JPS60234949A - High silicon steel strip and its manufacture - Google Patents

High silicon steel strip and its manufacture

Info

Publication number
JPS60234949A
JPS60234949A JP60073841A JP7384185A JPS60234949A JP S60234949 A JPS60234949 A JP S60234949A JP 60073841 A JP60073841 A JP 60073841A JP 7384185 A JP7384185 A JP 7384185A JP S60234949 A JPS60234949 A JP S60234949A
Authority
JP
Japan
Prior art keywords
silicon steel
silicon
ribbon
less
steel ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60073841A
Other languages
Japanese (ja)
Other versions
JPS6217020B2 (en
Inventor
Noboru Tsuya
津屋 昇
Kenichi Arai
賢一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60073841A priority Critical patent/JPS60234949A/en
Publication of JPS60234949A publication Critical patent/JPS60234949A/en
Publication of JPS6217020B2 publication Critical patent/JPS6217020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Abstract

PURPOSE:To obtain a high silicon steel strip having good bendability, workability and superior in magnetic characteristic by contg. high silicon content, Co or/ and Ni comprising columnar crystal having a prescribed particle diameter and growing vertically to the strip surface and contg. no super lattice of Fe3Si. CONSTITUTION:Said high silicon steel strip contains basically 4-10% Si, <=10% Co, <=3% Ni and the balance Fe with inevitable impurities, further, <=2% Al and Mn can be added respectively. In said strip, 1-100mum crystal grains and substantially no super lattice Fe3Si exist, and the columnar crystals grow vertically to the strip surface. For manufacturing said strip, a molten silicon steel having said compsn. is cooled directly and ultrarapidly at 10<3>-10<6> deg.C/sec cooling rate, then immediately finished to the strip having prescribed thickness. Namely, usually indispensable hot and cold rolling processes are eliminated thoroughly. As the result, the high silicon steel strip having aforementioned characteristics is obtained.

Description

【発明の詳細な説明】 本発明は4〜10%の珪素と、10%以下のコバルト、
3%以下のニッケルとを含む高珪素鋼薄帯とその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises 4 to 10% silicon, 10% or less cobalt,
The present invention relates to a high-silicon steel ribbon containing 3% or less of nickel and a method for producing the same.

鉄に3%程度の珪素を含有させた珪素鋼薄帯はトランス
などの電気機器の鉄心材料として広く用いられている。
Silicon steel ribbon, which is made by adding about 3% silicon to iron, is widely used as a core material for electrical equipment such as transformers.

これらの珪素鋼板は、通常、結晶粒の結晶軸方位がいろ
いろな方向にばらついた無方向性珪素鋼板と、結晶粒の
〔100〕軸が圧延方向に揃った方向性珪素鋼板に分け
られる。前者は主として磁束がいろいろな方向にかかる
回転機や発電機の鉄心材料に用いられ、後者は磁束が一
方向のみにかかるトランスなどの鉄心材料に用いられて
いる。このような応用面で、最も強く要請される点は、
第1に素材の鉄損を極力小さくすることである。これは
エネルギー価格の高騰化のためにますまず強く要請され
ると予想される。第2に素材の磁歪振動による機器の騒
音を可能な限り低く抑えることである。この要請も、又
、ますます強くなろうと考えられる。これらの要請に応
えるために、無方向性珪素鋼においては鉄損を劣化させ
る炭素、窒素、酸素、硫黄などの混入不純物を極力低く
し、又〔100〕軸を板面に揃える技術が開発され、効
果があがってきている。一方、方向性珪素鋼においては
〔100〕軸の圧延方向へ集積度をさらに高くする技術
や、コーティング処理によって鋼板に張力を加え鉄損や
見かけ上の磁歪を小さくする技術が開発されてきた。
These silicon steel sheets are usually divided into non-oriented silicon steel sheets in which the crystal axis orientations of the crystal grains vary in various directions, and grain-oriented silicon steel sheets in which the [100] axes of the crystal grains are aligned in the rolling direction. The former is mainly used for core materials of rotating machines and generators where magnetic flux is applied in various directions, while the latter is used for iron core materials such as transformers where magnetic flux is applied only in one direction. In such applications, the most strongly required points are:
The first is to minimize the core loss of the material. This is expected to become more and more strongly demanded due to the soaring energy prices. The second goal is to keep equipment noise caused by magnetostrictive vibration of the material as low as possible. This demand is also expected to become even stronger. In order to meet these demands, technology has been developed to minimize the amount of impurities such as carbon, nitrogen, oxygen, and sulfur that degrade iron loss in non-oriented silicon steel, and to align the [100] axis with the plate surface. , is becoming more effective. On the other hand, for grain-oriented silicon steel, techniques have been developed to further increase the degree of integration in the rolling direction of the [100] axis, and techniques to apply tension to the steel plate through coating treatment to reduce iron loss and apparent magnetostriction.

しかしながら、従来の珪素鋼板の技術は、ほぼ完成の域
に達し、磁気特性や磁歪特性の改良は飽和寸前に来てい
るという状態であって、これから多大な努力をおこなっ
ても得られる磁気特性の向上はわずかなものであると予
想される。
However, the conventional silicon steel sheet technology has almost reached the stage of completion, and improvements in magnetic properties and magnetostrictive properties are on the verge of saturation. Improvements are expected to be modest.

ところで、一方、鉄に珪素を6.5%程度含有させた高
珪素鋼は、飽和磁束密度が約1.80T(テスラ)と低
くはなるが、磁歪が実質的に消失し、又、磁気異方性も
半減するので、3%程度の珪素鋼よりも優れた軟磁性(
透磁率μが高く、保磁力Hcが低い)を示すことが19
50年代から知られている。この素材をトランスなどに
組んだ場合適当な励磁磁束密度においては鉄損が極めて
低く、しかも実質的に騒音がなくなるという特性がある
ので応用上はきわめて魅力のある材料である。しかし珪
素量が約4%を超すと素材マトリックスが硬化する上に
、規則格子(Fe3Si)があらわれるようになり急激
に脆化する。そのために圧延が極度に困稀になり、実質
的に製造が不可能になるばかりでなく剪断、打ち抜きな
どの加工もできなくなる。このような事情で、4%以上
の高珪素鋼、特に6.5%程度の高珪素鋼は、その慢れ
た磁気特性にもかかわらず実用に供されていないのであ
る。
On the other hand, high-silicon steel, which is made by adding about 6.5% silicon to iron, has a low saturation magnetic flux density of about 1.80 T (Tesla), but magnetostriction virtually disappears, and magnetic anomaly Since the orientation is also halved, it has a soft magnetic property (approximately 3% silicon steel) that is superior to that of silicon steel.
High magnetic permeability μ and low coercive force Hc)
Known since the 50's. When this material is assembled into a transformer or the like, it has extremely low iron loss at a suitable excitation magnetic flux density and virtually eliminates noise, making it an extremely attractive material for applications. However, when the amount of silicon exceeds about 4%, the material matrix hardens and, in addition, a regular lattice (Fe3Si) appears and rapidly becomes brittle. This makes rolling extremely difficult, making not only production practically impossible but also processing such as shearing and punching impossible. Under these circumstances, high-silicon steels with a silicon content of 4% or more, especially high-silicon steels with a silicon content of about 6.5%, are not put into practical use despite their excellent magnetic properties.

これに対して本発明者らは、珪素を4〜10%、コバル
ト10%以下、ニッケル3%以下を含有する珪素鋼の溶
融体を超急冷して得た薄帯は、結晶粒が非常に微細で、
規則格子が実質的になく可撓性と加工性に極めて富み、
かつ磁気特性の優れた高珪素鋼薄帯が得られることを見
出し鋭意研究を進めて本発明を完成させた。
On the other hand, the present inventors found that a ribbon obtained by ultra-quenching a melt of silicon steel containing 4 to 10% silicon, 10% or less cobalt, and 3% or less nickel has extremely large crystal grains. minute,
It has virtually no regular grid and is extremely flexible and workable.
They discovered that a high-silicon steel ribbon with excellent magnetic properties could be obtained, and conducted extensive research to complete the present invention.

