JPS62124264A - Manufacture of ni-fe alloy - Google Patents

Manufacture of ni-fe alloy

Info

Publication number
JPS62124264A
JPS62124264A JP26239085A JP26239085A JPS62124264A JP S62124264 A JPS62124264 A JP S62124264A JP 26239085 A JP26239085 A JP 26239085A JP 26239085 A JP26239085 A JP 26239085A JP S62124264 A JPS62124264 A JP S62124264A
Authority
JP
Japan
Prior art keywords
temp
alloy
mold
billet
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26239085A
Other languages
Japanese (ja)
Other versions
JPH0332628B2 (en
Inventor
Tadamichi Nakazato
中里 忠道
Atsumi Ono
大野 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
OCC Co Ltd
Original Assignee
Tohoku Metal Industries Ltd
OCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd, OCC Co Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP26239085A priority Critical patent/JPS62124264A/en
Publication of JPS62124264A publication Critical patent/JPS62124264A/en
Publication of JPH0332628B2 publication Critical patent/JPH0332628B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain an alloy material having superior magnetic properties by subjecting an Ni-Fe alloy containing particularly large amounts of Ni and having the balance Fe to continuous casting to be formed into billet, by providing uniaxial directionality with the billet, and by subjecting the billet in the above state or after cold working to heat treatment at a temp. between the primary recrystallization temp. and below the secondary recrystallization temp. CONSTITUTION:The Ni-Fe alloy has a composition consisting of 35-85wt% Ni and the balance Fe. In a continuous caster, a molten metal 7 from a tundish 6 is heated by means of heating units 2 in a mold 1, which is solidified the moment is comes out of the outlet of the mold 1. The solidified billet is water- cooled, so crystals are provided with uniaxial directionality in the casting direction. The heat treatment is carried out at a temp. between the primary recrystallization temp., about 600 deg.C, and below the secondary recrystalization temp. about 1,050 deg.C. In this way, excellent magnetic properties can be obtained and simultaneously costs of product can be sharply reduced in respect of equipment and time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNi−Feの合金の製造方法に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing a Ni-Fe alloy.

特にNi−Feの合金を発熱鋳型を有する連続鋳造法で
製造する方法に関するものである。
In particular, the present invention relates to a method for manufacturing a Ni-Fe alloy by a continuous casting method using a heat-generating mold.

〔従来従術と発明が解決すべき問題点〕従来のNi−F
eの系合金の製造方法は9本合金を溶解後インゴットに
鋳造し、熱間加工、冷間加工により所定の寸法に加工さ
nる。そのため高い透磁率(μm)、高い角型比(Br
/B 1o )を得ようとする場合には高い冷間加工率
(90%以上)を材料に付与する方法が一般的にとられ
ている。即ち、従来の加工方法においては、低い加工率
では高透磁率、高角型比という優れた磁気的性質を付与
することはできない。ここにμmは最大透磁率、Brは
残留磁束密度+ B10は外部磁界10(6e)におけ
る磁束密度をしめす。
[Problems to be solved by conventional techniques and the invention] Conventional Ni-F
The method for manufacturing the alloys of series e is as follows: nine alloys are melted, cast into an ingot, and processed into predetermined dimensions by hot working and cold working. Therefore, high magnetic permeability (μm) and high squareness ratio (Br
/B 1o ), a method of imparting a high cold working rate (90% or more) to the material is generally used. That is, in conventional processing methods, excellent magnetic properties such as high magnetic permeability and high squareness ratio cannot be imparted at low processing rates. Here, μm is the maximum magnetic permeability, Br is the residual magnetic flux density + B10 is the magnetic flux density in the external magnetic field 10 (6e).

したがって本発明は、冷間加工率が低くても高透磁率、
高角型比の優れた磁気特性を付与することのできるNi
−Fe合金の製造方法を提供するにある。
Therefore, the present invention provides high magnetic permeability and
Ni can provide excellent magnetic properties with high squareness ratio
-Providing a method for producing an Fe alloy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題点を解決するために、鋳型として後
に説明する発熱鋳型を用い、さらに熱処理条件を適正に
選択して上記の目的を達成するようにしたものである。
In order to solve the above-mentioned problems, the present invention uses a heat-generating mold, which will be described later, as a mold, and furthermore, appropriately selects heat treatment conditions to achieve the above-mentioned object.

すなわち本発明によれば、 Ni 35−ss重itチ
ー残部Feよシなる組成の合金を、一端から溶鋼を供給
し、他端から鋳片を連続的に得るため鋳型出口の内壁を
、内蔵する発熱体で凝固温度以上に保ちながら連続鋳造
する製造方法において、前記鋳片に一軸異方性を付与し
、得られた鋳片のまま、もしくは冷間加工を施した後。
That is, according to the present invention, an alloy having a composition of Ni 35-ss heavy and the remainder Fe is supplied with molten steel from one end and an inner wall of the mold outlet is built in to continuously obtain slabs from the other end. In a production method in which continuous casting is performed while maintaining the temperature above the solidification temperature using a heating element, uniaxial anisotropy is imparted to the slab, and the resulting slab is used as it is or after cold working.

