JPS6217020B2 - - Google Patents

Info

Publication number
JPS6217020B2
JPS6217020B2 JP60073841A JP7384185A JPS6217020B2 JP S6217020 B2 JPS6217020 B2 JP S6217020B2 JP 60073841 A JP60073841 A JP 60073841A JP 7384185 A JP7384185 A JP 7384185A JP S6217020 B2 JPS6217020 B2 JP S6217020B2
Authority
JP
Japan
Prior art keywords
ribbon
less
silicon
silicon steel
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60073841A
Other languages
Japanese (ja)
Other versions
JPS60234949A (en
Inventor
Noboru Tsuya
Kenichi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60073841A priority Critical patent/JPS60234949A/en
Publication of JPS60234949A publication Critical patent/JPS60234949A/en
Publication of JPS6217020B2 publication Critical patent/JPS6217020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は4〜10%の珪素と、10%以下のコバル
ト、3%以下のニツケルとを含む高珪素鋼薄帯と
その製造方法に関するものである。 鉄に3%程度の珪素を含有させた珪素鋼薄帯は
トランスなどの電気機器の鉄心材料として広く用
いられている。これらの珪素鋼板は、通常、結晶
粒の結晶軸方位がいろいろな方向にばらついた無
方向性珪素鋼板と、結晶粒の〔100〕軸が圧延方
向に揃つた方向性珪素鋼板に分けられる。前者は
主として磁束がいろいろな方向にかかる回転機や
発電機の鉄心材料に用いられ、後者は磁束が一方
向のみにかかるトランスなどの鉄心材料に用いら
れている。このような応用面で、最も強く要請さ
れる点は、第1に素材の鉄損を極力小さくするこ
とである。これはエネルギー価格の高騰化のため
にますます強く要請されると予想される。第2に
素材の磁歪振動による機器の騒音を可能な限り低
く抑えることである。この要請も、又、ますます
強くなろうと考えられる。これらの要請に応える
ために、無方向性珪素鋼においては鉄損を劣化さ
せる炭素、窒素、酸素、硫黄などの混入不純物を
極力低くし、又〔100〕軸を板面に揃える技術が
開発され、効果があがつてきている。一方、方向
性珪素鋼においては〔100〕軸の圧延方向へ集積
度をさらに高くする技術や、コーテイング処理に
よつて鋼板に張力を加え鉄損や見かけ上の磁歪を
小さくする技術が開発されてきた。 しかしながら、従来の珪素鋼板の技術は、ほぼ
完成の域に達し、磁気特性や磁歪特性の改良は飽
和寸前に来ているという状態であつて、これから
多大な努力をおこなつても得られる磁気特性の向
上はわずかなものであると予想される。 ところで、一方、鉄に珪素を6.5%程度含有さ
せた高珪素鋼は、飽和磁束密度が約1.80T(テス
ラ)と低くはなるが、磁歪が実質的に消失し、
又、磁気異方性も半減するので、3%程度の珪素
鋼よりも優れた軟磁性(透磁率μが高く、保磁力
Hcが低い)を示すことが1950年代から知られて
いる。この素材をトランスなどに組んだ場合適当
な励磁磁束密度においては鉄損が極めて低く、し
かも実質的に騒音がなくなるという特性があるの
で応用上はきわめて魅力のある材料である。しか
し珪素量が約4%を超すと素材マトリツクスが硬
化する上に、規則格子(Fe3Si)があらわれるよ
うになり急激に脆化する。そのために圧延が極度
に困難となり、実質的に製造が不可能になるばか
りでなく剪断、打ち抜きなどの加工もできなくな
る。このような事情で、4%以上の高珪素鋼、特
に6.5%程度の高珪素鋼は、その優れた磁気特性
にもかかわらず実用に供されていないのである。 これに対して本発明者らは、珪素を4〜10%、
コバルト10%以下、ニツケル3%以下を含有する
珪素鋼の溶融体を超急冷して得た薄帯は、結晶粒
が非常に微細で、規則格子が実質的になく可撓性
と加工性に極めて富み、かつ磁気特性の優れた高
珪素鋼薄帯が得られることを見出し鋭意研究を進
めて本発明を完成させた。 本発明は下記のとおりである。 第1発明 重量%で珪素4〜10%と残部実質的に鉄および
不可避不純物から成り、副成分としてコバルト10
%以下、ニツケル3%以下の何れか1種又は2種
以上を含有し、結晶粒が1〜100μmで、かつ規
則格子Fe3Siが実質的に存在せず、結晶粒が薄帯
表面に対し垂直に成長した柱状晶からなり、加工
性と磁気特性の優れた高珪素鋼薄帯。 第2発明 重量%で珪素4〜10%と残部実質的に鉄および
不可避不純物から成り、副成分としてコバルト10
%以下、ニツケル3%以下の何れか1種又は2種
以上と、アルミニウム2%以下、マンガン2%以
下の何れか1種又は2種以上とを含有し、結晶粒
が1〜100μmで、かつ規則格子Fe3Siが実質的に
存在せず、結晶粒が薄帯表面に対し垂直に成長し
た柱状晶からなり、加工性と磁気特性の優れた高
珪素鋼薄帯。 第3発明 重量%で珪素4〜10%を含有し、残部鉄および
不可避不純物から成り、副成分としてコバルト10
%以下、ニツケル3%以下の何れか1種又は2種
を含有する溶融体を103〜106℃/secの冷却速度
で超急冷し、結晶粒が1〜100μmで、かつ規則
格子Fe3Siが実質的に存在せず、結晶粒が薄帯表
面に対し垂直に成長した柱状晶からなる薄帯を得
ることを特徴とする加工性と磁気特性の優れれた
高珪素鋼薄帯の製造方法。 第4発明 重量%で珪素4〜10%を含有し、残部鉄および
不可避不純物から成り、副成分としてコバルト10
%以下、ニツケル3%以下の何れか1種又は2種
を含有する溶融体を103〜106℃/secの冷却速度
で超急冷し、結晶粒が1〜100μmで、かつ規則
格子Fe3Siが実質的に存在せず、結晶粒が薄体表
面に対し垂直に成長した柱状晶からなる薄帯を得
る工程と、得られた珪素鋼薄帯を400〜1300℃で
焼鈍を行ない結晶粒を0.05〜10mmに成長せしめ規
則格子Fe3Siが実質的に存在する薄帯を得る工程
とよりなることを特徴とする加工性と磁気特性の
優れた高珪素鋼薄帯の製造方法。 第5発明 珪素4〜10%、コバルト10%以下ニツケル3%
以下を含有し、残部が実質的に鉄および不可避不
純物から成り、結晶粒が微細でかつ規則格子
Fe3Siが実質的に存在しない高珪素鋼薄帯を圧延
し、更に400〜1300℃で焼鈍し結晶粒を0.05〜10
mmに成長せしめ規則格子Fe3Siが実質的に存在す
る薄帯を得ることを特徴とする加工性と磁気特性
の優れた高珪素鋼薄帯の製造方法。 第6発明 珪素4〜10%、コバルト10%以下、ニツケル3
%以下を含有し、残部が実質的に鉄および不可避
不純物から成り、結晶粒が1〜100μmでかつ規
則格子Fe3Siが実質的に存在しない高珪素鋼薄帯
を積層してなる電気機器用鉄心。 第7発明 珪素4〜10%、コバルト10%以下、ニツケル3
%以下を含有し、残部が実質的に鉄および不可避
不純物から成り、結晶粒が0.05〜10mmでかつ規則
格子Fe3Siが実質的に存在する高珪素鋼薄帯を積
層してなる電気機器用鉄心。 ここで、不可避不純物元素は炭素、窒素、酸
素、硫黄が総量で0.1%以下であることが好まし
い。なお、高珪素鋼薄帯に加える副成分として
は、コバルト10%以下、ニツケル3%以下の何れ
か1種又は2種以上の外に、アルミニウム2%以
下、マンガン2%以下の何れか1種又は2種以上
とを含有させることができる。 高珪素鋼の溶融体を冷却体上において、超急冷
する場合、少くとも400℃に達するまで103〜106
℃/secの速度で急冷することが好ましい。 高珪素鋼の溶融体の溶融温度は融点より300℃
以上高くない温度であることが好ましい。 なお、広幅薄帯を得たいときは溶融体を、2孔
以上の噴出孔を近接して必要な薄帯幅にわたつて
一列に並べてなる多孔ノズルから噴出させること
により達成できる。 なお、不純物元素としてはクロム、モリブデ
ン、タングステン、バナジウム、チタンの何れか
1種又は2種を0.1%以下含有してもよいものと
する。 本発明により得られた高珪素鋼薄帯により電気
機器用鉄心を製造する場合は、前記のように超急
冷により得られた薄帯を積層したままか、この積
層した鉄心を400℃〜650℃の温度で10分〜5時間
焼鈍し規則格子Fe3Siを生成せしめるようにして
得られる。このように鉄心を焼鈍すると、結晶粒
が0.05〜10mmに成長し、磁気特性が更に向上す
る。 第1図A,Bは、珪素6.5%、残余実質的に鉄
からなる本発明珪素鋼薄帯の組織写真の1例を示
すものであつて、Aは超急冷して得た薄帯の表面
組織Bはその断面組織であり、この写真から約5
〜10μmの直径の結晶粒が薄板表面に対して垂直
方向に配列し成長していることがわかる。第2図
は同様の薄帯の曲げ加工性を示すものであつて、
第2図Aは本発明の薄帯を4mmφの棒状体に巻き
付けた状態を示し、第2図Bは折り曲げの状態を
示すものである。第2図AおよびBより明らかな
ように従来到底可能とは考えられなかつた程に、
よく曲げることができることが理解されよう。 一方第3図は珪素3〜11%の種々の割合で含有
し、残余実質的に鉄からなる溶融体を103〜104
℃/secで超急冷して得た薄帯を最高10KGまで磁
化したときの保磁力Hc(A曲線)を従来の方法
により作つた高珪素鋼(B曲線)と比較して示し
たものである。第3図より明らかなように本発明
薄帯も従来の高珪素鋼と同様高珪素領域において
Hcが次第に低くなる現象が認められ、珪素6.5%
近傍においては、従来の3%珪素鋼と同程度の
Hcを示す。 なお、本発明薄帯は、溶融状態から急冷された
ままの状態では従来品にくらべHcが高いが、後
述するように焼鈍することによつて改善すること