第1図(A),(B)は、珪素6.5%、残余実質的に
鉄からなる本発明珪素鋼薄帯の組織写真の1例を示すも
のであって、(A)は超急冷して得た薄帯の表面組織(
B)はその断面組織であり、この写真から約5〜10μ
mの直径の結晶粒が薄板表面に対して垂直方向に配列し
成長していることがわかる。第2図は同様の薄帯の曲げ
加工性を示すものであって、第2図(A)は本発明の薄
帯を4mmφの棒状体に巻き付けた状態を示し、第2図
(B)は折り曲げの状態を示すものである。第2図(A
)および(B)より明らかなように従来到底可能とは考
えられなかった程に、よく曲げることができることが理
解されよう。
Figures 1 (A) and (B) show an example of microstructure photographs of a silicon steel ribbon of the present invention consisting of 6.5% silicon and the remainder substantially iron; The surface structure of the thin strip obtained by
B) is its cross-sectional structure, which is about 5 to 10 μm from this photo.
It can be seen that crystal grains with a diameter of m are arranged and grown in a direction perpendicular to the surface of the thin plate. FIG. 2 shows the bending workability of a similar thin strip, and FIG. 2(A) shows the thin strip of the present invention wound around a rod-shaped body of 4 mmφ, and FIG. 2(B) shows the bending workability of a similar thin strip. This shows the state of bending. Figure 2 (A
) and (B), it will be understood that it can be bent to a degree that was previously thought to be impossible.

一方筒3図は珪素3〜11%の種々の割合で含有し、残
余実質的に鉄からなる溶融体を103〜104℃/se
cで超急冷して得た薄帯を最高10KGまで磁化したと
きの保磁力Hc(A曲線)を従来の方法により作った高
珪素鋼(B曲線)と比較して示したものである。第3図
より明らかなように本発明薄帯も従来の高珪素鋼と同様
高珪素領域においてHcが次第に低くなる現象が認めら
れ、珪素6.5%近傍においては、従来の3%珪素鋼と
同程度のHcを示す。
On the other hand, cylinder 3 contains a molten body containing various proportions of 3 to 11% silicon, with the remainder essentially consisting of iron at 103 to 104 °C/sec.
The coercive force Hc (curve A) when a ribbon obtained by ultra-quenching at c is magnetized to a maximum of 10 KG is shown in comparison with that of high-silicon steel made by a conventional method (curve B). As is clear from FIG. 3, the ribbon of the present invention, like the conventional high-silicon steel, exhibits a phenomenon in which Hc gradually decreases in the high-silicon region, and in the vicinity of 6.5% silicon, it is lower than the conventional 3% silicon steel. Shows similar Hc.

なお、本発明薄帯は、溶融状態から急冷されたままの状
態では従来品にくらべHcが高いが、後述するように焼
鈍することによって改善することができ、従来の高珪素
鉄材のレベルとすることができる。
The ribbon of the present invention has a higher Hc than conventional products when it is rapidly cooled from the molten state, but it can be improved by annealing as described below, and it can be brought to the level of conventional high-silicon iron materials. be able to.

このような本発明の加工性に関する特性は結晶粒が第1
図(A)および(B)に示すように微細なことと規則格
子が実質的に認められないことによるのである。しかし
ながら超急冷の状態で結晶粒が100μmを超えると加
工性が減じるので好ましくなく、また一方1μm以下の
如く細かくしても、実質的に加工性の向上も認められず
、余りに高速冷却を要し経済性を損うことになる。
The characteristics related to the workability of the present invention are that the crystal grains are the
This is because, as shown in Figures (A) and (B), it is fine and no regular lattice is substantially observed. However, if the crystal grains exceed 100 μm in the ultra-quenched state, the workability will be reduced, which is undesirable.On the other hand, even if the crystal grains are made finer than 1 μm, there will be no substantial improvement in the workability, and too high-speed cooling will be required. This will hurt economic efficiency.

本発明の方法により得られた珪素、鋼薄帯を熱処理する
と結晶が粗大化し、磁気特性(Hc)が著しく向上する
。これを顕微鏡写真を示して説明すると次のようである
When the silicon and steel ribbon obtained by the method of the present invention is heat-treated, the crystals become coarser and the magnetic properties (Hc) are significantly improved. This can be explained using microscopic photographs as follows.

第1図(C)および(D)は6.4%Si−93.6%
Feの組成の珪素鋼薄帯を1200℃でアルゴンガス雰
囲気中で40分間熱処理した結果を示し、(C)は表面
組織写真、(D)は断面組織写真である。写真で示す結
晶粒の大きさは、熱処理により粒成長が進み結晶粒径が
著しく粗大化したことを示すものである。結晶粒径は写
真かられかるように、150μm程度以上である。
Figure 1 (C) and (D) are 6.4%Si-93.6%
The results of heat treatment of a silicon steel ribbon having a composition of Fe at 1200° C. in an argon gas atmosphere for 40 minutes are shown, (C) is a photograph of the surface structure, and (D) is a photograph of the cross-sectional structure. The size of the crystal grains shown in the photograph indicates that grain growth has progressed due to heat treatment and the crystal grain size has become significantly coarser. The crystal grain size is about 150 μm or more, as seen from the photo.

この薄帯の結晶粒の粒径は熱処理時間、熱処理温度の関
数である。薄帯の結晶の粗大化に伴い磁気特性(Hc)
は著しく改善された。
The grain size of the crystal grains in this ribbon is a function of heat treatment time and heat treatment temperature. Magnetic properties (Hc) increase as the ribbon crystals become coarser.
was significantly improved.

上述の熱処理後においても、薄帯は十分な加工性を有す
るが、これは結晶粒が第1図(D)の顕微鏡写真に示さ
れるように板面に対して垂直方向に結晶粒が発達してい
ることおよび規則格子の実質的に存在しないことが寄与
しているものと推定される。
Even after the heat treatment described above, the ribbon has sufficient workability, but this is because the crystal grains develop in a direction perpendicular to the sheet surface, as shown in the micrograph in Figure 1 (D). It is presumed that this is due to the fact that there is no regular lattice, and the fact that there is no regular grid.

次に成分組成について説明する。Next, the component composition will be explained.

本発明の項珪素鋼薄帯は基本的には珪素を4〜10%、
コバルト10%以下、ニッケル3%以下を含有し残部は
実質的に鉄と不可避不純物から成る。
The silicon steel ribbon of the present invention basically contains 4 to 10% silicon.
It contains 10% or less of cobalt, 3% or less of nickel, and the remainder consists essentially of iron and unavoidable impurities.

珪素が4%以下では磁気特性が従来成品と同程度のもの
しか得られないし、又、珪素が10%を超すと脆化する
上にかえって磁気特性が劣化する。
If the silicon content is less than 4%, the magnetic properties will be comparable to those of conventional products, and if the silicon content exceeds 10%, it will become brittle and the magnetic properties will deteriorate.

なお、珪素は5〜7%の時に最も良い磁気特性を示すの
で、この範囲が好適である。珪素鋼においては不可避不
純物として酸素、硫黄、炭素、窒素が混入してくるが、
これらはいずれも成品中にあると鉄損特性を劣化させか
つ、薄帯を脆化させ加工性も劣化させるので極力低く抑
えるのが望ましい。これらの不純物の総量が0.1%を
超すと鉄損は大きくなり従来の珪素鋼に比べて劣るので
上限を0.1%とする。なお、現在の製鋼技術において
は、O<50ppm、Sく80ppm、G100ppm
、N<50ppmとすることができるのでこの範囲内と
するのか特に好ましい。
Note that since silicon exhibits the best magnetic properties when the content is 5 to 7%, this range is suitable. Silicon steel contains oxygen, sulfur, carbon, and nitrogen as unavoidable impurities.
If any of these are present in the product, they will deteriorate the iron loss characteristics, make the ribbon brittle, and deteriorate the workability, so it is desirable to keep them as low as possible. If the total amount of these impurities exceeds 0.1%, the iron loss increases and is inferior to conventional silicon steel, so the upper limit is set at 0.1%. In addition, in the current steelmaking technology, O < 50 ppm, S 80 ppm, G 100 ppm.
, N<50 ppm, so it is particularly preferable to keep it within this range.

