production method thereof

Also Published As

Publication number Publication date
JPS62124264A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
CN104294155B (en) A kind of Ultra-low carbon orientation silicon steel and preparation method thereof
KR102596515B1 (en) Hot rolled light-gauge martensitic steel sheet and method for making the same
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
JPS63195253A (en) Manufacture of phosphor bronze sheet metal
US5102477A (en) Method of manufacturing high permeability fe-ni system alloy
JPH0332628B2 (en)
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP3001718B2 (en) Manufacturing method of thin cast slab of ferritic stainless steel
JP6651306B2 (en) Continuous casting method
US20110303329A1 (en) Cast iron semi-finished product excellent in workability and method of production of the same
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JP4466335B2 (en) Steel continuous casting method
JPS61193758A (en) Production of hot worked steel material having good surface characteristic
JPH11131146A (en) Production of strip of iron-nickel alloy from continuously cast thin strip
KR20180040441A (en) Inoculant alloy, methods for fabricating the same and refining as-cast structure of steel
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method
JPH01271039A (en) Manufacture of thin berylium-copper sheet
JPS61195746A (en) Mold for continuous casting
JPS6217020B2 (en)
JPH04293755A (en) Production of fe-ni high permeability alloy
JPS63230261A (en) Production of alloy
JPS6340209A (en) Very fine wire for electronic equipment
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic