JPH0615705B2 - High silicon iron plate with excellent workability - Google Patents

High silicon iron plate with excellent workability

Info

Publication number
JPH0615705B2
JPH0615705B2 JP61114750A JP11475086A JPH0615705B2 JP H0615705 B2 JPH0615705 B2 JP H0615705B2 JP 61114750 A JP61114750 A JP 61114750A JP 11475086 A JP11475086 A JP 11475086A JP H0615705 B2 JPH0615705 B2 JP H0615705B2
Authority
JP
Japan
Prior art keywords
plate
plate thickness
silicon iron
thickness direction
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61114750A
Other languages
Japanese (ja)
Other versions
JPS62274047A (en
Inventor
芳一 ▲高▼田
淳一 稲垣
雅彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP61114750A priority Critical patent/JPH0615705B2/en
Publication of JPS62274047A publication Critical patent/JPS62274047A/en
Publication of JPH0615705B2 publication Critical patent/JPH0615705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は加工性に優れた高珪素鉄板に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high silicon iron plate having excellent workability.

〔従来の技術〕[Conventional technology]

従来から、Siを4.0wt%未満含有する鉄板は、その製造
方法により方向性珪素鋼板あるいは無方向性珪素鋼板と
呼ばれ、主として各種電磁誘導機器用の積層鉄芯や巻鉄
芯、あるいは電磁シールド用のケース等に加工成形さ
れ、実用に供されている。
Conventionally, an iron plate containing less than 4.0 wt% of Si is called a directional silicon steel plate or a non-oriented silicon steel plate depending on its manufacturing method, and is mainly used for laminated iron cores, wound iron cores, or electromagnetic shields for various electromagnetic induction devices. It is processed and molded into a case for use and is put to practical use.

近年、省資源・省エネルギーの観点から電磁電子部品の
小形化や高効率化が強く要請され、軟磁気特性とりわけ
鉄損特性の優れた材料が要求されている。Si−Fe合金系
において、Siの添加量が増すと鉄損は低下し、そのうえ
6.5wt%付近では透磁率が極大となり磁歪が零となるな
ど優れた軟磁気特性を示すことが知られている。
In recent years, miniaturization and high efficiency of electromagnetic electronic parts have been strongly demanded from the viewpoint of resource saving and energy saving, and materials having excellent soft magnetic properties, especially iron loss properties have been demanded. In the Si-Fe alloy system, iron loss decreases as the amount of Si added increases.
It is known that around 6.5 wt%, the magnetic permeability becomes maximum and the magnetostriction becomes zero, resulting in excellent soft magnetic properties.

しかしながら、Siの添加量が4wt%以上になると加工性
が著しく劣化し、このため従来では熱間圧延−冷間圧延
の組み合わせからなる圧延法によつて工業的に製造する
ことは困難とされ、その製造法としては例えば特開昭59
−38328号公報等で示されるような超急冷凝固法が開示
されているにすぎなかつた。しかし、この超急冷凝固法
により製造される高珪素箔帯は圧延製品と比較して表面
性状や表面の平坦度が劣り、しかも厚物材の製造が困難
である等、電磁電子部品の素材として実用化する上で数
多くの問題点を有している。
However, if the amount of Si added is 4 wt% or more, the workability is significantly deteriorated, and thus it is conventionally difficult to industrially manufacture by a rolling method that is a combination of hot rolling and cold rolling. The manufacturing method thereof is, for example, JP-A-59.
Only the ultra-rapid solidification method as disclosed in Japanese Patent Publication No. 38328 is disclosed. However, the high silicon foil strip produced by this ultra-rapid solidification method has inferior surface properties and surface flatness compared to rolled products, and it is difficult to produce thick materials. There are many problems in putting it to practical use.

このようなことから、本発明者等は高珪素鋼の圧延性に
ついて検討を重ね、この結果、熱間圧延条件を最適化す
ることによりこれまで不可能と考えられていた工業規模
での冷間圧延が可能となることを見出し、これを先に特
願昭60-5951号(特公平3-65001号)として提案した。こ
の圧延法により製造された高珪素鉄板は表面性状に優れ
るため巻鉄芯や積層鉄芯などを作成する際占積率が高
く、しかも厚物材が容易に製造可能であることから電磁
電子部品の組み立て工程を大幅に簡略化できるなど、磁
気特性以外にも極めて有利な特徴を有している。
Therefore, the inventors of the present invention have repeatedly studied the rollability of high silicon steel, and as a result, by optimizing the hot rolling conditions, cold rolling on an industrial scale, which has been considered impossible until now, is possible. We found that rolling is possible, and proposed this as Japanese Patent Application No. 60-5951 (Japanese Patent Publication No. 3-65001). Since the high silicon iron plate produced by this rolling method has excellent surface properties, it has a high space factor when producing a wound iron core or a laminated iron core, and a thick material can be easily produced. In addition to the magnetic properties, it has extremely advantageous features such as the fact that the assembly process of can be greatly simplified.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、このようにして圧延法により製造された高珪素
鉄板を具体的な部品に加工する場合、次のような大きな
問題があることが判つた。一般に、Siを4.0wt%未満含
有する従来の珪素鋼板は、再結晶焼鈍により所定の磁気
特性を付与された後無機系あるいは有機・無機系の絶縁
皮膜を塗布された状態で需要家に供給されるか、または
需要家が行なう最終焼鈍磁の粒成長性を改善する目的で
比較的低温で再結晶焼鈍が施された後スキンパスをかけ
られ、需要家に供給される。前者はフルプロセス材と呼
ばれ、需要家ではそれらの鋼板を加工成形し、その後必
要に応じて歪取焼鈍することにより電磁電子部品として
いる。一方、後者はセミプロセス材と呼ばれ、需要家に
おいて結晶粒粗大化焼鈍および加工成形が行なわれる。
However, it has been found that when the high silicon iron plate manufactured by the rolling method in this manner is processed into concrete parts, there are the following major problems. Generally, conventional silicon steel sheets containing less than 4.0 wt% of Si are supplied to customers in a state of being coated with an inorganic or organic / inorganic insulating film after being given predetermined magnetic properties by recrystallization annealing. Or is subjected to recrystallization annealing at a relatively low temperature for the purpose of improving the grain growth property of the final annealing magnet performed by the customer, and then subjected to skin pass and supplied to the customer. The former is called a full-process material, and consumers are working to form those steel plates, and then strain-relieving annealing as necessary to obtain electromagnetic electronic components. On the other hand, the latter is called a semi-processed material, and the grain coarsening annealing and work forming are performed by the consumer.

しかしながら、圧延法により製造されたSi:4.0wt%以
上を含む高珪素鉄板においては、所定の磁気特性を付与
するための再結晶焼鈍により結晶粒が粗大化すると加工
成形性が著しく劣化し、上述した従来の製造工程による
電磁電子部品の製造は困難となることが判明した。すな
わち、上記のような加工成形では、例えばプレス出抜加
工において型のクリアランスを厳密に管理するという特
別な配慮を行なつても欠陥率が高くなり、また、プレス
成形やトロイダルコイル成形では曲げ部の曲率半径が小
さくなると割れが発生するために加工が不可能となつて
しまう。
However, in the high silicon iron plate containing Si: 4.0 wt% or more produced by the rolling method, if the crystal grains are coarsened by the recrystallization annealing for imparting predetermined magnetic properties, the workability is significantly deteriorated. It has been found that it is difficult to manufacture the electromagnetic electronic component by the conventional manufacturing process. That is, in the above-described work forming, the defect rate becomes high even if special consideration is given to strictly control the clearance of the mold in press-extrusion processing. If the radius of curvature of becomes smaller, cracking occurs, making it impossible to process.

〔問題を解決するための手段〕[Means for solving problems]

本発明はこのような圧延法により製造される高珪素鉄板
の問題点を解決するためなされたもので、その基本的特
徴とするところは、圧延法により製造されるSiを4.0
〜7.0wt%含有する高珪素鉄板であって、板厚tおよび
板厚方向平均結晶粒径dがSi含有量に応じ下式を満足す
るようにしたことにある。
The present invention has been made to solve the problems of the high silicon iron plate manufactured by such a rolling method, and the basic feature thereof is that Si manufactured by the rolling method is
It is a high silicon iron plate containing ˜7.0 wt%, and the plate thickness t and the average crystal grain size d in the plate thickness direction satisfy the following formula according to the Si content.

t−0.8×〔Si〕+7.2(mm) d78×〔Si〕2−1500×〔Si〕+6752(μm) 但し、〔Si〕はwt%でのSi含有量 以下、本発明の限定理由について説明する。t-0.8 × [Si] +7.2 (mm) d78 × [Si] 2 −1500 × [Si] +6752 (μm) where [Si] is the Si content in wt%. explain.

本発明の珪素鉄板は、圧延法により製造されるSiを4.
0〜7.0wt%含有する高珪素鉄板である。前述したように
Siは固有電気抵抗を高めて渦電流損を減らし、鉄損を
低下させるのに有効な元素である。Siが4.0wt%未満で
は再結晶焼鈍後の板の加工成形性に何等問題はない。一
方、Siが7.0wt%を超えると、磁歪の上昇、飽和磁束密
度や最大透磁率の低下など磁気特性が却つて悪化し、ま
た加工性も悪くなる。
The silicon iron plate of the present invention contains Si produced by the rolling method 4.
It is a high silicon iron plate containing 0 to 7.0 wt%. As described above, Si is an element effective in increasing the specific electrical resistance, reducing the eddy current loss, and reducing the iron loss. When Si is less than 4.0 wt%, there is no problem in workability and formability of the plate after recrystallization annealing. On the other hand, when Si exceeds 7.0 wt%, the magnetic properties such as increase in magnetostriction, decrease in saturation magnetic flux density and maximum magnetic permeability are deteriorated, and the workability is deteriorated.

本発明鉄板は、以上のような組成において、板厚tおよ
び板厚方向平均粒径dがSi含有量に応じ、 t−0.8×〔Si〕+7.2(mm) d78×〔Si〕2−1500×〔Si〕+6752(μm) 但し、〔Si〕はwt%でのSi含有量 を満足させるようにする。
In the iron plate of the present invention, in the composition as described above, the plate thickness t and the average particle size d in the plate thickness direction are t−0.8 × [Si] +7.2 (mm) d78 × [Si] 2− depending on the Si content. 1500 × [Si] +6752 (μm) However, [Si] should satisfy the Si content in wt%.