ができ、従来の高珪素鉄材のレベルとすることが
できる。 このような本発明の加工性に関する特性は結晶
粒が第1図AおよびBに示すように微細なことと
規則格子が実質的に認められないことによるので
ある。しかしながら超急冷の状態で結晶粒が100
μmを超えると加工性が減じるので好ましくな
く、また一方1μm以下の如く細かくしても、実
質的に加工性の向上も認められず、余りに高速冷
却を要し経済性を損うことになる。 本発明の方法により得られた珪素鋼薄帯を熱処
理すると結晶が粗大化し、磁気特性(Hc)が著
しく向上する。これを顕微鏡写真を示して説明す
ると次のようである。 第1図CおよびDは6.4%Si−93.6%Feの組成
の珪素鋼薄帯を1200℃でアルゴンガス雰囲気中で
40分熱処理した結果を示し、Cは表面組織写真、
Dは断面組織写真である。写真で示す結晶粒の大
きさは、熱処理により粒成長が進み結晶粒径が著
しく粗大化したことを示すものである。結晶粒径
は写真からわかるように、150μm程度以上であ
る。この薄帯の結晶粒の粒径は熱処理時間、熱処
理温度の関数である。薄帯の結晶の粗大化に伴い
磁気特性(Hc)は著しく改善された。 上述の熱処理後においても、薄帯は十分な加工
性を有するが、これは結晶粒が第1図Dの顕微鏡
写真に示されるように板面に対して垂直方向に結
晶粒が発達していることおよび規則格子の実質的
に存在しないことが寄与しているものと推定され
る。 次に成分組成について説明する。 本発明の高珪素鋼薄帯は基本的には珪素を4〜
10%、コバルト10%以下、ニツケル3%以下を含
有し残部は実質的に鉄と不可避不純物から成る。 珪素が4%以下では磁気特性が従来成品と同程
度のものしか得られないし、又、珪素が10%を超
すと脆化する上にかえつて磁気特性が劣化する。
なお、珪素は5〜7%の時に最も良い磁気特性を
示すので、この範囲が好適である。珪素鋼におい
ては不可避不純物として酸素、硫黄、炭素、窒素
が混入してくるが、これらはいずれも成品中にあ
ると鉄損特性を劣化させかつ、薄帯を脆化させ加
工性も劣化させるので極力低く抑えるのが望まし
い。これらの不純物の総量が0.1%を超すと鉄損
は大きくなり従来の珪素鋼に比べて劣るので上限
を0.1%とする。なお、現在の製鋼技術において
は、0<50ppm、S<80ppm、C<100ppm、N
<50ppmとすることができるのでこの範囲内と
するのが特に好ましい。 本発明の成分組成はさらに2%以下のアルミニ
ウムと2%以下のマンガンを加えることができ
る。アルミニウムは珪素以上に強い脱酸元素であ
るのでアルミニウムを添加することにより、より
酸素の低い素材を得ることができる。又、電気抵
抗を高めるので渦電流損を低くする点で好まし
い。しかしアルミニウムは磁歪を大きくするの
で、2%以上の添加は好ましくなく、上限を2%
とする。マンガンは不可避混入元素として通常の
製鋼においては約0.05%含有されている。この元
素は酸素や硫黄と異なり珪素鋼においては、むし
ろ圧延性や磁気特性にとつて好ましいことが知ら
れている。本発明においても2%以下の添加、好
ましくは0.2〜1.3%の添加によつて磁気特性が向
上するばかりでなく、形状の良い(薄帯において
穴や幅方向端部のクラツクのない)超急冷薄帯が
得られることがわかつた。これらの現象の原因は
明らかではないが、マンガンを添加することによ
り不純物硫黄が固溶状態あるいは微細な析出物の
状態からMnSの大きな析出物に変化し、そのた
めに圧延性や磁気特性が良くなつたと考えられ
る。しかしマンガンが2%以上になると磁気特性
はかえつて劣化し、さらに硬化するために成品の
加工が困難になつてくるので、最大含有量を2%
に限定した。 本発明薄帯は珪素分の含有が高いので必然的に
飽和磁束密度が低くなる短所をもつ。Fe−Si合
金にコバルトを添加すると飽和磁束密度が高くな
るので、本発明においても必要に応じてコバルト
を添加し前記短所を補うことができる。しかしコ
バルトは極めて高価な元素であるので、本発明に
おいてはコバルトの上限を10%と限定した。ニツ
ケルはFe−Si合金においても靭性を増す作用を
もつ元素であり、本発明においてニツケルを3%
以下、好ましくは0.2〜1.5%添加すると良質の超
急冷薄帯ができるようになることが認められた。 以上述べた以外に不純物として含有するクロ
ム、モリブデン、タングステン、バナジウム、チ
タン、錫等の元素を約0.1%以下程度の微量含有
することがあつても、本発明の効果を何ら妨げる
ものではない。 さて、従来の珪素鋼板の製造においては、鋼塊
あるいは連続鋳造スラブを熱間圧延して1.5〜4
mm厚のホツトストリツプにしたあと、適当な冷間
圧延と熱処理を組み合わせて通常0.28〜0.50mm厚
の成品を作るのであるが、本発明においては、前
述した組成をもつ珪素鋼溶融体を103〜106℃/
secの冷却速度で直接超急冷して直ちに所定の厚
みをもつ薄帯に仕上げるのである。すなわち珪素
鋼溶融体から直接に成品もしくはそれに近い半成
品にするのであつて、従来工程に不可欠であつた
熱間圧延工程および冷間圧延工程を完全に除いて
いるのである。溶融体を超急冷して薄帯とする方
法はそれが充分に幅が広く所定の厚みがあり、か
つ厚みが均一であり、連続してコイル状にとり出
せるものであればどのような方法であつても良い
が、代表的には第4および5図に示すように、溶
融体を連続的に移動する移動面上に適当な形状を
もつ孔から連続的に噴出させて急冷凝固させ、所
定の厚みをもつストリツプをコイル状に得るのが
よい。 第4図aは、移動面として椀状回転体2を用
い、この内側回転面上に噴出ノズル1より溶融体
4を噴出させ急冷凝固された連続体状薄帯3を得
る装置の略図が示されている。又第4図b,cに
は1個の回転ロール5上あるいは同一の大きさと
は限らない2個の近接した回転ロール5′,5″間
に噴出孔から珪素鋼溶融体を連続的に噴出し2個
のロール間で超急冷することにより連続状薄帯を
得る装置の略図が示されている。第4図dは金属
帯製無限コンベア7と回転ロール5間に溶融珪素
鋼4を供給し、急速冷却させて連続的に薄帯を得
る装置の略図を示す。 本発明により珪素鋼薄帯を上記装置を用いて製
造する場合、重要なことは十分速い速度で溶融体
が凝固冷却することである。まず、噴出孔から噴
出され移動する冷却体にあたつて凝固するまでの
時間が長いと噴出溶融体の流れが一体でなくな
り、ともすれば孔やボイドが生じたり、又厚みが
均一でない薄帯ができたりすると共に、大気中で
製造する場合には酸化や窒化を受けて良好な形状
の薄帯ができなくなるか、あるいはできても成品
中に酸素や窒素を含むために磁気特性が劣化して
しまう。一方、凝固してからもはや結晶粒成長や
規則格子化のおきない約400℃の温度に達するま
で時間が長いと得られる薄帯は部分的に規則格子
をもち、又結晶粒が粗大になつてあとに続く剪断
や打ち抜き、あるいは必要に応じておこなわれる
圧延が困難になつてくる。本発明者らは、冷却回
転体の回転数や溶融体の噴射圧をいろいろに変え
て実験した結果、溶融体がノズルから噴出されて
から、凝固、冷却され薄帯の温度が400℃となる
間の平均的な冷却速度が103℃/sec以下では望ま
しい薄帯が得られないことを知見した。すなわ
ち、この臨界冷却速度よりも遅く冷却する大気中
で製造した場合、酸化して連続した良好な形状の
薄帯が得られなかつたり、あるいは得られても粒
成長などのため極めて脆いものであつたりする。
実際上経済的にかつ確実に十分細かい結晶粒をも
ちかつ規則格子が実質的に存在しない薄帯を得る
には400℃までを103〜106℃/secの冷却速度で冷
却するのがよい。 ところで、本発明に係る高珪素鋼薄帯も工業的
には、十分幅の広いものが製作できなければなら
ない。一般に、噴出孔を必要幅にわたつてスリツ
ト状にしたノズルがその目的のために用いられて
いるが、幅方向にわたつて一様な厚みの薄帯を得
るためには第5図、第6図に示すように2個以上
の噴出孔10を近接させて、必要な幅にわたつて
一列に並べたノズル1を用いるのがよい。この際
ノズル端部に補助噴出孔10′を設けるとより一
層幅方向全幅にわたつて一様な溶融体噴流9が得
られる。従つてこのようにすると一様な厚さの薄
帯を得ることができる。 なお、工業的に高珪素鋼薄帯を連続して作り出
すためには、長時間にわたつて連続的にノズルか
ら溶融体を噴出させねばならないので、ノズルの
損傷が著るしい。ノズルは例えばボロンナイトラ
イドセラミツクスなどの高融点の耐火材料で作ら
れるのが一般的であるが、この場合には損傷を防
ぐために水、液体金属あるいはガスでノズルの周
囲を連続的に冷却するとノズルの寿命が著るしく
延び有利である。 更に、酸化、窒化を確実に防ぎ、不純物の少な
い薄帯を得るためには、第7図に示すように薄帯
製造装置全体を保護ガス雰囲気下或いは真空下に
おく様一つの槽内におくのもよい。その他ノズル
近傍に保護ガスとしてアルゴン又はヘリウム又は
CO2ガスなどを吹き付けるのもよい。 第7図はこの発明にかかる珪素鋼薄帯を真空下
で得るための製造装置を示している。11は真空
槽で、この真空槽11内には回転ロール5が設置
されている。回転ロール5は熱伝導のよい、たと
えば銅よりなり、これを駆動するモータが連結さ
れている。回転ロール5の直上には高珪素鋼材料
を収納するノズル1が上下移動可能に設置されて
いる。12はパイプで、高珪素鉄材料をノズル1
に投入するためのものである。また13は溶融さ
せた高珪素鋼材料をノズル1から噴出させるため
のガスを注入するためのパイプである。14はノ
ズル1を上下移動するシリンダで、ノズル1と回
転ロール5の距離を調整する。15は真空ベロー
で、ノズル1の上下移動に応じて伸縮するととも
に、真空槽11とノズル1の間を密閉している。
16はヒータで、ノズル1の先端周囲に配置され
ており、たとえば1400〜1600℃の温度でノズル1
を加熱し、ノズル1内に収納された高珪素鉄材料
を溶融させる。17は真空槽11の排気口で排気
系に接続されている。18はこの装置により製造
される珪素鉄薄帯の捕集口である。 溶融した結晶性高珪素鋼材料をノズル1から噴
出させ、回転ロール5の回転面で超急冷して珪素
鋼薄帯を得る場合、真空槽11内は大気圧下の自
然雰囲気としてもよく、あるいはAr,N2などの
保護雰囲気としてもよい。 上述の第4〜7図に示した珪素鋼薄帯製造装置