本発明の成分組成はさらに2%以下のアルミニウムと2
%以下のマンガンを加えることができる。
The composition of the present invention further includes 2% or less aluminum and 2% aluminum.
% or less of manganese can be added.

アルミニウムは珪素以上に強い脱酸元素であるのでアル
ミニウムを添加することにより、より酸素の低い素材を
得ることができる。又、電気抵抗を高めるので渦電流損
を低くする点で好ましい。しかしアルミニウムは磁歪を
大きくするので、2%以上の添加は好ましくなく、上限
を2%とする。
Aluminum is a stronger deoxidizing element than silicon, so by adding aluminum, a material with lower oxygen content can be obtained. Further, since it increases electrical resistance, it is preferable in terms of lowering eddy current loss. However, since aluminum increases magnetostriction, it is not preferable to add more than 2%, and the upper limit is set at 2%.

マンガンは不可避混入元素として通常の製鋼においては
約0.05%含有されている。この元素は酸素や硫黄と
異なり珪素鋼においては、むしろ圧延性や磁気特性にと
って好ましいことが知られている。
Manganese is contained as an unavoidable mixed element in an amount of about 0.05% in ordinary steel manufacturing. Unlike oxygen and sulfur, this element is known to be preferable for silicon steel for its rollability and magnetic properties.

本発明においても2%以下の添加、好ましくは0.2〜
1.3%の添加によっで磁気特性が向上するばかりでな
く、形状の良い(薄帯において穴や幅方向端部のクラッ
クのない)超急冷薄帯が得られることがわかった。これ
らの現象の原因は明らかではないが、マンガンを添加す
ることにより不純物硫黄が固溶状態あるいは微細な析出
物の状態からMnSの大きな析出物に変化し、そのため
に圧延性や磁気特性が良くなったと考えられる。しかし
マンガンが2%以上になると磁気特性はかえって劣化し
、さらに硬化するために成品の加工が困難になってくる
ので、最大含有量を2%に限定した。
Also in the present invention, the addition amount is 2% or less, preferably 0.2 to
It has been found that addition of 1.3% not only improves the magnetic properties but also provides an ultra-quenched ribbon with good shape (no holes or cracks at the edges in the width direction of the ribbon). The cause of these phenomena is not clear, but by adding manganese, the impurity sulfur changes from a solid solution state or a fine precipitate state to a large MnS precipitate, which improves rolling properties and magnetic properties. It is thought that However, if manganese exceeds 2%, the magnetic properties will deteriorate and the product will be difficult to process due to further hardening, so the maximum content was limited to 2%.

本発明薄帯は珪素分の含有が高いので必然的に飽和磁束
密度が低くなる短所をもつ。Fe−Si合金にコバルト
を添加すると飽和磁束密度が高くなるので、本発明にお
いても必要に応じてコバルトを添加し前記短所を補うこ
とができる。しかしコバルトは極めて高価な元素である
ので、本発明においてはコバルトの上限を10%と限定
した。ニッケルはFe−Si合金においても靭性を増す
作用をもつ元素であり、本発明においてニッケルを3%
以下、好ましくは0.2〜1.5%添加すると良質の超
急冷薄帯ができるようになることが詔められた。
Since the ribbon of the present invention has a high silicon content, it has the disadvantage of inevitably having a low saturation magnetic flux density. Adding cobalt to the Fe-Si alloy increases the saturation magnetic flux density, so in the present invention as well, cobalt can be added as needed to compensate for the above disadvantages. However, since cobalt is an extremely expensive element, the upper limit of cobalt is limited to 10% in the present invention. Nickel is an element that has the effect of increasing toughness in Fe-Si alloys, and in the present invention, nickel is added to 3%.
It has been suggested below that adding preferably 0.2 to 1.5% makes it possible to produce a high-quality ultra-quenched ribbon.

以上述べた以外に不純物として含有するクロム、モリブ
テン、タングステン、バナジウム、チタン、錫等の元素
を約0.1%以下程度の微量含有することがあっても、
本発明の効果を何ら妨げるものではない。
In addition to the above-mentioned impurities, there may be trace amounts of 0.1% or less of elements such as chromium, molybdenum, tungsten, vanadium, titanium, and tin.
This does not in any way impede the effects of the present invention.

さて、従来の珪素鋼板の製造においては、鋼塊あるいは
連続鋳造スラブを熱間圧延して1.5〜4mm厚のホッ
トストリップにしたあと、適当な冷間圧延と熱処理を組
み合わせて通常0.28〜0.50mm厚の成品を作る
のであるが、本発明においては、前述した組成をもつ珪
素鋼溶融体を103〜106℃/secの冷却速度で直
接超急冷して直ちに所定の厚みをもつ薄帯に仕上げるの
である。すなわち珪素鋼溶融体から直接に成品もしくは
それに近い半成品にするのであって、従来工程に不可欠
であった熱間圧延工程および冷間圧延工程を完全に除い
ているのである。溶融体を超急冷して薄帯とする方法は
それが充分に幅が広く所定の厚みがあり、かつ厚みが均
一であり、連続してコイル状にとり出せるものであれば
どのような方法であっても良いが、代表的には第4およ
び5図に示すように、溶融体を連続的に移動する移動面
上に適当な形状をもつ孔から連続的に噴出させて急冷凝
固させ、所定の厚みをもつストリップをコイル状に得る
のがよい。
Now, in the conventional production of silicon steel sheets, a steel ingot or continuous cast slab is hot rolled into a hot strip with a thickness of 1.5 to 4 mm, and then a suitable cold rolling and heat treatment are combined to give a thickness of 0.2 mm. A product with a thickness of ~0.50 mm is produced, but in the present invention, a silicon steel melt having the above-mentioned composition is directly ultra-quenched at a cooling rate of 103 to 106 °C/sec to immediately form a thin product with a predetermined thickness. It is finished into an obi. In other words, a silicon steel melt is directly made into a finished product or a semi-finished product, completely eliminating the hot rolling and cold rolling steps that are essential to conventional processes. Any method can be used to ultra-quench a molten material to form a thin ribbon, as long as it is wide enough, has a specified thickness, has a uniform thickness, and can be drawn out continuously into a coil. However, typically, as shown in Figures 4 and 5, the molten material is jetted out continuously from holes of an appropriate shape on a continuously moving moving surface, rapidly solidified, and formed into a predetermined shape. It is preferable to obtain a thick strip in the form of a coil.

第4図(a)は、移動面として椀状回転体2を用い、こ
の内側回転面上に噴出ノズル1より溶融体4を噴出させ
急冷凝固された連続体状薄帯3を得る装置の略図が示さ
れている。又第を図(b),(c)には1個の回転ロー
ル5上あるいは同一の大きさとは限らない2個の近接し
た回転ロール5′、5″間に噴出孔から珪素鋼溶融体を
連続的に噴出し2個のロール間で超急冷することにより
連続状薄帯を得る装置の略図が示されている。第4図(
d)は金属帯製無限コンベア7と回転ロール5間に溶融
珪素鋼4を供給し、急速冷却させて連続的に薄帯を得る
装置の略図を示す。
FIG. 4(a) is a schematic diagram of an apparatus that uses a bowl-shaped rotating body 2 as a moving surface and ejects a melt 4 from a jet nozzle 1 onto the inner rotating surface to obtain a rapidly solidified continuous ribbon 3. It is shown. In addition, in Figures (b) and (c), molten silicon steel is poured from the spout holes onto one rotating roll 5 or between two adjacent rotating rolls 5' and 5'', which are not necessarily of the same size. A schematic diagram of an apparatus for obtaining a continuous ribbon by continuous jetting and ultra-quenching between two rolls is shown.
d) shows a schematic diagram of an apparatus in which molten silicon steel 4 is supplied between an endless metal belt conveyor 7 and a rotating roll 5, and is rapidly cooled to continuously obtain a thin ribbon.