第1図(a)、(b)は板厚2.0mmの6.5%珪素鉄板に関し、熱
処理後に曲げおよび打抜試験を行ない、加工成形性の焼
鈍温度依存性を調べたものである。このうち同図(a)は
室温における3点曲げ試験(ポンチ径:1mm、スパン:
75mm)の結果であり、除荷重後の曲げ部の曲げ可能最小
曲率半径をプロツトしてある。一方、(b)は打抜試験結
果であり、直径10mmの円板状サンプルを打抜き(クリ
アランス:約50ミクロン)後、ばりの発生状況及びサ
ンプルの割れの状況を観察し、欠陥率を評価した結果で
ある。これによれば、圧延組織の状態である600℃以
下の温度で焼鈍したサンプルおよび部分再結晶状態であ
る600〜700℃焼鈍材では曲げ加工性、打抜性共に優れて
いるのに対して、全体が再結晶状態となりしかも粒成長
が起こる800℃以上の温度で焼鈍したサンプルでは曲
げ加工は殆んど不可能となり、打抜性も劣化している。
このような事実から、高珪素鉄板の加工成形を行なう上
で被加工材の組織が重要な意味を持つていることが明ら
かとなつた。そこで、次に板厚3.0mmの6.5%珪素
鉄熱延板を素材とし、圧延および種々の熱処理によつて
組織を変化させ、板厚を2mm(一定)とした時の曲げ加
工性におよぼす板厚方向平均結晶粒径(圧延組織では板
厚方向の平均粒界間隔、再結晶組織では平均結晶粒径で
示す)の影響を調べた。その結果を第2図に示す。この
図から、曲げ加工性は板厚方向平均結晶粒径に依存して
おり、板厚方向平均結晶粒径が約300ミクロン以下では
再結晶組織、圧延組織にかかわらず曲げ加工性は優れて
いることが明らかとなつた。なお、第1図において部分
再結晶状態のサンプルは良好な曲げ加工性を示している
が、これも板厚方向平均結晶粒径の効果であることが確
認された。次に、このような曲げ加工可能となる限界板
厚方向平均結晶粒径d0のSiし含有量依存性を調べた。
この結果、第3図に示すように板厚方向平均結晶粒径d
が珪素含有量Siによつて決まる限界地d0以下であるな
らば曲げ加工は可能であり、最小自乗法による回帰分析
の結果、dd0=78×〔Si〕2〕−1500×〔Si〕+6752
(μm)の条件を満すことにより曲げ加工が可能である
ことが判つた。第4図は、板厚方向平均結晶粒径を28
0ミクロンとした高珪素鉄板の曲げ加工性におよぼす板
厚の影響を示している。この図から、板厚が厚くなるほ
ど曲げ加工性が劣化していることがわかる。高珪素鉄板
は特に引張応力下における割れ感受性が高く、板表面に
作用する最大引張歪が曲げ性を支配していると考えら
れ、それらがある値以上になると割れが急激に発生する
ものと考えられる。一般的に、板状サンプルに曲げ加工
を行なう場合、板厚が厚くなるほど同じ曲率半径に曲げ
た時の板表面での歪量は増加する。それゆえ高珪素鉄板
の曲げ加工性は板厚の影響を受け、板厚の厚いものほど
割れ易くなる。次に、曲げ加工可能となる限界板厚t0
珪素含有量依存性について調べた結果を第5図に示す。
ここで、限界板厚は板厚方向平均結晶粒径が約280ミ
クロン(一定)であるサンプルの曲げ試験により求めた
ものである。同図から、限界板厚t0は珪素含有量に依存
し、回帰分析の結果t=t0=−0.8Si+7.2を満たすと
き曲げ加工が可能となることがわかる。
FIGS. 1 (a) and 1 (b) show a 6.5% silicon iron plate having a plate thickness of 2.0 mm, which was subjected to bending and punching tests after heat treatment to examine the annealing temperature dependence of workability. Of these, Figure (a) shows a three-point bending test at room temperature (punch diameter: 1 mm, span:
75 mm), and the minimum bendable radius of curvature of the bent part after unloading is plotted. On the other hand, (b) is a punching test result, and after punching a disk-shaped sample having a diameter of 10 mm (clearance: about 50 microns), the occurrence of burrs and the cracking of the sample were observed to evaluate the defect rate. The result. According to this, while the sample annealed at a temperature of 600 ° C. or less which is a rolled structure and the 600 to 700 ° C. annealed material which is a partially recrystallized state have excellent bending workability and punchability, In the sample annealed at a temperature of 800 ° C. or higher in which the whole is in a recrystallized state and grain growth occurs, bending is almost impossible and the punchability is deteriorated.
From such a fact, it has been clarified that the structure of the work material has an important meaning in performing the work forming of the high silicon iron plate. Therefore, using a 6.5% silicon iron hot-rolled sheet with a plate thickness of 3.0 mm as the material, the structure was changed by rolling and various heat treatments, and bending workability was obtained when the plate thickness was 2 mm (constant). The effect of the average grain size in the sheet thickness direction (indicated by the average grain boundary spacing in the sheet thickness direction for the rolled structure and the average grain size for the recrystallized structure) was investigated. The results are shown in FIG. From this figure, the bending workability depends on the average grain size in the plate thickness direction, and when the average grain size in the plate thickness direction is about 300 microns or less, the bending workability is excellent regardless of the recrystallized structure or rolled structure. It became clear. In FIG. 1, the sample in the partially recrystallized state shows good bending workability, which was also confirmed to be an effect of the average grain size in the plate thickness direction. Next, the dependency of the average grain size d 0 in the critical plate thickness direction in which such bending is possible on the Si content was examined.
As a result, as shown in FIG. 3, the average grain size d in the plate thickness direction
Is less than the limit area d 0 determined by the silicon content Si, bending is possible, and as a result of regression analysis by the least square method, dd 0 = 78 × [Si] 2 ] −1500 × [Si] +6752
It was found that bending can be performed by satisfying the condition (μm). FIG. 4 shows an average crystal grain size in the plate thickness direction of 28
It shows the influence of the plate thickness on the bending workability of a high silicon iron plate of 0 micron. From this figure, it can be seen that the bending workability deteriorates as the plate thickness increases. High-silicon iron plates have a high susceptibility to cracking especially under tensile stress, and it is considered that the maximum tensile strain that acts on the plate surface dominates bendability, and when they exceed a certain value, cracking rapidly occurs. To be In general, when a plate sample is bent, the thicker the plate, the greater the amount of strain on the plate surface when bent to the same radius of curvature. Therefore, the bending workability of the high silicon iron plate is affected by the plate thickness, and the thicker the plate, the more easily it breaks. Next, FIG. 5 shows the result of investigation on the silicon content dependency of the limit plate thickness t 0 that enables bending work.
Here, the limiting plate thickness is obtained by a bending test of a sample having an average crystal grain size in the plate thickness direction of about 280 microns (constant). From the figure, it is understood that the limit plate thickness t 0 depends on the silicon content, and when the result of the regression analysis satisfies t = t 0 = −0.8Si + 7.2, bending is possible.

なお、以上の説明からも明らかなように、加工成形性は
圧延組織の場合が最も優れているが、板厚方向平均結晶
粒径が上記の関係式を満たせば部分再結晶組織、あるい
は再結晶組織でも加工成形可能である。
As is clear from the above description, the workability is most excellent in the case of a rolled structure, but if the plate thickness direction average crystal grain size satisfies the above relational expression, a partial recrystallized structure, or recrystallization It is also possible to process and mold the tissue.

〔実施例〕〔Example〕

実施例 (I) 0.0033wt%C−6.48wt%Si−0.15wt%Mnなる組成の高珪
素鉄熱延板(板厚2.0mm)を冷間圧延し0.5mmの冷延板と
した。この時の板厚方向平均結晶粒径は約20ミクロン
であつた。そして、 (A) 圧延組織のままの状態の高珪素鉄冷延板 (B) 上記冷延板を650℃で1時間焼鈍し、板厚方向
結晶粒径が約25ミクロンの部分再結晶組織としたもの (C) 上記冷延板を1000℃で1時間焼鈍し、板厚方向結
晶粒径を約600ミクロンの再結晶組織としたもの から外径20mm、内径10mmのリング状サンプルを打抜
き、割れの有無により打抜性を評価した。つぎに、それ
らを真空中で1200℃・1時間焼鈍し、巻線装荷後、直流
及び交流磁気測定を行なつた。
Example (I) A high silicon iron hot-rolled sheet (sheet thickness 2.0 mm) having a composition of 0.0033 wt% C-6.48 wt% Si-0.15 wt% Mn was cold-rolled into a 0.5 mm cold-rolled sheet. At this time, the average crystal grain size in the plate thickness direction was about 20 microns. Then, (A) a high-silicon iron cold-rolled sheet in the state of the rolled structure (B) the cold-rolled sheet was annealed at 650 ° C. for 1 hour to form a partially recrystallized structure having a grain size in the thickness direction of about 25 μm. (C) The above cold-rolled sheet was annealed at 1000 ° C for 1 hour, and a ring-shaped sample with an outer diameter of 20 mm and an inner diameter of 10 mm was punched from a recrystallized structure having a grain size in the thickness direction of about 600 microns. The punchability was evaluated by the presence or absence of. Next, they were annealed in a vacuum at 1200 ° C. for 1 hour, and after the winding was loaded, DC and AC magnetic measurements were performed.

打抜性および磁気測定結果を第1表に示す。なお、測定
は各10サンプルについて実施し、表には平均値を示し
ている。
The punchability and the magnetic measurement results are shown in Table 1. The measurement was carried out for each of 10 samples, and the average value is shown in the table.

第1表に示すように比較材である(C)では打抜時割れが
圧接し打抜不可能であつたのに対し、本発明材である板
厚方向結晶粒径が限界値d0以下の圧延組織(A)及び部分
再結晶組織(B)の高珪素鉄板では打抜加工が容易であ
り、しかも優れた磁気特性を示した。
As shown in Table 1, in the comparative material (C), cracking during punching was impossible due to pressure contact, whereas in the material of the present invention, the grain size in the plate thickness direction was less than the limit value d 0. The high-silicon iron plate having the rolled structure (A) and the partially recrystallized structure (B) of No. 2 was easy to punch and showed excellent magnetic properties.