において、冷却体と珪素鉄との間の濡れ性を考慮
に入れて回転冷却体の材質を選択することが重要
である。また珪素鋼溶融体の溶融温度が融点より
300℃以上高くなると、溶融体の粘度が下り、溶
融体加熱中にノズルから溶融体が滲み出したり、
ノズルより噴出されたときに噴流がミスト状にな
つたり、回転冷却体の表面に広く拡がり、一定幅
の薄帯にならなかつたりするため、薄帯が薄くな
りすぎたり、薄帯がすだれ状になつたりする。
又、一方溶融体の溶融温度が低すぎると溶融体の
粘度が大きくなり、溶融体のジエツト流は充分に
回転冷却体の表面にはりついて移動することがで
きなくなり、溶融体を超急冷することができなく
なり初期の効果が得られない。 又、溶融体のノズルよりの噴射圧力が高すぎる
と、溶融体のジエツト流は不規則形状の微細粒子
となり飛散するようになる。 従つて、本発明を実施する場合には、溶融体が
冷却体上に10゜〜170゜の接触角で、好ましくは
ほぼ90゜で盛り上るように粘度を選択する必要が
ある。このためには、溶融体の温度は、融点より
100℃ないし150℃高い温度とするのが好ましい。 本発明によると、溶融体をノズルより噴出する
圧力は0.01〜1.5atm.の範囲とするのがよい。こ
れは溶融体の噴出圧力が余り高いと溶融体の粘度
との関係でミストになつたり、微細粒状となつて
飛散したり、できた薄帯がすだれ状になつたりす
るからである。 なお溶融体の噴出を真空中で行えば得られるべ
き薄帯が空気と衝突し、上述の如きすだれ状とな
つたり、周縁のささくれ、又はポーラスとなつた
りする欠点が除かれる。 以上に述べた方法によつて、溶融体から直ちに
コイル状に巻き取られた高珪素鋼薄帯が製造され
るのである。このようにして得られた薄帯の結晶
粒は極めて微細で通常1〜100μmになつてい
る。このような薄帯はこの状態で成品とすること
ができる程に、良好な形状と磁気特性を有してい
るが、より高い磁気特性を発揮させるためには、
これを400〜1300℃、好ましくは800〜1250℃で短
時間焼鈍し、内部歪を除去すると同時に、結晶粒
を粒径0.05〜10mmにまで成長させるのが良い。こ
の処理をおこなうと、例えば保磁力Hcは格段に
減少する。この熱処理温度が1300℃を超えると薄
帯は脆化し、実用に供しえなくなる。又、400℃
以下では内部歪を除去することは不可能である。
この熱処理はどのような方法でおこなつても良い
が、工業的には連続焼鈍炉で60秒程度焼鈍し、で
きるだけ速やかに冷却するのが良い。 第8図は珪素6.5%残部実質的に鉄からなる平
均粒径5μ、厚さ80μmの薄帯Aと、同様の成分
をもち平均粒径15μm、厚さ80μmの薄帯Bを
種々の温度で2min間焼鈍した結果である。焼鈍
の結果、400℃以上の温度で、Hcの減少がみられ
約1300℃で飽和するのが理解されよう。 又一方、実用的には、鉄心に組み込む際、鉄心
の占積率が可能な限り高いことが望ましい。この
ためには薄帯の表面が円滑である必要がある。本
発明において、超急冷凝固した状態での薄帯は適
切な製造条件下であれば充分に円滑な表面状態を
呈しているのであるが、さらに高度の円滑度を要
求される場合には、超急冷し凝固した状態の薄帯
を、必要に応じて熱処理を加えた後で、5%以上
の圧下率で圧延して前記の温度で焼鈍するのが望
ましい。圧延は通常の冷間圧延機で充分におこな
えるが、特に珪素量が7〜10%と高く、圧延での
割れが心配となる場合は100℃〜500℃の温間で圧
延することが推奨される。適切な圧延熱処理によ
つて薄帯の表面は円滑になると同時に、圧延熱処
理を施すことにより、磁気特性の向上がもたらさ
れる。この原因は、今のところはつきりとしてい
ないが、冷延後圧延熱処理によつて集合組織の変
化が生じたためと推測される。 上述の如くして製造された薄帯は積層しトラン
ス、回転機用鉄心など電気機器の鉄心として利用
される。その際、積層鉄心をその状態で焼鈍し、
薄帯中に規則格子を生成せしめるとHcを大幅に
低減しうる。この場合、規則格子が生じても、既
に鉄心として形を成しているものであるから、何
ら支障を生ずるものでなく、理にかなつた使用方
法であるといえる。 第9図は珪素6.5%、マンガン0.2%、残余実質
的に鉄よりなる薄帯を1200℃で3分間焼鈍後更に
350〜700℃の温度で種々の時間保持する焼鈍を行
なつて得られた磁気特性(Hc)の変化を示すも
のである。明らかに400〜650℃で30分以上保持し
た場合において、好成績が得られる。先述の鉄心
状態での焼鈍は、従つて、この温度範囲で行なう
のがよい。 次に実施例について本発明を具体的に説明す
る。 実施例 1 珪素6.5%、マンガン0.6%、アルミニウム0.3%
を含有し、不可避不純物として炭素0.007%、窒
素0.004%、酸素0.003%、硫黄0.005%を含む溶融
鉄を、800rpmで回転する銅製(300mmφ)の回転
冷却体に噴出して80μm厚の薄帯を作つた。この
薄帯の磁気特性(Hc)と加工性を第1表に示
す。薄帯は1200℃で3分焼鈍したあと、65μmに
圧延して、さらに1000℃で3分焼鈍した。最後に
これをコイル状に巻き取つて500℃で3時間焼鈍
した。
The present invention relates to a high silicon steel ribbon containing 4 to 10% silicon, less than 10% cobalt, and less than 3% nickel, and a method for producing the same. Silicon steel ribbon, which is made by adding about 3% silicon to iron, is widely used as a core material for electrical equipment such as transformers. These silicon steel sheets are usually divided into non-oriented silicon steel sheets, in which the crystal axis orientation of the crystal grains varies in various directions, and grain-oriented silicon steel sheets, in which the [100] axis of the crystal grains is aligned in the rolling direction. The former is mainly used for core materials of rotating machines and generators where magnetic flux is applied in various directions, while the latter is used for iron core materials such as transformers where magnetic flux is applied only in one direction. In such applications, the most strongly required point is firstly to minimize the core loss of the material. This is expected to become more and more demanded due to soaring energy prices. The second goal is to keep equipment noise caused by magnetostrictive vibration of the material as low as possible. This demand is also expected to become even stronger. In order to meet these demands, technology has been developed to minimize the amount of impurities such as carbon, nitrogen, oxygen, and sulfur that degrade iron loss in non-oriented silicon steel, and to align the [100] axis with the plate surface. , the effects are increasing. On the other hand, for grain-oriented silicon steel, technologies have been developed to further increase the degree of integration in the rolling direction of the [100] axis, and to reduce iron loss and apparent magnetostriction by applying tension to the steel plate through coating treatment. Ta. However, the technology of conventional silicon steel sheets has almost reached the stage of completion, and improvements in magnetic properties and magnetostrictive properties are on the verge of saturation. The improvement is expected to be small. By the way, high-silicon steel, which is made by adding about 6.5% silicon to iron, has a low saturation magnetic flux density of about 1.80T (Tesla), but magnetostriction virtually disappears.