本発明により珪素鋼薄帯を上記装置を用いて製造する場
合、重要なことは十分速い速度で溶融体が凝固冷却する
ことである。まず、噴出孔から噴出され移動する冷却体
にあたって凝固するまでの時間が長いと噴出溶融体の流
れが一体でなくなり、ともすれば孔やボイドが生じたり
、又厚みが均一でない薄帯ができたりすると共に、大気
中で製造する場合には酸化や窒化を受けて良好な形状の
薄帯ができなくなるか、あるいはできても成品中に酸素
や窒素を含むために磁気特性が劣化してしまう。一方、
凝固してからもはや結晶粒成長や規則格子化のおきない
約400℃の温度に達するまで時間が長いと得られる薄
帯は部分的に規則格子をもち、又結晶粒が粗大になって
あとに続く剪断や打ち抜き、あるいは必要に応じておこ
なわれる圧延が困難になってくる。本発明者らは、冷却
回転体の回転数や溶融体の噴射圧をいろいろに変えて実
験した結果、溶融体がノズルから噴出されてから、凝固
、冷却され薄帯の温度が400℃となる間の平均的な冷
却速度が103℃/sec以下では望ましい薄帯が得ら
れないことを知見した。すなわち、この臨界冷却速度よ
りも遅く冷却する大気中で製造した場合、酸化して連続
した良好な形状の薄帯が得られなかったり、あるいは得
られても粒成長などのため極めて脆いものであったりす
る。実際上経済的にかつ確実に十分細かい結晶粒をもち
かつ規則格子が実質的に存在しない薄帯を得るには40
0℃までを103〜106℃/secの冷却速度で冷却
するのがよい。
When manufacturing a silicon steel ribbon according to the present invention using the above-described apparatus, it is important that the melt solidify and cool at a sufficiently fast rate. First of all, if it takes a long time for the ejected molten material to solidify when it hits the moving cooling body, the flow of the ejected molten material will no longer be integrated, which may result in holes or voids, or the formation of thin strips with uneven thickness. In addition, when manufactured in the atmosphere, the ribbon is oxidized and nitrided, making it impossible to produce a ribbon with a good shape, or even if it is possible, the magnetic properties deteriorate due to the inclusion of oxygen and nitrogen in the finished product. on the other hand,
If it takes a long time from solidification to reach a temperature of approximately 400°C, at which no grain growth or regular lattice formation occurs, the resulting ribbon will partially have an ordered lattice, and the crystal grains will become coarse and later. Subsequent shearing, punching, or optional rolling becomes difficult. The inventors conducted experiments by varying the rotation speed of the cooling rotor and the injection pressure of the molten material, and found that after the molten material is ejected from the nozzle, it is solidified and cooled, and the temperature of the ribbon reaches 400°C. It has been found that a desired ribbon cannot be obtained if the average cooling rate during the process is less than 103° C./sec. In other words, if it is produced in an atmosphere that cools slower than this critical cooling rate, it may not be possible to obtain a continuous ribbon with a good shape due to oxidation, or even if it is obtained, it may be extremely brittle due to grain growth, etc. or In order to economically and reliably obtain a ribbon with sufficiently fine grains and substantially no ordered lattice,
It is preferable to cool down to 0°C at a cooling rate of 103 to 106°C/sec.

ところで、本発明に係る高珪素鋼薄帯も工業的には、十
分幅の広いものが製作できなければならない。一般に、
噴出孔を必要幅にわたってスリット状にしたノズルがそ
の目的のために用いられているが、幅方向にわたって一
様な厚みの薄帯を得るためには第5図、第6図に示すよ
うに2個以上の噴出孔10を近接させて、必要な幅にわ
たって一列に並べたノズル1を用いるのがよい。この際
ノズル端部に補助噴出孔10′を設けるとより一層幅方
向全幅にわたって一様な溶融体噴流9が得られる。
Incidentally, the high-silicon steel ribbon according to the present invention must also be manufactured industrially with a sufficiently wide width. in general,
A nozzle with a slit-shaped ejection hole over the required width is used for this purpose, but in order to obtain a thin strip with a uniform thickness across the width, two steps are required as shown in Figures 5 and 6. It is preferable to use a nozzle 1 in which two or more ejection holes 10 are placed close to each other and arranged in a line over a necessary width. At this time, if an auxiliary jet hole 10' is provided at the end of the nozzle, a more uniform melt jet 9 can be obtained over the entire width.

従ってこのようにすると一様な厚さの薄帯を得ることが
できる。
Therefore, by doing so, a ribbon having a uniform thickness can be obtained.

なお、工業的に高珪素鋼薄帯を連続して作り出すために
は、長時間にわたって連続的にノズルから溶融体を噴出
させねばならないので、ノズルの損傷が著るしい。ノズ
ルは例えばボロンナイトライドセラミックスなどの高融
点の耐火材料で作られるのが一般的であるか、この場合
には損傷を防ぐために水、液体金属あるいはガスでノズ
ルの周囲を連続的に冷却するとノズルの寿命が著るしく
延び有利である。
Note that in order to continuously produce high-silicon steel ribbons industrially, it is necessary to eject the melt continuously from the nozzle over a long period of time, resulting in significant damage to the nozzle. The nozzle is typically made of a refractory material with a high melting point, such as boron nitride ceramics, or in this case, continuous cooling of the area around the nozzle with water, liquid metal or gas to prevent damage may cause the nozzle to evaporate. This is advantageous because the life of the product is significantly extended.

更に、酸化、窒化を確実に防ぎ、不純物の少ない薄帯を
得るためには、第7図に示すように薄帯製造装置全体を
保護ガス雰囲気下或いは真空下におく様一つの槽内にお
くのもよい。その他ノズル近傍に保護ガスとしてアルゴ
ン又はヘリウム又はCO2ガスなどを吹き付けるのもよ
い。
Furthermore, in order to reliably prevent oxidation and nitridation and obtain a ribbon with few impurities, the entire ribbon manufacturing apparatus is placed in one tank under a protective gas atmosphere or under vacuum, as shown in Figure 7. It's also good. In addition, argon, helium, or CO2 gas may be sprayed as a protective gas near the nozzle.

第7図はこの発明にかかる珪素鋼薄帯を真空下で得るた
めの製造装置を示している。11は真空槽で、この真空
槽11内には回転ロール5が設置されている。回転ロー
ル5は熱伝導のよい、たとえば銅よりなり、これを駆動
するモータが連結されている。回転ロール5の直上には
高珪素副材料を収納するノズル1が上下移動可能に設置
されている。
FIG. 7 shows a manufacturing apparatus for obtaining a silicon steel ribbon according to the present invention under vacuum. 11 is a vacuum chamber, and a rotating roll 5 is installed in this vacuum chamber 11. The rotating roll 5 is made of a material with good thermal conductivity, such as copper, and is connected to a motor that drives it. Directly above the rotating roll 5, a nozzle 1 for storing a high-silicon auxiliary material is installed so as to be movable up and down.