一次再結晶温度以上、二次再結晶温度未満の温度で熱処
理を行うことを特徴とするNi−Fe合金の製造方法が
得られる。
A method for producing a Ni-Fe alloy is obtained, which is characterized in that heat treatment is performed at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature.

尚9本発明で規定している再結晶温度は。9. The recrystallization temperature specified in the present invention is:

の温度は溶解条件や鋳造条件による。微量不純物(酸素
、窒素、介在物)の童により変化することは一般的に認
められることであるが、いずれにしても一次再結晶温度
以上、二次再結晶温度未満の温度で熱処理することが磁
気特性な改善させるために必要である。
The temperature depends on the melting and casting conditions. It is generally accepted that trace impurities (oxygen, nitrogen, inclusions) change depending on the composition, but in any case, heat treatment at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature is recommended. Necessary to improve magnetic properties.

〔実施例〕〔Example〕

はじめに本発明において使用する発熱鋳型を用いた鍛造
装置について説明する。
First, a forging device using a heat-generating mold used in the present invention will be explained.

第1図は特公昭55−46265号で開示されている装
置の第1図をそのまた示した図であり。
FIG. 1 is a diagram showing another version of FIG. 1 of the apparatus disclosed in Japanese Patent Publication No. 55-46265.

タンプジュロからの溶湯7は、鋳型1を通って下方に流
れるが、鋳型1の出口の内壁面を発熱体2により加熱し
て溶湯が鋳型1の内では凝固殻を形成せず、鋳型の出口
を出ると同時に凝固殻9の形成が開始されるようになっ
ている。従って鋳型中空部の断面形状を最終製品の断面
形状を同じにするか相似形にしておけば、得られる鋳塊
10は加工することなく又は僅かの加工で製品とするこ
とができ、而も表面に亀裂が生じることもない。なお4
はスプレーノズル、5は冷却水、8はピンチローラであ
る。
The molten metal 7 from the tampjuro flows downward through the mold 1, but the inner wall surface of the outlet of the mold 1 is heated by the heating element 2, so that the molten metal does not form a solidified shell in the mold 1 and the outlet of the mold is heated. Formation of the solidified shell 9 is started at the same time as it exits. Therefore, by making the cross-sectional shape of the mold hollow part the same as or similar to the cross-sectional shape of the final product, the obtained ingot 10 can be made into a product without any processing or with a small amount of processing, and the surface No cracks will occur. Note 4
5 is a spray nozzle, 5 is a cooling water, and 8 is a pinch roller.

次に実施例につき説明する。Next, an example will be explained.

実施例−1 50%Ni−0,5%Mn−0,2%Si−残Pa(上
記チは全て重量%)の合金を上記の発熱鋳型により連φ 続鋳造さ、れた5、5Iの鋳片に95%の冷間加工率を
付与し、熱処理条件を変えた場合の磁気特性を表−1に
示す。
Example-1 An alloy of 50% Ni-0.5% Mn-0.2% Si-remaining Pa (all the above values are by weight) was continuously cast in the above-mentioned exothermic mold. Table 1 shows the magnetic properties when the slab was given a cold working rate of 95% and the heat treatment conditions were changed.

(表−1) この合金では600℃が一次再結晶温度で。(Table-1) For this alloy, 600°C is the primary recrystallization temperature.

1050℃が二次再結晶温度であり9表−1で明らかな
ように、600℃以上、1050℃以下で熱処理を行う
ことによりμ、は50X10’以上で角型比1が80チ
以上を同時に満足できる。
1050℃ is the secondary recrystallization temperature, and as is clear from Table 9-1, by performing heat treatment at 600℃ or higher and 1050℃ or lower, μ is 50×10′ or higher and the squareness ratio 1 is 80× or higher at the same time. Satisfied.

なお、比較例として従来のインゴット法によって得た鋳
片と同時に熱処理した時のデータも併せて記している。
As a comparative example, data obtained when the slab was heat treated at the same time as the slab obtained by the conventional ingot method is also shown.

本発明は従来法に比し、明らかにμmでも角型比でも格
段に優れていることが分かる。即ち。
It can be seen that the present invention is clearly much superior to the conventional method in terms of μm and squareness ratio. That is.

従来法でも600−1050℃での熱処理により。Conventional methods also include heat treatment at 600-1050°C.