In addition, since the magnetic anisotropy is halved, the soft magnetic properties (high permeability μ, coercivity
It has been known since the 1950s to exhibit low Hc). When this material is assembled into a transformer or the like, it has extremely low iron loss at a suitable excitation magnetic flux density and virtually eliminates noise, making it an extremely attractive material for applications. However, when the amount of silicon exceeds about 4%, the material matrix hardens and becomes rapidly brittle as an ordered lattice (Fe 3 Si) appears. This makes rolling extremely difficult, making it virtually impossible to manufacture, and also making processing such as shearing and punching impossible. Under these circumstances, high-silicon steels with a silicon content of 4% or more, especially high-silicon steels with a silicon content of about 6.5%, are not put into practical use despite their excellent magnetic properties. On the other hand, the present inventors added silicon by 4 to 10%,
The ribbon obtained by ultra-quenching a silicon steel melt containing less than 10% cobalt and less than 3% nickel has extremely fine crystal grains, virtually no regular lattice, and is flexible and workable. They discovered that a high-silicon steel ribbon with extremely high silicon content and excellent magnetic properties could be obtained, and conducted extensive research to complete the present invention. The present invention is as follows. First invention Consisting of 4 to 10% silicon by weight, the remainder substantially consisting of iron and unavoidable impurities, and 10% cobalt as a subcomponent.
% or less, 3% or less of nickel, the crystal grains are 1 to 100 μm, and there is substantially no regular lattice Fe 3 Si, and the crystal grains are close to the surface of the ribbon. A high-silicon steel ribbon consisting of vertically grown columnar crystals with excellent workability and magnetic properties. 2nd invention Consisting of 4 to 10% silicon by weight, the remainder substantially consisting of iron and unavoidable impurities, and 10% cobalt as a subcomponent.
% or less, 3% or less of nickel, and 2% or less of aluminum, 2% or less of manganese, and has crystal grains of 1 to 100 μm, and A high-silicon steel ribbon with excellent workability and magnetic properties, with virtually no regular lattice Fe 3 Si and consisting of columnar crystals with crystal grains grown perpendicular to the ribbon surface. Third invention Contains 4 to 10% silicon by weight, the balance consists of iron and unavoidable impurities, and cobalt 10 as a subcomponent.
% or less, or 3% or less of nickel, is ultra-quenched at a cooling rate of 10 3 to 10 6 °C/sec, and the crystal grains are 1 to 100 μm and the ordered lattice Fe 3 Manufacture of high-silicon steel ribbon with excellent workability and magnetic properties, which is characterized by the fact that it is substantially free of Si and consists of columnar crystals with crystal grains grown perpendicular to the ribbon surface. Method. Fourth invention Contains 4 to 10% silicon by weight, the balance consists of iron and unavoidable impurities, and cobalt 10 as a subcomponent.
% or less, or 3% or less of nickel, is ultra-quenched at a cooling rate of 10 3 to 10 6 °C/sec, and the crystal grains are 1 to 100 μm and the ordered lattice Fe 3 The process of obtaining a ribbon consisting of columnar crystals in which Si is substantially absent and crystal grains grown perpendicular to the surface of the thin body, and the process of annealing the obtained silicon steel ribbon at 400 to 1300℃ to obtain crystal grains. A method for producing a high-silicon steel ribbon with excellent workability and magnetic properties, characterized by a step of growing Fe 3 Si to a thickness of 0.05 to 10 mm to obtain a ribbon in which an ordered lattice Fe 3 Si substantially exists. Fifth invention Silicon 4-10%, Cobalt 10% or less Nickel 3%
Contains the following, with the remainder consisting essentially of iron and unavoidable impurities, with fine crystal grains and a regular lattice.
A high-silicon steel ribbon substantially free of Fe 3 Si is rolled and further annealed at 400 to 1300℃ to reduce the grain size to 0.05 to 10.
A method for producing a high-silicon steel ribbon with excellent workability and magnetic properties, which is characterized by obtaining a ribbon in which a regular lattice of Fe 3 Si is grown to a size of 3 mm and substantially contains Fe 3 Si. Sixth invention Silicon 4-10%, Cobalt 10% or less, Nickel 3
% or less, the remainder substantially consisting of iron and unavoidable impurities, crystal grains of 1 to 100 μm, and substantially no ordered lattice Fe 3 Si for electrical equipment. Iron core. 7th invention Silicon 4-10%, Cobalt 10% or less, Nickel 3
% or less, the remainder substantially consists of iron and unavoidable impurities, the crystal grains are 0.05 to 10 mm, and the ordered lattice Fe 3 Si is substantially present. Iron core. Here, it is preferable that the total amount of unavoidable impurity elements is 0.1% or less of carbon, nitrogen, oxygen, and sulfur. Furthermore, as subcomponents added to the high silicon steel ribbon, in addition to one or more of the following: 10% or less of cobalt, 3% or less of nickel, 1 or more of the following: 2% or less of aluminum, 2% or less of manganese. Or two or more types can be contained. When molten high-silicon steel is ultra-rapidly cooled on a cooling body, the temperature is 10 3 to 10 6 until it reaches at least 400°C.
Preferably, the rapid cooling is performed at a rate of °C/sec. The melting temperature of high-silicon steel is 300℃ above the melting point.
It is preferable that the temperature is no higher than that. In addition, when it is desired to obtain a wide ribbon, this can be achieved by ejecting the melt from a multi-hole nozzle having two or more ejection holes arranged close to each other in a row over the required width of the ribbon. In addition, as an impurity element, any one or two of chromium, molybdenum, tungsten, vanadium, and titanium may be contained in an amount of 0.1% or less. When manufacturing an iron core for electrical equipment using the high silicon steel ribbon obtained according to the present invention, either the thin ribbon obtained by ultra-quenching as described above is laminated, or the laminated iron core is heated at 400°C to 650°C. It is obtained by annealing at a temperature of from 10 minutes to 5 hours to generate an ordered lattice Fe 3 Si. When the iron core is annealed in this way, the crystal grains grow to 0.05 to 10 mm, further improving the magnetic properties. Figures 1A and 1B show an example of a microstructure photograph of a silicon steel ribbon of the present invention consisting of 6.5% silicon and the remainder substantially iron; A shows the surface of the ribbon obtained by ultra-quenching; Tissue B is its cross-sectional structure, and from this photo, approximately 5
It can be seen that crystal grains with a diameter of ~10 μm are arranged and grown in a direction perpendicular to the thin plate surface. Figure 2 shows the bending workability of a similar thin strip.