12はパイプで、高珪素鉄材料をノズル1に投入するた
めのものである。また13は溶融させた高珪素鋼材料を
ノズル1から噴出させるためのガスを注入するためのパ
イプである。14はノズル1を上下移動するシリンダで
、ノズル1と回転ロール5の距離を調整する。15は真
空ベローで、ノズル1の上下移動に応して伸縮するとと
もに、真空槽11とノズル1の間を密閉している。16
はヒータで、ノズル1の先端周囲に配置されており、た
とえば1400〜1600℃の温度でノズル1を加熱し
、ノズル1内に収納された高珪素鉄材料を溶融させる。
Reference numeral 12 denotes a pipe for introducing the high-silicon iron material into the nozzle 1. Further, 13 is a pipe for injecting gas to jet the molten high-silicon steel material from the nozzle 1. 14 is a cylinder that moves the nozzle 1 up and down, and adjusts the distance between the nozzle 1 and the rotating roll 5. 15 is a vacuum bellows which expands and contracts in accordance with the vertical movement of the nozzle 1 and seals the space between the vacuum chamber 11 and the nozzle 1. 16
A heater is arranged around the tip of the nozzle 1 and heats the nozzle 1 at a temperature of, for example, 1400 to 1600°C to melt the high silicon iron material housed within the nozzle 1.

17は真空槽11の排気口で排気系に接続されている。17 is an exhaust port of the vacuum chamber 11 and is connected to an exhaust system.

18はこの装置により製造される珪素鉄薄帯の捕集口で
ある。
18 is a collection port for the silicon-iron ribbon produced by this apparatus.

溶融した結晶性高珪素鋼材料をノズル1から噴出させ、
回転ロール5の回転面で超急冷して珪素鋼薄帯を得る場
合、真空槽11内は大気圧下の自然雰囲気としてもよく
、あるいはAr,N2などの保護雰囲気としてもよい。
Spouting the molten crystalline high silicon steel material from the nozzle 1,
When a silicon steel ribbon is obtained by ultra-quenching on the rotating surface of the rotating roll 5, the inside of the vacuum chamber 11 may be a natural atmosphere under atmospheric pressure, or may be a protective atmosphere such as Ar or N2.

上述の第4〜7図に示した珪素鋼薄帯製造装置において
、冷却体と珪素鉄との間の濡れ性を考慮に入れて回転冷
却体の材質を選択することが重要である。また珪素、鋼
溶融体の溶融温度が融点より300℃以上高くなると、
溶融体の粘度が下り、溶融体加熱中にノズルから溶融体
が滲み出したり、ノズルより噴出されたときに噴流がミ
スト状になったり、回転卓、却体の表面に広く拡がり、
一定幅の薄帯にならなかったりするため、薄帯が薄くな
りすぎたり、薄帯がすだれ状になったりする。又、一方
溶融体の溶融温度が低すぎると溶融体の粘度が大きくな
り、溶融体のジェット流は充分に回転冷却体の表向には
りついて移動することができなくなり、溶融体を超急冷
することができなくなり初期の効果が得られない。
In the silicon steel ribbon manufacturing apparatus shown in FIGS. 4 to 7 described above, it is important to select the material of the rotary cooling body in consideration of the wettability between the cooling body and silicon iron. Also, if the melting temperature of silicon or steel melts is 300°C or more higher than the melting point,
The viscosity of the molten material decreases, and the molten material oozes out from the nozzle during heating of the molten material, or the jet stream becomes mist-like when it is ejected from the nozzle, or it spreads widely on the surface of the rotary table or cooling body.
Because the thin strip may not have a constant width, the thin strip may become too thin or become slant-like. On the other hand, if the melting temperature of the molten material is too low, the viscosity of the molten material increases, and the jet flow of the molten material will not be able to sufficiently cling to the surface of the rotating cooling body and move, resulting in super rapid cooling of the molten material. The initial effect cannot be obtained.

又、浴融体のノズルよりの噴射圧力が高すぎると、溶融
体のジェット流は不規則形状の微細粒子となり飛散する
ようになる。
Furthermore, if the jet pressure of the bath melt from the nozzle is too high, the jet stream of the melt becomes irregularly shaped fine particles and scatters.

従って、本発明を実施する場合には、溶融体が冷却体上
に10°〜170°の接触角で、好ましくはほぼ90°
で盛り上るように粘度を選択する必要がある。このため
には、溶融体の温度は、融点より100℃ないし130
℃高い温度とするのが好ましい。
Therefore, when carrying out the invention, the melt is placed on the cooling body with a contact angle of between 10° and 170°, preferably approximately 90°.
It is necessary to select the viscosity so that it will rise. For this purpose, the temperature of the melt must be 100°C to 130°C below the melting point.
It is preferable to use a temperature higher than 0.degree.

本発明によると、溶融体をノズルより噴出する圧力は0
.01〜1.5atm.の範囲とするのがよい。これは
溶融体の噴出圧力が余り高いと溶融体の粘度との関係で
ミストになったり、微細粒状となって飛散したり、でき
た薄帯がすだれ状となったりするからである。
According to the present invention, the pressure at which the melt is ejected from the nozzle is 0.
.. 01-1.5 atm. It is recommended that the range be within the range of . This is because if the ejection pressure of the molten material is too high, the molten material may become mist, become scattered in the form of fine particles, or the resulting thin ribbon may become slant-like, depending on the viscosity of the molten material.

なお溶融体の噴出を真空中で行えば得られるべき薄帯が
空気と衝突し、上述の如きすだれ状となったり、周縁の
ささくれ、又はポーラスとなったりする欠点が除かれる
Note that if the melt is ejected in a vacuum, the disadvantages of the thin ribbon to be obtained colliding with air and forming a slit, a hangnail at the periphery, or a porous state as described above can be eliminated.

以上に述べた方法によって、溶融体から直ちにコイル状
に巻き取られた高珪素鋼薄帯が製造されるのである。こ
のようにして得られた薄帯の結晶粒は極めて微細で通常
1〜100μmになっている。
By the method described above, a high-silicon steel ribbon is produced immediately from the melt into a coil. The crystal grains of the ribbon thus obtained are extremely fine and usually have a size of 1 to 100 μm.

このような薄帯はこの状態で成品とすることができる程
に、良好な形状と磁気特性を有しているが、より高い磁
気特性を発挿させるためには、これを400〜1300
℃、好ましくは800〜1250℃で短時間焼鈍し、内
部歪を除去すると同時に、結晶粒を粒径0.05〜10
mmにまで成長させるのが良い。この処理をおこなうと
、例えば保磁力Hcは格段に減少する。この熱処理温度
が1300℃を超えると薄帯は脆化し、実用に供しえな
くなる。又、400℃以下では内部歪を除去することは
不可能である。この熱処理はどのような方法でおこなっ
ても良いが、工業的には連続焼鈍炉で60秒程度焼鈍し
、できるだけ速やかに冷却するのが良い。
Such a thin ribbon has a good shape and magnetic properties to the extent that it can be made into a finished product in this state, but in order to develop even higher magnetic properties, it must be heated to 400 to 1300
℃, preferably 800 to 1250℃ for a short time to remove internal strain and at the same time reduce the grain size to 0.05 to 10
It is best to grow it up to mm. When this process is performed, for example, the coercive force Hc is significantly reduced. If the heat treatment temperature exceeds 1300° C., the ribbon becomes brittle and cannot be put to practical use. Furthermore, it is impossible to eliminate internal strain at temperatures below 400°C. This heat treatment may be carried out by any method, but from an industrial perspective it is preferable to anneal the material in a continuous annealing furnace for about 60 seconds and cool it as quickly as possible.

第8図は珪素6.5%残部実質的に鉄からなる平均粒径
5μ、厚さ80μmの薄帯Aと、同様の成分をもち平均
粒径15μm、厚さ80μmの薄帯Bを種々の温度で2
min間焼鈍した結果である。焼鈍の結果、400℃以
上の温度で、Hcの減少がみられ約1300℃で飽和す
るのが理解されよう。
Figure 8 shows a ribbon A having an average grain size of 5 μm and a thickness of 80 μm, consisting of 6.5% silicon and essentially iron, and a ribbon B having the same composition and an average grain size of 15 μm and a thickness of 80 μm. 2 at temperature
This is the result of annealing for min. It will be understood that as a result of annealing, a decrease in Hc is observed at a temperature of 400°C or higher, and it becomes saturated at about 1300°C.