μmも角型比も向上はする。しかし2μmが50×10
5以上、角型比80%以上を同時に満足するには2本発
明で言う、一次再結晶温度以上、二次再結晶温度未満で
の熱処理が必要である事が明らかである。
Both μm and squareness ratio improve. However, 2μm is 50×10
5 or higher and squareness ratio of 80% or higher at the same time, it is clear that heat treatment at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature, which is referred to in the present invention, is required.

なお−次回結晶温度未満の熱処理温度においても、従来
法より優れた磁気特性が得られるものの、このような低
温で処理した場合材料の硬さが高く、二次加工(曲げ、
潰し)が困難となり実用的に不適である。又、二次再結
晶温度以上では従来法の方がむしろ磁気特性が優れてい
る。
Although magnetic properties superior to conventional methods can be obtained even at heat treatment temperatures below the next crystallization temperature, the hardness of the material increases when treated at such low temperatures, making secondary processing (bending, bending,
This makes it difficult to crush (crush), making it practically unsuitable. Further, at temperatures above the secondary recrystallization temperature, the conventional method has better magnetic properties.

なお上記の試料であるN 1−Fe合金にはMn。Note that the above sample N1-Fe alloy contains Mn.

Slが含まれているが、この様なNi−Fe合金には一
般的に脱酸剤、脱硫剤、特性改善の為の添加元素として
、上記のほかにC,Al、 Ti。
Although it contains Sl, such Ni-Fe alloys generally contain C, Al, and Ti in addition to the above as additive elements for deoxidizing agents, desulfurizing agents, and property improvement.

Zr、Ca、Mg、MM、Cr、Mo、Cu、Nd、T
a等が添加されている。しかしながらこの様な添加元素
はNi、Fθに比べ僅かであり、上記の一次再結晶温度
以上、二次再結晶温度以下という条件を変えるものでは
ない。
Zr, Ca, Mg, MM, Cr, Mo, Cu, Nd, T
A etc. are added. However, such additive elements are small compared to Ni and Fθ, and do not change the above-mentioned conditions of being above the primary recrystallization temperature and below the secondary recrystallization temperature.

実施例−2 表−2に示すような組成のNi−Fe0糸合金5種類を
発熱鋳型を有する連続鋳造法で鋳片を得た。比較のため
に従来のインゴット法による鋳片も各々用意した。
Example 2 Five types of Ni-Fe0 yarn alloys having compositions shown in Table 2 were obtained by continuous casting using a heat-generating mold. For comparison, slabs produced using the conventional ingot method were also prepared.

これらの鋳片を冷間加工率を0%、60%、60%。These slabs were cold worked at a rate of 0%, 60%, and 60%.

(右)の特性な表−5に従来のインゴット法によるもの
と併せて示した。
(Right) The characteristics are shown in Table 5 along with those made by the conventional ingot method.

(表−3) 牡下永日 熱処理を施すことにより各々の合金の特性向上が図られ
ていることが明らかであるが9本発明によれば9μmも
Br/B、。も大幅に向上し、従来インゴット法材を処
理したものよりも極めて大きく特性改善が見られる。と
りわけ、従来のインゴット法では加工率90%以上にし
なければ得られないμtna I3r/B11)が発熱
鋳型を有する連続鋳造法による鋳片であれば、加工率が
小さくても、極端に言えば0%の加工率であっても得ら
れる。この現象は発熱鋳型内で鋳片が凝固する際、鋳片
が発熱鋳型の外で水冷却されているため、結晶が鋳造方
向に揃って凝固することに起因している。すなわち−軸
異方性を付与することによる。加工率が小さくできると
言うことは、量産工程では装置がより簡易なものに、又
加工時間の効率化を図かることになり、コスト面で極め
て合理的なものとなり有利である。
(Table 3) It is clear that the properties of each alloy are improved by applying the Oshita Eiichi heat treatment, but according to the present invention, the Br/B ratio is as high as 9 μm. The characteristics have also been significantly improved, and the properties have been significantly improved compared to those processed using conventional ingot method materials. In particular, μtna I3r/B11), which cannot be obtained with the conventional ingot method unless the processing rate is 90% or more, can be reduced to 0 even if the processing rate is small, if the slab is produced by a continuous casting method with a heat-generating mold. % processing rate. This phenomenon is caused by the fact that when the slab solidifies in the heat-generating mold, the crystals solidify in alignment with the casting direction because the slab is water-cooled outside the heat-generating mold. That is, by imparting -axis anisotropy. The fact that the processing rate can be reduced is advantageous in the mass production process because the equipment can be simpler and the processing time can be made more efficient, making it extremely rational in terms of cost.