FIG. 2A shows the thin ribbon of the present invention wound around a rod-shaped body having a diameter of 4 mm, and FIG. 2B shows the ribbon in a bent state. As is clear from Figures 2 A and B, this was not possible in the past.
It will be appreciated that it can be bent well. On the other hand, Figure 3 shows a melt containing various proportions of 3 to 11% silicon, with the remainder essentially consisting of 10 3 to 10 4
The coercive force Hc (A curve) when a ribbon obtained by ultra-quenching at ℃/sec is magnetized to a maximum of 10 kg is shown in comparison with high silicon steel made by the conventional method (B curve). . As is clear from Fig. 3, the ribbon of the present invention is similar to the conventional high-silicon steel in the high-silicon region.
A phenomenon in which Hc gradually decreased was observed, and silicon 6.5%
In the vicinity, it is comparable to conventional 3% silicon steel.
Indicates Hc. The ribbon of the present invention has a higher Hc than conventional products when it is rapidly cooled from the molten state, but it can be improved by annealing as described below, and it is at the level of conventional high-silicon iron materials. It can be done. These characteristics regarding workability of the present invention are due to the fact that the crystal grains are fine as shown in FIGS. 1A and 1B, and that no regular lattice is substantially observed. However, in the ultra-rapid cooling state, the crystal grains are reduced to 100.
If it exceeds .mu.m, the workability will be reduced, which is undesirable.On the other hand, even if it is made finer than 1 .mu.m, there will be no substantial improvement in the workability, and too high-speed cooling will be required, which will impair economic efficiency. When the silicon steel ribbon obtained by the method of the present invention is heat-treated, the crystals become coarser and the magnetic properties (Hc) are significantly improved. This can be explained using microscopic photographs as follows. Figures C and D show silicon steel ribbons with a composition of 6.4%Si-93.6%Fe at 1200℃ in an argon gas atmosphere.
Showing the results of heat treatment for 40 minutes, C is a photograph of the surface structure;
D is a photograph of the cross-sectional structure. The size of the crystal grains shown in the photograph indicates that grain growth has progressed due to heat treatment and the crystal grain size has become significantly coarser. As can be seen from the photo, the crystal grain size is approximately 150 μm or more. The grain size of the crystal grains in this ribbon is a function of heat treatment time and heat treatment temperature. The magnetic properties (Hc) were significantly improved as the ribbon crystals became coarser. Even after the above-mentioned heat treatment, the ribbon has sufficient workability, but this is because the crystal grains are developed in a direction perpendicular to the sheet surface, as shown in the micrograph in Figure 1D. It is presumed that this and the substantial absence of regular grids are contributing factors. Next, the component composition will be explained. The high silicon steel ribbon of the present invention basically contains 4 to 4 silicon.
10%, less than 10% cobalt, less than 3% nickel, and the remainder essentially consists of iron and unavoidable impurities. If the silicon content is less than 4%, the magnetic properties will be comparable to those of conventional products, and if the silicon content exceeds 10%, it will not only become brittle but also deteriorate in magnetic properties.
Note that since silicon exhibits the best magnetic properties when the content is 5 to 7%, this range is suitable. Oxygen, sulfur, carbon, and nitrogen are unavoidable impurities mixed into silicon steel, but if these are present in the product, they will deteriorate the iron loss characteristics, make the ribbon brittle, and deteriorate the workability. It is desirable to keep it as low as possible. If the total amount of these impurities exceeds 0.1%, the iron loss increases and is inferior to conventional silicon steel, so the upper limit is set at 0.1%. In addition, in the current steelmaking technology, 0<50ppm, S<80ppm, C<100ppm, N
Since it can be <50 ppm, it is particularly preferable to keep it within this range. The composition of the present invention may further include up to 2% aluminum and up to 2% manganese. Aluminum is a stronger deoxidizing element than silicon, so by adding aluminum, a material with lower oxygen content can be obtained. Further, since it increases electrical resistance, it is preferable in terms of lowering eddy current loss. However, since aluminum increases magnetostriction, it is not preferable to add more than 2%, so the upper limit is set at 2%.
shall be. Manganese is an unavoidable mixed element and is contained at approximately 0.05% in ordinary steel manufacturing. Unlike oxygen and sulfur, this element is known to be preferable for silicon steel in terms of rollability and magnetic properties. In the present invention, the addition of 2% or less, preferably 0.2 to 1.3%, not only improves the magnetic properties but also improves the shape of the ribbon (no holes or cracks at the ends in the width direction) when ultra-quenched. It was found that a thin strip could be obtained. The cause of these phenomena is not clear, but by adding manganese, the impurity sulfur changes from a solid solution state or a fine precipitate state to a large MnS precipitate, which improves rolling properties and magnetic properties. It is thought that However, if manganese exceeds 2%, the magnetic properties will deteriorate and the product will become more difficult to process due to further hardening, so the maximum content was reduced to 2%.
limited to. Since the ribbon of the present invention has a high silicon content, it has the disadvantage of inevitably having a low saturation magnetic flux density. Adding cobalt to the Fe-Si alloy increases the saturation magnetic flux density, so in the present invention as well, cobalt can be added as needed to compensate for the above disadvantages. However, since cobalt is an extremely expensive element, the upper limit of cobalt is set at 10% in the present invention. Nickel is an element that increases the toughness of Fe-Si alloys, and in the present invention, 3% nickel is used.
Hereinafter, it has been found that adding preferably 0.2 to 1.5% makes it possible to produce a high-quality ultra-quenched ribbon. In addition to the above-mentioned impurity elements such as chromium, molybdenum, tungsten, vanadium, titanium, tin, etc. may be contained in trace amounts of about 0.1% or less, this does not impede the effects of the present invention in any way. Now, in the conventional manufacturing of silicon steel sheets, steel ingots or continuous cast slabs are hot-rolled to
After forming a hot strip with a thickness of 1 mm, a product with a thickness of 0.28 to 0.50 mm is usually produced by combining appropriate cold rolling and heat treatment.In the present invention, a silicon steel melt having the above-mentioned composition is 10 6 ℃/
The material is directly ultra-quenched at a cooling rate of 1.0 seconds to immediately produce a thin ribbon with a predetermined thickness. That is, a silicon steel melt is directly made into a finished product or a semi-finished product, completely eliminating the hot rolling and cold rolling steps that are essential to conventional processes. Any method can be used to ultra-quench a molten material to form a thin ribbon, as long as it is wide enough, has a specified thickness, is uniform in thickness, and can be drawn out continuously into a coil. However, typically, as shown in Figures 4 and 5, the molten material is jetted out continuously from holes of an appropriate shape on a continuously moving moving surface, rapidly solidified, and formed into a predetermined shape. It is better to obtain a thick strip in the form of a coil. FIG. 4a shows a schematic diagram of an apparatus that uses a bowl-shaped rotating body 2 as a moving surface and ejects a melt 4 from a jet nozzle 1 onto the inner rotating surface to obtain a rapidly solidified continuous ribbon 3. has been done. Also, in Fig. 4b and c, molten silicon steel is continuously ejected from the ejection holes on one rotating roll 5 or between two adjacent rotating rolls 5' and 5'', which are not necessarily of the same size. A schematic diagram of an apparatus for obtaining a continuous ribbon by ultra-quenching between two rolls is shown. FIG. A schematic diagram of an apparatus for continuously obtaining a ribbon by rapid cooling is shown below. When manufacturing a silicon steel ribbon according to the present invention using the above apparatus, the important thing is that the molten material solidifies and cools at a sufficiently fast rate. First, if it takes a long time for the ejected molten material to solidify when it hits the moving cooling body, the flow of the ejected molten material will become uneven, which may result in the formation of holes or voids, or the thickness may increase. In addition to producing uneven ribbons, if the product is manufactured in the atmosphere, it may be oxidized or nitrided, making it impossible to produce a ribbon with a good shape, or even if it is produced, it may become magnetic due to the presence of oxygen or nitrogen in the product. On the other hand, if it takes a long time after solidification to reach a temperature of approximately 400°C at which no grain growth or regular lattice formation occurs, the obtained ribbon will partially have an ordered lattice, and As the crystal grains become coarser, subsequent shearing, punching, or rolling performed as necessary becomes difficult. As a result of experiments with different values, it was found that a desirable ribbon could not be obtained if the average cooling rate during the period from when the melt was ejected from the nozzle to when it was solidified and cooled until the temperature of the ribbon reached 400℃ was less than 10 3 ℃/sec. In other words, when manufacturing in an atmosphere that cools slower than this critical cooling rate, it may not be possible to obtain a continuous ribbon with a good shape due to oxidation, or even if it is obtained, problems such as grain growth may occur. Therefore, it is extremely fragile.