又一方、実用的には、鉄心に組み込む際、鉄心の占積率
が可能な限り高いことが望ましい。このためには薄帯の
表面が円滑である必要がある。本発明において、超急冷
凝固した状態での薄帯は適切な製造条件下であれば充分
に円滑な表面状態を呈しているのであるが、さらに高度
の円滑度を要求される場合には、超急冷し凝固した状態
の薄帯を、必要に応じて熱処理を加えた後で、5%以上
の圧下率で圧延して前記の温度で焼鈍するのが望ましい
。圧延は通電の冷間圧延機で充分におこなえるが、特に
珪素量が7〜10%と高く、圧延での割れが心配となる
場合は100℃〜500℃の温間で圧延することが推奨
される。適切な圧延熱処理によって薄帯の表面は円滑に
なると同時に、圧延熱処理を施すことにより、磁気特性
の向上がもたらされる。この原因は、今のところはっき
りとしていないが、冷延後圧地熱処理によって集合組織
の変化が生じたためと推測される。
On the other hand, from a practical point of view, it is desirable that the space factor of the core be as high as possible when incorporating it into the core. For this purpose, the surface of the ribbon needs to be smooth. In the present invention, the thin ribbon in the ultra-rapidly solidified state exhibits a sufficiently smooth surface condition under appropriate manufacturing conditions, but when an even higher level of smoothness is required, It is desirable that the rapidly cooled and solidified ribbon is subjected to heat treatment if necessary, then rolled at a rolling reduction of 5% or more and annealed at the above temperature. Rolling can be carried out satisfactorily in an energized cold rolling mill, but if the silicon content is particularly high (7 to 10%) and cracking during rolling is a concern, it is recommended to perform warm rolling at 100°C to 500°C. Ru. Appropriate rolling heat treatment makes the surface of the ribbon smooth, and at the same time, the rolling heat treatment improves the magnetic properties. The cause of this is not clear at present, but it is presumed that the texture changes due to the geothermal treatment after cold rolling.

上述の如くして製造された薄帯は積層しトランス、回転
機用鉄心など電気機器の鉄心として利用される。その際
、積層鉄心をその状態で焼鈍し、薄帯中に規則格子を生
成せしめるとHcを大幅に低減しうる。この場合、規則
格子が生じても、既に鉄心として形を成しているもので
あるから、何ら支障を生ずるものでなく、理にかなった
使用方法であるといえる。
The ribbons produced as described above are laminated and used as cores for electrical equipment such as transformers and cores for rotating machines. At that time, if the laminated core is annealed in that state to generate a regular lattice in the ribbon, Hc can be significantly reduced. In this case, even if a regular lattice occurs, since it has already been formed into an iron core, it does not pose any problem and can be said to be a logical method of use.

第9図は珪素6.5%、マンガン0.2%、残余実質的
に鉄よりなる薄帯を1200℃で3分間焼鈍後更に35
O〜700℃の温度で種々の時間保持する焼鈍を行なっ
て得られた磁気特性(Hc)の変化を示すものである。
Figure 9 shows a ribbon consisting of 6.5% silicon, 0.2% manganese, and the remainder substantially iron, which was annealed for 3 minutes at 1200°C and then further heated for 35 minutes.
This figure shows changes in magnetic properties (Hc) obtained by annealing at temperatures ranging from 0 to 700°C for various periods of time.

明らかに400〜650℃で30分以上保持した場合に
おいて、好成績が得られる。先述の鉄心状態での焼鈍は
、従って、この温度範囲で行なうのがよい。
Clearly, good results are obtained when the temperature is maintained at 400-650°C for 30 minutes or more. Therefore, the above-mentioned annealing in the core state is preferably performed within this temperature range.

次に実施例について本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 1 珪素6.5%、マンガン0.6%、アルミニウム0.3
%を含有し、不可避不純物として炭素0.007%、窒
素0.004%、酸素0.003%、硫黄0.005%
を含む溶融鉄を、800rpmで回転する銅製(300
mmφ)の回転冷却体に噴出して80μm厚の薄帯を作
った。この薄帯の磁気特性(Hc)と加工性を第1表に
示す。
Example 1 Silicon 6.5%, manganese 0.6%, aluminum 0.3
%, and the unavoidable impurities are 0.007% carbon, 0.004% nitrogen, 0.003% oxygen, and 0.005% sulfur.
A copper (300 rpm) rotating molten iron containing
A thin ribbon with a thickness of 80 μm was made by ejecting it onto a rotary cooling body of mmφ). Table 1 shows the magnetic properties (Hc) and workability of this ribbon.

薄帯は1200℃で3分焼鈍したあと、65μmに圧延
して、さらに1000℃で3分焼鈍した。最後にこれを
コイル状に巻き取って500℃で3時間焼鈍した。
The ribbon was annealed at 1200°C for 3 minutes, rolled to 65 μm, and further annealed at 1000°C for 3 minutes. Finally, this was wound into a coil and annealed at 500° C. for 3 hours.

第1表 なお、磁気特性(Hc)は1.5(テスラ)まで磁化し
た時の値を示す。又最小彎曲半径はいろいろな半径のガ
ラス棒に巻き付けて破損の生じない最小の半径を示し、
又剪断性については、○・・・剪断カエリが全然なく良
好な剪断性を示す△・・・剪断カエリが若干あるが、剪
断は充分にできる×・・・剪断が困難である を意味する。
In Table 1, the magnetic properties (Hc) show the values when magnetized to 1.5 (Tesla). In addition, the minimum radius of curvature indicates the minimum radius that will not cause damage when wrapped around glass rods of various radii.
As for the shearability, ○ means that there is no shear burr and good shearability; △ means that there is some shear burr, but shearing is sufficient; and × means that shearing is difficult.

実施例 2 珪素9.5%、マンガン1.5%、コバルト2%、アル
ミニウム0.1%、ニッケル0.7%を含有し、不可避
不純物として炭素0.004%、窒素0.0025%、
酸素0.0023%、硫黄0.003%を含む溶融珪素
鉄を、700rpmで回転するステンレス鋼製(100
mmφ)の双回転体に噴出して100μm厚の薄帯を作
った。これを直ちに50μmに圧延して950℃で2分
焼鈍した。
Example 2 Contains 9.5% silicon, 1.5% manganese, 2% cobalt, 0.1% aluminum, 0.7% nickel, and 0.004% carbon, 0.0025% nitrogen as unavoidable impurities.
Molten silicon iron containing 0.0023% oxygen and 0.003% sulfur is heated in a stainless steel (100
A thin ribbon with a thickness of 100 μm was produced by ejecting it onto a twin rotating body of mmφ). This was immediately rolled to 50 μm and annealed at 950° C. for 2 minutes.

さらにこれを420℃で70時間焼鈍した。これらの各
処理後の磁気特性と加工性は第2表の通りであった。
Further, this was annealed at 420°C for 70 hours. The magnetic properties and workability after each of these treatments are shown in Table 2.

第2表 なお、各項の測定条件は実施例1の場合と同じである。Table 2 Note that the measurement conditions for each item are the same as in Example 1.

本発明の方法によると、極めてフレキシブルな高珪素鉄
薄帯が連続して高速度に生産できると共に、高珪素鉄薄
帯の加工が容易で、圧延、熱処理も可能である。
According to the method of the present invention, an extremely flexible high-silicon iron ribbon can be produced continuously at high speed, and the high-silicon iron ribbon can be easily processed, and rolling and heat treatment are also possible.