〔発明の効果〕〔Effect of the invention〕

以上1本発明について説明したが2発熱鋳型を用いて鍛
造し、−次頁結晶温度(600℃)以上。
1. The present invention has been described above, but 2. It is forged using an exothermic mold, and the crystal temperature (600° C.) or higher.

二次再結晶温度(1050’C)未満で熱処理すること
により、従来法に比し低加工率側で透磁率が約2〜5倍
、角形比で約1.1〜1.6倍の優れた磁気特性を得る
ことができ、最終製品を得るまでのコストが、装置の面
から又時間の面から大きく低減される。
By heat-treating below the secondary recrystallization temperature (1050'C), magnetic permeability is approximately 2 to 5 times better at low processing rates and approximately 1.1 to 1.6 times better in squareness than conventional methods. The cost of obtaining the final product can be greatly reduced in terms of equipment and time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による製造方法において使用する鍛造装
置の構成の断面を示す図である。 記号の説明:1は鋳型、2は発熱体、4にスプレーノズ
ル、6はタンプシュ、7は溶湯、8はピンチロール、9
は凝固殻、10は鋳塊をそれぞれあられしている。
FIG. 1 is a cross-sectional view of the configuration of a forging device used in the manufacturing method according to the present invention. Explanation of symbols: 1 is the mold, 2 is the heating element, 4 is the spray nozzle, 6 is the tamp, 7 is the molten metal, 8 is the pinch roll, 9
10 indicates the solidified shell, and 10 indicates the ingot.

Claims (1)

【特許請求の範囲】[Claims] Ni35−85重量%−残部Feよりなる組成の合金を
、一端から溶鋼を供給し、他端から鋳片を連続的に得る
ための鋳型出口の内壁を、内蔵する発熱体で凝固温度以
上に保ちながら連続鋳造する製造方法において、前記鋳
片に一軸異方性を付与し、得られた鋳片のまま、もしく
は冷間加工を施した後、一次再結晶温度以上、二次再結
晶温度未満の温度で熱処理を行うことを特徴とするNi
−Fe合金の製造方法。
An alloy with a composition of 35-85% Ni by weight and the balance Fe is supplied with molten steel from one end and the inner wall of the mold outlet for continuously obtaining slabs from the other end is kept above the solidification temperature by a built-in heating element. In the manufacturing method of continuous casting, the slab is given uniaxial anisotropy, and the slab is cast as is or after cold working, at a temperature higher than the primary recrystallization temperature and lower than the secondary recrystallization temperature. Ni characterized by heat treatment at high temperature
-Method for producing Fe alloy.
JP26239085A 1985-11-25 1985-11-25 Manufacture of ni-fe alloy Granted JPS62124264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26239085A JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26239085A JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Publications (2)

Publication Number Publication Date
JPS62124264A true JPS62124264A (en) 1987-06-05
JPH0332628B2 JPH0332628B2 (en) 1991-05-14

Family

ID=17375098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26239085A Granted JPS62124264A (en) 1985-11-25 1985-11-25 Manufacture of ni-fe alloy

Country Status (1)

Country Link
JP (1) JPS62124264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318658A (en) * 2020-03-24 2020-06-23 山西太钢不锈钢股份有限公司 Invar alloy and continuous casting production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318658A (en) * 2020-03-24 2020-06-23 山西太钢不锈钢股份有限公司 Invar alloy and continuous casting production method thereof

Also Published As

Publication number Publication date
JPH0332628B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
JP6787238B2 (en) Manufacturing method of steel for machine structure
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
JPS63112058A (en) Continuous casting method
JPS62124264A (en) Manufacture of ni-fe alloy
JPS626615B2 (en)
US8302667B2 (en) Cast iron semi-finished product excellent in workability and method of production of the same
JPH0472014A (en) Method for continuously casting spheroidal graphite cast iron bar
JP3001718B2 (en) Manufacturing method of thin cast slab of ferritic stainless steel
JPH03294043A (en) Method for continuously casting beryllium copper alloy
US3498851A (en) Method for producing an anisotropic permanent magnet material
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JP3380032B2 (en) Method for producing high-strength steel wire with excellent drawability
JPS61193758A (en) Production of hot worked steel material having good surface characteristic
KR20180040441A (en) Inoculant alloy, methods for fabricating the same and refining as-cast structure of steel
JP4466335B2 (en) Steel continuous casting method
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method
JP2021055146A (en) Spheroidal graphite cast iron and method for producing the same
JPH09122839A (en) Manufacture of thin steel strip
JPH11131146A (en) Production of strip of iron-nickel alloy from continuously cast thin strip
JPS63230261A (en) Production of alloy
JPS60204826A (en) Production of ti high tensile steel having excellent low- temperature toughness
JPH01290715A (en) Production of fe-ni alloy sheet excellent in magnetic property
JPH01271039A (en) Manufacture of thin berylium-copper sheet