In order to economically and reliably obtain a ribbon with sufficiently fine grains and virtually no ordered lattice, it is recommended to cool to 400°C at a cooling rate of 10 3 to 10 6 °C/sec. . Incidentally, the high-silicon steel ribbon according to the present invention must also be manufactured industrially with a sufficiently wide width. Generally, a nozzle with a slit-shaped ejection hole over the required width is used for this purpose, but in order to obtain a thin strip with a uniform thickness across the width, it is necessary to As shown in the figure, it is preferable to use nozzles 1 in which two or more ejection holes 10 are placed close to each other and arranged in a line over a necessary width. At this time, if an auxiliary jet hole 10' is provided at the end of the nozzle, a more uniform melt jet 9 can be obtained over the entire width in the width direction. Therefore, by doing so, a ribbon having a uniform thickness can be obtained. In addition, in order to continuously produce high-silicon steel ribbons industrially, it is necessary to eject the melt continuously from the nozzle over a long period of time, resulting in significant damage to the nozzle. Nozzles are typically made of refractory materials with high melting points, such as boron nitride ceramics, in which case continuous cooling of the area around the nozzle with water, liquid metal, or gas to prevent damage may cause the nozzle to melt. This is advantageous because the life of the product is significantly extended. Furthermore, in order to reliably prevent oxidation and nitridation and obtain a ribbon with few impurities, the entire ribbon manufacturing apparatus is placed in one tank under a protective gas atmosphere or under vacuum, as shown in Figure 7. It's also good. Argon or helium or other protective gas near the nozzle
It is also a good idea to spray CO 2 gas etc. FIG. 7 shows a manufacturing apparatus for obtaining a silicon steel ribbon according to the present invention under vacuum. 11 is a vacuum chamber, and a rotating roll 5 is installed in this vacuum chamber 11. The rotating roll 5 is made of a material with good thermal conductivity, such as copper, and is connected to a motor that drives it. Directly above the rotating roll 5, a nozzle 1 for storing a high-silicon steel material is installed so as to be movable up and down. 12 is a pipe, and the high silicon iron material is connected to the nozzle 1.
It is intended for use in Further, 13 is a pipe for injecting gas to jet the molten high-silicon steel material from the nozzle 1. 14 is a cylinder that moves the nozzle 1 up and down, and adjusts the distance between the nozzle 1 and the rotating roll 5. 15 is a vacuum bellows that expands and contracts in accordance with the vertical movement of the nozzle 1 and seals the gap between the vacuum chamber 11 and the nozzle 1.
16 is a heater, which is placed around the tip of the nozzle 1, and for example, heats the nozzle 1 at a temperature of 1400 to 1600°C.
is heated to melt the high-silicon iron material housed in the nozzle 1. 17 is an exhaust port of the vacuum chamber 11 and is connected to an exhaust system. 18 is a collection port for the silicon-iron ribbon produced by this apparatus. When a molten crystalline high-silicon steel material is ejected from the nozzle 1 and ultra-quenched on the rotating surface of the rotating roll 5 to obtain a silicon steel ribbon, the inside of the vacuum chamber 11 may be a natural atmosphere under atmospheric pressure, or A protective atmosphere such as Ar or N2 may be used. In the silicon steel ribbon manufacturing apparatus shown in FIGS. 4 to 7 described above, it is important to select the material of the rotary cooling body in consideration of the wettability between the cooling body and silicon iron. Also, the melting temperature of the silicon steel melt is lower than the melting point.
If the temperature rises by 300℃ or more, the viscosity of the melt decreases, causing the melt to ooze out from the nozzle while heating the melt.
When ejected from the nozzle, the jet stream may become mist-like, or it may spread widely over the surface of the rotating cooling body and may not form a ribbon of a constant width, resulting in the ribbon becoming too thin or forming a sash-like shape. I feel relaxed.
On the other hand, if the melting temperature of the molten material is too low, the viscosity of the molten material will increase, and the jet flow of the molten material will not be able to sufficiently adhere to the surface of the rotary cooling body and move, resulting in ultra-rapid cooling of the molten material. and the initial effect cannot be obtained. Furthermore, if the injection pressure of the molten material from the nozzle is too high, the jet stream of the molten material becomes irregularly shaped fine particles and scatters. Therefore, when carrying out the invention, the viscosity must be chosen such that the melt builds up on the cooling body with a contact angle of 10° to 170°, preferably approximately 90°. For this purpose, the temperature of the melt must be lower than the melting point.
Preferably, the temperature is 100°C to 150°C higher. According to the present invention, the pressure at which the molten material is ejected from the nozzle is preferably in the range of 0.01 to 1.5 atm. This is because if the ejection pressure of the molten material is too high, the molten material may become a mist, become scattered in the form of fine particles, or the resulting thin ribbon may form a sash-like shape, depending on the viscosity of the molten material. Note that if the melt is ejected in a vacuum, the resulting thin strip will collide with the air, and the above-mentioned drawbacks such as slits, hangnails on the periphery, or porousness can be eliminated. By the method described above, a high-silicon steel ribbon is produced immediately from the melt into a coil. The crystal grains of the ribbon thus obtained are extremely fine, usually ranging from 1 to 100 μm. Such a ribbon has a good shape and magnetic properties so that it can be made into a finished product in this state, but in order to exhibit even higher magnetic properties,
This is preferably annealed for a short time at 400 to 1300°C, preferably 800 to 1250°C, to remove internal strain and at the same time grow crystal grains to a grain size of 0.05 to 10 mm. When this process is performed, for example, the coercive force Hc is significantly reduced. If the heat treatment temperature exceeds 1300°C, the ribbon becomes brittle and cannot be put to practical use. Also, 400℃
It is not possible to remove internal distortions below.
This heat treatment may be carried out by any method, but industrially it is best to anneal for about 60 seconds in a continuous annealing furnace and cool it as quickly as possible. Figure 8 shows a ribbon A with an average grain size of 5 μm and a thickness of 80 μm, consisting of 6.5% silicon and essentially iron, and a ribbon B with a similar composition and an average grain size of 15 μm and a thickness of 80 μm at various temperatures. This is the result of annealing for 2 minutes. As a result of annealing, it is understood that Hc decreases at temperatures above 400°C and reaches saturation at approximately 1300°C. On the other hand, from a practical point of view, it is desirable that the space factor of the core be as high as possible when incorporating it into the core. For this purpose, the surface of the ribbon needs to be smooth. In the present invention, the thin ribbon in the ultra-rapidly solidified state exhibits a sufficiently smooth surface condition under appropriate manufacturing conditions, but when an even higher level of smoothness is required, It is desirable that the rapidly cooled and solidified ribbon is subjected to heat treatment if necessary, then rolled at a rolling reduction of 5% or more and annealed at the above temperature. Rolling can be carried out satisfactorily in a normal cold rolling mill, but if the silicon content is particularly high (7-10%) and cracking during rolling is a concern, it is recommended to roll at a warm temperature of 100°C to 500°C. Ru. Appropriate rolling heat treatment makes the surface of the ribbon smooth, and at the same time, the rolling heat treatment improves the magnetic properties. Although the cause of this is not clear at present, it is presumed that the texture changes due to the rolling heat treatment after cold rolling. The ribbons produced as described above are laminated and used as cores for electrical equipment such as transformers and cores for rotating machines. At that time, the laminated iron core is annealed in that state,
Generating a regular lattice in the ribbon can significantly reduce Hc. In this case, even if a regular lattice occurs, it does not pose any problem since the iron core has already been formed, and it can be said that this is a reasonable method of use. Figure 9 shows a ribbon consisting of 6.5% silicon, 0.2% manganese, and the remainder essentially iron after being annealed at 1200°C for 3 minutes.
This figure shows changes in magnetic properties (Hc) obtained by annealing at temperatures of 350 to 700°C for various times. Apparently, good results are obtained when the temperature is maintained at 400-650°C for 30 minutes or more. Therefore, the annealing in the core state described above is preferably performed within this temperature range. Next, the present invention will be specifically explained with reference to Examples. Example 1 Silicon 6.5%, manganese 0.6%, aluminum 0.3%
Molten iron containing 0.007% carbon, 0.004% nitrogen, 0.003% oxygen, and 0.005% sulfur as unavoidable impurities is jetted into a copper (300 mmφ) rotary cooling body rotating at 800 rpm to form an 80 μm thick ribbon. I made it. Table 1 shows the magnetic properties (Hc) and workability of this ribbon. The ribbon was annealed at 1200°C for 3 minutes, rolled to 65 μm, and further annealed at 1000°C for 3 minutes. Finally, this was wound into a coil and annealed at 500°C for 3 hours.