又本発明によると彎曲性、剪断性に富む規則格子のない
高珪素鉄薄帯を製造し、例えば変圧器鉄心その他に成形
加工後、熱処理を施して規則格子を生成させて、磁気特
性(Hc)を更によくすることが可能であり、工業上極
めて有用である。
According to the present invention, a high-silicon iron ribbon without an ordered lattice, which has excellent bendability and shearability, is produced, and after being formed into a transformer core or the like, heat treatment is performed to generate an ordered lattice, and magnetic properties (Hc ), which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A),(B)は超急冷された状態の6.4%S
i−Feの珪素鉄薄帯の表面および断面の顕微鏡写真、
(C),(D)は熱処理された状態の6.4%Si−F
e珪素鉄薄帯の表面および断面の顕微鏡写真、第2図(
A),(B)は本発明の珪素鉄薄帯を4mmφの棒状体
に巻き付けた状態と折り曲げ状態とをそれぞれ示す図面
である。第3図は本発明の珪素鉄薄帯の珪素量と保磁力
(Hc)との関係を従来のものと比較して示した磁気特
性図、第4図(a),(b),(c),(d)は本発明
の珪素鉄薄帯を製造する装置の一例を示す略図、第5図
(A),(B)、第6図(A),(B)はそれぞれ本発
明の珪素鉄薄帯を製造する多孔ノズルの一例を示すノズ
ルの横断面図およびノズルの縦断面図である。 第7図は本発明の珪素鉄薄帯を製造する装置の1例を示
す説明図である。第2図は本発明の珪素鉄薄帯の焼鈍前
の磁気特性(Hc)(A曲線)と焼鈍後の磁気特性を比
較した熱処理特性図、第9図は本発明の珪素鉄薄帯に対
する熱処理温度、熱処理時間と保磁力(Hc)との関係
を示す磁気特性図である。 1・・・噴出ノズル、2・・・椀状回転体、3・・・連
続体状薄帯、4・・・溶融体、5,5′,5″・・・回
転ロール、6・・・バックアップロール、7・・・コン
ベヤ、9・・・溶融体噴流、12・・・パイプ、13・
・・ガス注入パイプ、14・・・シリンダ、15・・・
真空ベローズ、16・・・ヒーター、17・・・排気口
、18・・・薄帯捕集口。 第百A;て ト−′。Q“−・−・( 第LBx−< 8−1/θりμm。 第1(’;i4 ド−!θθμ′ −1 第11)図 μ、−ダμ′−−一 第21シ4 1\t、L\ ゝ≧51ζ 碕 ・ 第3図 Sノ 11(%ン 第4図 (a) (b) (c) (d) 第5図 第7図 −「 続 補 正 書 昭和60年 5月13日 特許庁長官 志 賀 学 殿 1事件の表示 昭和60年特性願第73841号 2、発明の名称 高珪素鋼薄帯とその製造方法 3、補正をする者 事件との関係 特許出願人 宮城県仙台市相木二丁目1iff38号津 屋 昇 4代理人
Figure 1 (A) and (B) show 6.4%S in the ultra-quenched state.
Micrographs of the surface and cross section of i-Fe silicon-iron ribbon,
(C) and (D) are 6.4% Si-F in a heat-treated state.
e Micrograph of the surface and cross section of the silicon-iron ribbon, Fig. 2 (
A) and (B) are drawings showing the silicon-iron ribbon of the present invention wound around a rod-shaped body having a diameter of 4 mm and a bent state, respectively. Fig. 3 is a magnetic characteristic diagram showing the relationship between silicon content and coercive force (Hc) of the silicon-iron ribbon of the present invention in comparison with that of the conventional one, and Fig. 4 (a), (b), (c ) and (d) are schematic diagrams showing an example of the apparatus for producing the silicon-iron ribbon of the present invention, and FIGS. FIG. 1 is a cross-sectional view of a nozzle and a vertical cross-sectional view of the nozzle, showing an example of a multi-hole nozzle for manufacturing an iron ribbon. FIG. 7 is an explanatory diagram showing an example of an apparatus for manufacturing a silicon-iron ribbon according to the present invention. Fig. 2 is a heat treatment characteristic diagram comparing the magnetic properties (Hc) (A curve) before annealing and the magnetic properties after annealing of the silicon-iron ribbon of the present invention, and Fig. 9 is a heat treatment characteristic diagram of the silicon-iron ribbon of the present invention. It is a magnetic characteristic diagram showing the relationship between temperature, heat treatment time, and coercive force (Hc). DESCRIPTION OF SYMBOLS 1... Ejection nozzle, 2... Bowl-shaped rotating body, 3... Continuous ribbon, 4... Melt, 5, 5', 5''... Rotating roll, 6... Backup roll, 7... Conveyor, 9... Melt jet, 12... Pipe, 13...
...Gas injection pipe, 14...Cylinder, 15...
Vacuum bellows, 16... Heater, 17... Exhaust port, 18... Thin strip collection port. 100th A; Teto'. Q"-・-・(th LBx-< 8-1/θri μm. 1st (';i4 do-!θθμ'-1 11th) Figure μ, -da μ'--1 21st si 4 1 \t、L\ ゝ≧51ζ 碕 ・Figure 3 S-11 (%n Figure 4 (a) (b) (c) (d) Figure 5 Figure 7 - "Continued amendment book 1985 5 Manabu Shiga, Commissioner of the Japan Patent Office, dated 13th January 1985 Characteristics Application No. 73841 2, Name of the invention High silicon steel ribbon and its manufacturing method 3, Relationship with the amended person case Patent applicant Miyagi Noboru Tsuya 4 Agent, 2-1iff 38, Aiki 2-chome, Sendai City, Prefecture

Claims (14)