【表】 なお、磁気特性(Hc)は1.5T(テスラ)まで
磁化した時の値を示す。又最小彎曲半径はいろい
ろな半径のガラス棒に巻き付けて破損の生じない
最小の半径を示し、又剪断性については、 〇……剪断カエリが全然なく良好な剪断性を示す △……剪断カエリが若干あるが、剪断は充分にで
きる ×……剪断が困難である を意味する。 実施例 2 珪素9.5%、マンガン1.5%、コバルト2%、ア
ルミニウム0.1%、ニツケル0.7%を含有し、不可
避不純物として炭素0.004%、窒素0.0025%、酸
素0.0023%、硫黄0.003%を含む溶融珪素鉄を、
700rpmで回転するステンレス鋼製(100mmφ)の
双回転体に噴出して100μm厚の薄帯を作つた。
これを直ちに50μmに圧延して950℃で2分焼鈍
した。さらにこれを420℃で10時間焼鈍した。こ
れらの各処理後の磁気特性と加工性は第2表の通
りであつた。
[Table] The magnetic properties (Hc) indicate the values when magnetized up to 1.5T (Tesla). In addition, the minimum radius of curvature indicates the minimum radius that does not cause breakage when wrapped around glass rods of various radii, and regarding shearing properties, 〇... shows good shearing properties with no shearing burrs △... shows no shearing burrs. Although there are some, shearing is sufficient.×...Means that shearing is difficult. Example 2 Molten silicon iron containing 9.5% silicon, 1.5% manganese, 2% cobalt, 0.1% aluminum, 0.7% nickel, and containing 0.004% carbon, 0.0025% nitrogen, 0.0023% oxygen, and 0.003% sulfur as inevitable impurities. ,
A thin ribbon with a thickness of 100 μm was produced by ejecting it into a twin rotating body made of stainless steel (100 mmφ) rotating at 700 rpm.
This was immediately rolled to 50 μm and annealed at 950° C. for 2 minutes. This was further annealed at 420°C for 10 hours. The magnetic properties and workability after each of these treatments are shown in Table 2.

【表】 なお、各項の測定条件は実施例1の場合と同じ
である。 本発明の方法によると、極めてフレキシブルな
高珪素鉄薄帯が連続して高速度に生産できると共
に、高珪素鉄薄帯の加工が容易で、圧延、熱処理
も可能である。 又本発明によると彎曲性、剪断性に富む規則格
子のない高珪素鉄薄帯を製造し、例えば変圧器鉄
心その他に成形加工後、熱処理を施して規則格子
を生成させて、磁気特性(Hc)を更によくする
ことが可能であり、工業上極めて有用である。
[Table] Note that the measurement conditions for each item are the same as in Example 1. According to the method of the present invention, an extremely flexible high-silicon iron ribbon can be produced continuously at high speed, and the high-silicon iron ribbon can be easily processed, and rolling and heat treatment are also possible. According to the present invention, a high-silicon iron ribbon without an ordered lattice, which has excellent bendability and shearability, is manufactured, and after being formed into a transformer core or the like, heat treatment is performed to generate an ordered lattice, and the magnetic properties (Hc ), which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは超急冷された状態の6.4%Si−
Feの珪素鉄薄帯の表面および断面の顕微鏡写
真、C,Dは熱処理された状態の6.4%Si−Fe珪
素鉄薄帯の表面および断面の顕微鏡写真、第2図
A,Bは本発明の珪素鉄薄帯を4mmφの棒状体に
巻き付けた状態と折り曲げ状態とをそれぞれ示す
図面である。第3図は本発明の珪素鉄薄帯の珪素
量と保磁力(Hc)との関係を従来のものと比較
して示した磁気特性図、第4図a,b,c,dは
本発明の珪素鉄薄帯を製造する装置の一例を示す
略図、第5図A,B、第6図A,Bはそれぞれ本
発明の珪素鉄薄帯を製造する多孔ノズルの一例を
示すノズルの横断面図およびノズルの縦断面図で
ある。第7図は本発明の珪素鉄薄帯を製造する装
置の1例を示す説明図である。第8図は本発明の
珪素鉄薄帯の焼鈍前の磁気特性(Hc)(A曲線)
と焼鈍後の磁気特性を比較した熱処理特性図、第
9図は本発明の珪素鉄薄帯に対する熱処理温度、
熱処理時間と保磁力(Hc)との関係を示す磁気
特性図である。 1……噴出ノズル、2……椀状回転体、3……
連続体状薄帯、4……溶融体、5,5′,5″……
回転ロール、6……バツクアツプロール、7……
コンベヤ、9……溶融体噴流、10……噴出孔、
10′……補助噴出口、11……真空槽、12…
…パイプ、13……ガス注入パイプ、14……シ
リンダ、15……真空ベローズ、16……ヒータ
ー、17……排気口、18……薄帯捕集口。
Figure 1 A and B are 6.4%Si− in the ultra-quenched state.
Figures 2A and B are micrographs of the surface and cross section of a silicon-iron ribbon containing Fe; 3 is a drawing showing a state in which a silicon-iron ribbon is wound around a rod-shaped body having a diameter of 4 mm and a state in which it is bent. Fig. 3 is a magnetic characteristic diagram showing the relationship between silicon content and coercive force (Hc) of the silicon-iron ribbon of the present invention in comparison with a conventional one, and Fig. 4 a, b, c, and d are graphs of the present invention. A schematic diagram showing an example of an apparatus for manufacturing a silicon-iron ribbon according to the present invention, and FIGS. 5A and 6B, and FIGS. 6A and B are cross-sectional views of a nozzle showing an example of a multi-hole nozzle for manufacturing a silicon-iron ribbon according to the present invention, respectively. FIG. FIG. 7 is an explanatory diagram showing an example of an apparatus for manufacturing a silicon-iron ribbon according to the present invention. Figure 8 shows the magnetic properties (Hc) (A curve) of the silicon-iron ribbon of the present invention before annealing.
A heat treatment characteristic diagram comparing the magnetic properties after annealing and FIG. 9 shows the heat treatment temperature for the silicon-iron ribbon of the present invention,
FIG. 3 is a magnetic characteristic diagram showing the relationship between heat treatment time and coercive force (Hc). 1... Spout nozzle, 2... Bowl-shaped rotating body, 3...
Continuous ribbon, 4... Molten material, 5, 5', 5''...
Rotating roll, 6...Backup roll, 7...
Conveyor, 9... Melt jet, 10... Spout hole,
10'...Auxiliary spout, 11...Vacuum chamber, 12...
...pipe, 13 ... gas injection pipe, 14 ... cylinder, 15 ... vacuum bellows, 16 ... heater, 17 ... exhaust port, 18 ... ribbon collection port.

Claims (1)

【特許請求の範囲】 1 重量%で珪素4〜10%と残部実質的に鉄およ
び不可避不純物から成り、副成分としてコバルト
10%以下、ニツケル3%以下の何れか1種又は2
種以上を含有し、結晶粒が1〜100μmで、かつ
規則格子Fe3Siが実質的に存在せず、結晶粒が薄
帯表面に対し垂直に成長した柱状晶からなり、加
工性と磁気特性の優れた高珪素鋼薄帯。 2 不可避不純物元素は炭素、窒素、酸素、硫黄
が総量で0.1%以下である特許請求の範囲第1項
記載の高珪素鋼薄帯。 3 重量%で珪素4〜10%と残部実質的に鉄およ
び不可避不純物から成り、副成分としてコバルト
10%以下、ニツケル3%以下の何れか1種又は2
種以上と、アルミニウム2%以下、マンガン2%
以下の何れか1種又は2種以上とを含有し、結晶
粒が1〜100μmで、かつ規則格子Fe3Siが実質的
に存在せず、結晶粒が薄帯表面に対し垂直に成長
した柱状晶からなり、加工性と磁気特性の優れた
高珪素鋼薄帯。 4 不純物元素としてクロム、モリブデン、タン
グステン、バナジウム、チタンの何れか1種又は
2種を0.1重量%以下含有する特許請求の範囲第
1項記載の高珪素鋼薄帯。 5 重量%で珪素4〜10%を含有し、残部鉄およ
び不可避不純物から成り、副成分としてコバルト
10%以下、ニツケル3%以下の何れか1種または
2種を含有する溶融体を103〜106℃/secの冷却
速度で超急冷し、結晶粒が1〜100μmで、かつ
規則格子Fe3Siが実質的に存在せず、結晶粒が薄
帯表面に対し垂直に成長した柱状晶からなる薄帯
を得ることを特徴とする加工性と磁気特性の優れ
た高珪素鋼薄帯の製造方法。 6 溶融体を超急冷体上において、400℃に達す
るまで103〜106℃/secの速度で急冷することか
ら成る特許請求の範囲第5項記載の高珪素鋼薄帯
の製造方法。 7 溶融体の溶融温度は融点より300℃以上高く
ない温度である特許請求の範囲第5項記載の高珪
素鋼薄帯の製造方法。 8 溶融体を、2孔以上の噴出孔を近接して必要
な薄帯幅にわたつて一列に並べてなる多孔ノズル
から噴出させることから成る特許請求の範囲第5
項記載の高珪素鋼薄帯の製造方法。 9 重量%で珪素4〜10%を含有し、残部鉄およ
び不可避不純物から成り、副成分としてコバルト
10%以下、ニツケル3%以下の何れか1種又は2
種を含有する溶融体を103〜106℃/secの冷却速
度で超急冷し、結晶粒が1〜100μmで、かつ規
則格子Fe3Siが実質的に存在せず、結晶粒が薄帯
表面に対し垂直に成長した柱状晶からなる薄帯を
得る工程と、得られた珪素鋼薄帯を400〜1300℃
で焼鈍を行ない結晶粒を0.05〜10mmに成長せしめ
規則格子Fe3Siが実質的に存在する薄帯を得る工
程とよりなることを特徴とする加工性と磁気特性
の優れた高珪素鋼薄帯の製造方法。 10 重量%で珪素4〜10%を含有し、残部鉄お
よび不可避不純物から成り、副成分としてコバル
ト10%以下、ニツケル3%以下の何れか1種又は
2種を含有する溶融体を103〜106℃/secの冷却
速度で超急冷し、結晶粒が1〜100μmでかつ規
則格子Fe3Siが実質的に存在しない高珪素鋼薄帯
を得、これを5%以上の圧下率で圧延し、更に
400〜1300℃で焼鈍し結晶粒を0.05〜10mmに成長
せしめ規則格子Fe3Siが実質的に存在する薄帯を
得ることを特徴とする加工性と磁気特性の優れた
高珪素鋼薄帯の製造方法。 11 珪素4〜10%、コバルト10%以下、ニツケ
ル3%以下を含有し、残部が実質的に鉄および不
可避不純物から成り、結晶粒が1〜100μmでか
つ規則格子Fe3Siが実質的に存在しない高珪素鋼
薄帯を積層してなる電気機器用鉄心。 12 珪素4〜10%、コバルト10%以下、ニツケ
ル3%以下を含有し、残部が実質的に鉄および不
可避不純物から成り、結晶粒が0.05〜10mmでかつ
規則格子Fe3Siが実質的に存在する高珪素鋼薄帯
を積層してなる電気機器用鉄心。
[Claims] 1% by weight, consisting of 4 to 10% silicon and the remainder substantially iron and unavoidable impurities, with cobalt as a subcomponent.
10% or less, nickel 3% or less, either one or two
The crystal grains are 1 to 100 μm in size, and there is virtually no regular lattice Fe 3 Si, and the crystal grains are columnar crystals grown perpendicular to the ribbon surface, resulting in excellent workability and magnetic properties. Excellent high silicon steel ribbon. 2. The high silicon steel ribbon according to claim 1, wherein the unavoidable impurity elements include carbon, nitrogen, oxygen, and sulfur in a total amount of 0.1% or less. 3 wt% silicon, 4 to 10% silicon, and the balance essentially consists of iron and unavoidable impurities, with cobalt as a subcomponent.
10% or less, nickel 3% or less, either one or two
Species or more, aluminum 2% or less, manganese 2%
A columnar type containing one or more of the following, with crystal grains of 1 to 100 μm, substantially no regular lattice Fe 3 Si, and with crystal grains grown perpendicular to the ribbon surface. High-silicon steel ribbon with excellent workability and magnetic properties. 4. The high silicon steel ribbon according to claim 1, which contains 0.1% by weight or less of any one or both of chromium, molybdenum, tungsten, vanadium, and titanium as impurity elements. 5. Contains 4 to 10% silicon by weight, the balance consists of iron and unavoidable impurities, and cobalt as a subcomponent.
A melt containing either one or two of 10% or less of nickel and 3% or less of nickel is ultra-quenched at a cooling rate of 10 3 to 10 6 °C/sec to obtain crystal grains of 1 to 100 μm and regular lattice Fe. 3 Production of high-silicon steel ribbon with excellent workability and magnetic properties, which is characterized by the fact that Si is substantially absent and the ribbon consists of columnar crystals with crystal grains grown perpendicular to the ribbon surface. Method. 6. A method for producing a high silicon steel ribbon according to claim 5, which comprises rapidly cooling the melt on an ultra-quenched body at a rate of 10 3 to 10 6 °C/sec until it reaches 400 °C. 7. The method for producing a high-silicon steel ribbon according to claim 5, wherein the melting temperature of the melt is not higher than the melting point by more than 300°C. 8. Claim 5 consisting of ejecting the molten material from a multi-hole nozzle formed by arranging two or more ejection holes close to each other in a row over the required ribbon width.
A method for producing a high silicon steel ribbon as described in . 9% by weight, containing 4 to 10% silicon, the balance consisting of iron and unavoidable impurities, and cobalt as a subcomponent.
10% or less, nickel 3% or less, either one or two
The melt containing the seeds is ultra-quenched at a cooling rate of 10 3 to 10 6 °C/sec, and the crystal grains are 1 to 100 μm, there is substantially no regular lattice Fe 3 Si, and the crystal grains are in the form of thin ribbons. A process of obtaining a ribbon consisting of columnar crystals grown perpendicular to the surface, and heating the obtained silicon steel ribbon at 400 to 1300℃.
A high-silicon steel ribbon with excellent workability and magnetic properties, characterized by the process of annealing to grow crystal grains to 0.05 to 10 mm to obtain a ribbon in which ordered lattice Fe 3 Si substantially exists. manufacturing method. 10 3 to 10% by weight of a melt containing 4 to 10% silicon, the balance consisting of iron and unavoidable impurities, and containing one or both of cobalt 10% or less and nickel 3 % or less as subcomponents. Ultra-quenched at a cooling rate of 10 6 °C/sec to obtain a high-silicon steel ribbon with crystal grains of 1 to 100 μm and substantially no ordered lattice Fe 3 Si, which was then rolled at a rolling reduction of 5% or more. And further
A high-silicon steel ribbon with excellent workability and magnetic properties, which is annealed at 400-1300°C to grow crystal grains to 0.05-10 mm to obtain a ribbon in which ordered lattice Fe 3 Si substantially exists. Production method. 11 Contains 4 to 10% silicon, 10% or less cobalt, and 3% or less nickel, with the remainder essentially consisting of iron and unavoidable impurities, with crystal grains of 1 to 100 μm and substantially regular lattice Fe 3 Si. An iron core for electrical equipment made of laminated high-silicon steel ribbons. 12 Contains 4 to 10% silicon, 10% or less cobalt, and 3% or less nickel, with the remainder essentially consisting of iron and unavoidable impurities, crystal grains of 0.05 to 10 mm, and substantially regular lattice Fe 3 Si. An iron core for electrical equipment made of laminated high-silicon steel ribbons.
JP60073841A 1985-04-08 1985-04-08 High silicon steel strip and its manufacture Granted JPS60234949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073841A JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073841A JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14129078A Division JPS5569223A (en) 1978-09-19 1978-11-15 High silicon steel thin strip and its preparation

Publications (2)

Publication Number Publication Date
JPS60234949A JPS60234949A (en) 1985-11-21
JPS6217020B2 true JPS6217020B2 (en) 1987-04-15

Family

ID=13529765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073841A Granted JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Country Status (1)

Country Link
JP (1) JPS60234949A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615705B2 (en) * 1986-05-21 1994-03-02 日本鋼管株式会社 High silicon iron plate with excellent workability
JP2023080874A (en) * 2021-11-30 2023-06-09 学校法人トヨタ学園 Production method of silicon steel thin strip

Also Published As

Publication number Publication date
JPS60234949A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
US4265682A (en) High silicon steel thin strips and a method for producing the same
KR101268800B1 (en) Martensitic stainless steels containing high carbon content and method of manufacturing the same
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
KR102048791B1 (en) Hot-rolled strip for manufacturing an electric sheet, and process therefor
JP4224733B2 (en) Method for producing ferritic stainless steel sheet strip
US20130122320A1 (en) Martensitic Stainless Steel and Production Method Therefor
KR20110075387A (en) Martensitic stainless steels by twin roll strip casting process and manufacturing method thereof
JP2018507110A (en) Hot rolled lightweight martensitic steel sheet and method for producing the same
US2768915A (en) Ferritic alloys and methods of making and fabricating same
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
JPS6032705B2 (en) In-plane non-oriented high-silicon steel ribbon with extremely low coercive force (100) and its manufacturing method
JPS6115136B2 (en)
JPS6217020B2 (en)
US20150174648A1 (en) Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same
JPH03285019A (en) Manufacture of fe-ni series magnetic alloy having high magnetic permeability
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP3377228B2 (en) Method for producing rolled ferrite alloy material
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPH0340103B2 (en)
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
KR101243259B1 (en) Martensitic stainless hot rolled steel strip and manufacturing method thereof
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
TW202336241A (en) Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, and hot-rolled steel sheet for non-oriented electrical steel sheet