【特許請求の範囲】[Claims] 1.型破%で珪素4〜10%と残部実質的に鉄および不
可避不純物から成り、副成分としてコバルト10%以下
、ニッケル3%以下の何れか1種又は2種以上を含有し
、結晶粒が1〜100μmで、かつ規則格子Fe3Si
が実質的に存在せず、結晶粒が薄帯表面に対し垂直に成
長した柱状晶からなり、加工性と磁気特性の暖れた高珪
素鋼薄帯。
1. The mold breakage percentage consists of 4 to 10% silicon, the remainder substantially iron and unavoidable impurities, and contains one or more of cobalt 10% or less and nickel 3% or less as subcomponents, and has a crystal grain size of 1. ~100 μm and regular lattice Fe3Si
A high-silicon steel ribbon with virtually no grains, consisting of columnar crystals grown perpendicular to the ribbon surface, and with good workability and magnetic properties.
2.不可避不純物元素は炭素、窒素、酸素、硫黄が総量
で0.1%以下である特許請求の範囲第1項記載の高珪
素鋼薄帯。
2. The high silicon steel ribbon according to claim 1, wherein the unavoidable impurity elements include carbon, nitrogen, oxygen, and sulfur in a total amount of 0.1% or less.
3.副成分としてアルミニウム2%以下、マンガン2%
以下を含有する特許請求の範囲第1項記載の高珪素鋼薄
帯。
3. Aluminum 2% or less, manganese 2% as subcomponents
A high silicon steel ribbon according to claim 1, which contains:
4.不純物元素としてクロム、モリブデン、タングステ
ン、バナジウム、チタンの何れか1種又は2種を0.1
%以下含有する特許請求の範囲第1項記載の高珪素鋼薄
帯。
4. 0.1 of one or two of chromium, molybdenum, tungsten, vanadium, and titanium as impurity elements
% or less of high silicon steel ribbon according to claim 1.
5.珪素4〜10%を含有し、残部鉄および不可避不純
物から成り、副成分としてコバルト10%以下、ニッケ
ル3%以下の何れか1種又は2種を含有する溶融体を1
03〜106℃/secの冷却速度で超急冷し、結晶粒
が1〜100μmで、かつ規則格子が実質的に存在せず
、結晶粒が薄帯表面に対し垂直に成長した柱状晶からな
る薄帯を得ることを特徴とする加工性と磁気特性の優れ
た高珪素鋼薄帯の製造方法。
5. A molten body containing 4 to 10% silicon, the balance consisting of iron and unavoidable impurities, and containing one or both of 10% or less cobalt and 3% or less nickel as subcomponents.
A thin film made of columnar crystals that are ultra-quenched at a cooling rate of 03 to 106°C/sec, have crystal grains of 1 to 100 μm, are substantially free of regular lattices, and have crystal grains grown perpendicular to the surface of the ribbon. A method for producing a high-silicon steel ribbon with excellent workability and magnetic properties.
6.溶融体を超急冷体上において、400℃に達するま
で103〜106℃/secの速度で急冷することから
成る特許請求の範囲第5項記載の高珪素鋼薄帯の製造方
法。
6. 6. A method for producing a high silicon steel ribbon according to claim 5, which comprises rapidly cooling the melt on an ultra-quenched body at a rate of 103 to 106°C/sec until it reaches 400°C.
7.溶融体の溶融温度は融点より300℃以上高くない
温度である特許請求の範囲第5項記載の高珪素鋼薄帯の
製造方法。
7. 6. The method for producing a high-silicon steel ribbon according to claim 5, wherein the melting temperature of the melt is not higher than the melting point by 300° C. or more.
8.溶融体を、2孔以上の噴出孔を近接して必要な薄帯
幅にわたって一列に並べてなる多孔ノズルから噴出させ
ることから成る特許請求の範囲第5項記載の高珪素鋼薄
帯の製造方法。
8. A method for producing a high-silicon steel ribbon according to claim 5, which comprises jetting the molten material from a multi-hole nozzle having two or more jet holes arranged in close proximity over a required width of the ribbon.
9.珪素4〜10%を含有し、残部が実質的に鉄および
不可避不純物から成り、副成分としてコバルト10%以
下、ニッケル3%以下を含有し結晶粒が7〜100μm
でかつ規則格子が実質的に存在しない高珪素鋼薄帯を焼
鈍して結晶粒を成長せしめた加工性と磁気特性の優れた
高珪素鋼薄帯の製造方法。
9. Contains 4 to 10% silicon, the remainder essentially consists of iron and unavoidable impurities, and contains less than 10% cobalt and less than 3% nickel as subcomponents, and has crystal grains of 7 to 100 μm.
A method for producing a high-silicon steel ribbon with excellent workability and magnetic properties by annealing a high-silicon steel ribbon with substantially no regular lattice to grow crystal grains.
10.特許請求の範囲第5項記載の方法で得られた珪素
鋼薄帯を400〜1300℃で焼鈍を行ない結晶粒を0
.05〜10mmに成長せしめる特許請求の範囲第9項
記載の高珪素鋼薄帯の製造方法。
10. The silicon steel ribbon obtained by the method described in claim 5 is annealed at 400 to 1300°C to eliminate crystal grains.
.. 10. The method for producing a high silicon steel ribbon according to claim 9, wherein the high silicon steel ribbon is grown to a thickness of 0.05 to 10 mm.
11.珪素4〜10%、コバルト10%以下、ニッケル
3%以下を含有し、残部が実質的に鉄および不可避不純
物から成り、結晶粒が微細でかつ規則格子Fe3Siが
実質的に存在しない高珪素鋼薄帯を圧延し、更に400
〜1300℃で焼鈍し結晶粒を0.05〜10mmに成
長せしめる加工性と磁気特性の優れた高珪素鋼薄帯の製
造方法。
11. A high-silicon steel thin film containing 4 to 10% silicon, 10% or less cobalt, and 3% or less nickel, with the remainder consisting essentially of iron and unavoidable impurities, with fine crystal grains and substantially no ordered lattice Fe3Si. Roll the strip and further roll 400
A method for producing a high-silicon steel ribbon having excellent workability and magnetic properties by annealing at ~1300°C to grow crystal grains to a size of 0.05 to 10 mm.
12.圧延を5%以上の圧下率で行なってなる特許請求
の範囲第11項記載の高珪素鋼薄帯の製造方法。
12. 12. The method for producing a high silicon steel ribbon according to claim 11, wherein the rolling is performed at a reduction rate of 5% or more.
13.珪素4〜10%、コバルト10%以下、ニッケル
3%以下を含有し、残部が実質的に鉄および不可避不純
物から成り、結晶粒が1〜100μmでかつ規則格子が
実質的に存在しない高珪素鋼薄帯を積層してなる電気機
器用鉄心。
13. High-silicon steel containing 4 to 10% silicon, 10% or less cobalt, and 3% or less nickel, with the remainder consisting essentially of iron and unavoidable impurities, with crystal grains of 1 to 100 μm and substantially no ordered lattice. An iron core for electrical equipment made of laminated thin ribbons.
14.特許請求の範囲第13項記載の鉄心を400℃〜
650℃の温度で10分〜5時間焼鈍し規則格子Fe3
Siを生成せしめてなる電気機器用鉄心。
14. The iron core according to claim 13 is heated to 400°C or more.
Regular lattice Fe3 annealed at a temperature of 650℃ for 10 minutes to 5 hours
An iron core for electrical equipment made by generating Si.
JP60073841A 1985-04-08 1985-04-08 High silicon steel strip and its manufacture Granted JPS60234949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073841A JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073841A JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14129078A Division JPS5569223A (en) 1978-09-19 1978-11-15 High silicon steel thin strip and its preparation

Publications (2)

Publication Number Publication Date
JPS60234949A true JPS60234949A (en) 1985-11-21
JPS6217020B2 JPS6217020B2 (en) 1987-04-15

Family

ID=13529765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073841A Granted JPS60234949A (en) 1985-04-08 1985-04-08 High silicon steel strip and its manufacture

Country Status (1)

Country Link
JP (1) JPS60234949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274047A (en) * 1986-05-21 1987-11-28 Nippon Kokan Kk <Nkk> High-silicon iron sheet excellent in formability
WO2023100765A1 (en) * 2021-11-30 2023-06-08 学校法人トヨタ学園 Method for producing thin silicon steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274047A (en) * 1986-05-21 1987-11-28 Nippon Kokan Kk <Nkk> High-silicon iron sheet excellent in formability
WO2023100765A1 (en) * 2021-11-30 2023-06-08 学校法人トヨタ学園 Method for producing thin silicon steel strip

Also Published As

Publication number Publication date
JPS6217020B2 (en) 1987-04-15

Similar Documents

Publication Publication Date Title
US4265682A (en) High silicon steel thin strips and a method for producing the same
KR101268800B1 (en) Martensitic stainless steels containing high carbon content and method of manufacturing the same
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP2011149045A (en) Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy
KR20100072376A (en) Method of continuous casting non-oriented electrical steel strip
KR20110075387A (en) Martensitic stainless steels by twin roll strip casting process and manufacturing method thereof
CN107438487A (en) Light-duty martensite steel plate of hot rolling and preparation method thereof
JP2004515362A (en) Method for producing hot strip from steel with high manganese content
JP2003213331A (en) METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
US2768915A (en) Ferritic alloys and methods of making and fabricating same
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JPS6032705B2 (en) In-plane non-oriented high-silicon steel ribbon with extremely low coercive force (100) and its manufacturing method
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPS6115136B2 (en)
JPS60234949A (en) High silicon steel strip and its manufacture
US20150174648A1 (en) Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same
JPH03285019A (en) Manufacture of fe-ni series magnetic alloy having high magnetic permeability
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP2002060915A (en) Fe-Si-Al BASED ALLOY THIN STRIP AND ITS PRODUCTION METHOD
JP3377228B2 (en) Method for producing rolled ferrite alloy material
WO2023149287A1 (en) Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, and hot-rolled steel sheet for non-oriented electrical steel sheet
JPH0340103B2 (en)
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPS5853705B2 (en) Manufacturing method of high permeability alloy ribbon