実施例 (II) 実施例(I)と同様の高珪素鉄熱延板(板厚2.0mm)を、入側
での板温が300℃となる条件で温度圧延し0.1mm薄
板とした。そして、 (A) 圧延組織のままの状態の高珪素薄板(板厚方向平
均結晶粒径:10ミクロン以下) (B) 上記薄板を700℃で3分間焼鈍し板厚方向平均
結晶粒径を約40ミクロンの再結晶状態としたもの (C) 上記薄板を1000℃で1時間焼鈍し、板厚方向平均
結晶粒径が約450ミクロンの再結晶組織としたもの を巻回することにより、外径15mm、内径12mm、厚さ3
mmの巻鉄芯に成形し、そのときの成形性を調べた。次
に、成形できたものに無機系の絶縁皮膜を含浸させ真空
中で1200℃、1時間焼鈍し、直流及び交流磁気測定を行
なつた。その結果を第2表に示す。
Example (II) The same high-silicon iron hot-rolled sheet (sheet thickness 2.0 mm) as in Example (I) was temperature-rolled under the condition that the sheet temperature on the inlet side was 300 ° C. to obtain a 0.1 mm thin sheet. Then, (A) the high silicon thin plate in the state of the rolled structure (the average grain size in the plate thickness direction: 10 μm or less) (B) the thin plate is annealed at 700 ° C. for 3 minutes to obtain an average grain size in the plate thickness direction of about 40 micron recrystallized state (C) The thin plate was annealed at 1000 ° C for 1 hour, and the recrystallized structure having an average crystal grain size in the plate thickness direction of about 450 micron was wound to obtain an outer diameter. 15mm, inner diameter 12mm, thickness 3
It was formed into a wound iron core of mm and the formability at that time was investigated. Next, the molded product was impregnated with an inorganic insulating film, annealed in vacuum at 1200 ° C. for 1 hour, and direct current and alternating current magnetic measurements were performed. The results are shown in Table 2.

第2表に示すように比較材である(C)では巻回し成形時
割れが発生し加工成形不可能であつたのに対し、本発明
材である板厚方向平均結晶粒径が限界値d0以下の圧延組
織(A)および再結晶組織(B)の高珪素鉄板ではトロイダ
ルコイル巻回し性は良好であり、しかも優れた磁気特性
を示した。
As shown in Table 2, in the comparative material (C), cracking occurred in the winding molding and the workability was impossible, whereas the average grain size in the plate thickness direction of the material of the present invention was the limit value d. The high silicon iron plate having a rolled structure (A) and a recrystallized structure (B) of 0 or less had good toroidal coil winding properties and exhibited excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)、(b)は6.5%珪素鉄板の加工成形性の焼鈍
温度依存性を示したものであり、同図(a)は3点曲げ試
験、同図(b)は打抜試験の各結果を示す。第2図は高珪
素鉄板の曲げ加工性に及ぼす板厚方向平均結晶粒径の影
響を示すものである。第3図は高珪素鉄板の曲げ加工可
能となる限界板厚方向平均結晶粒径d0のSi含有量依存性
を示すものである。第4図は高珪素鉄板の曲げ加工性に
及ぼす板厚の影響を示すものである。第5図は曲げ加工
可能となる限界板厚t0のSi含有量依存性を示すものであ
る。
FIGS. 1 (a) and 1 (b) show the annealing temperature dependence of the workability of a 6.5% silicon iron plate. FIG. 1 (a) is a three-point bending test, and FIG. 1 (b) is The results of the punching test are shown. FIG. 2 shows the influence of the average grain size in the plate thickness direction on the bending workability of a high silicon iron plate. FIG. 3 shows the dependency of the average grain size d 0 in the critical plate thickness direction on the Si content, which enables bending of a high silicon iron plate. FIG. 4 shows the influence of the plate thickness on the bending workability of a high silicon iron plate. FIG. 5 shows the Si content dependency of the limit plate thickness t 0 that enables bending work.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧延法により製造されるSiを4.0〜7.0wt
%含有する高珪素鉄板であって、板厚tおよび板厚方向
平均結晶粒径dがSi含有量に応じ下式を満足すること
を特徴とする加工成形性に優れた高珪素鉄板。 t≦−0.8×〔Si〕+7.2(mm) d≦78×〔Si〕2−1500×〔Si〕+6752(μm) 但し、〔Si〕はwt%でのSi含有量
1. Si produced by a rolling method is 4.0 to 7.0 wt.
%, A high silicon iron plate having a high workability, characterized in that the plate thickness t and the average crystal grain size d in the plate thickness direction satisfy the following formula in accordance with the Si content. t ≦ −0.8 × [Si] +7.2 (mm) d ≦ 78 × [Si] 2 −1500 × [Si] +6752 (μm) where [Si] is the Si content in wt%
JP61114750A 1986-05-21 1986-05-21 High silicon iron plate with excellent workability Expired - Fee Related JPH0615705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114750A JPH0615705B2 (en) 1986-05-21 1986-05-21 High silicon iron plate with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114750A JPH0615705B2 (en) 1986-05-21 1986-05-21 High silicon iron plate with excellent workability

Publications (2)

Publication Number Publication Date
JPS62274047A JPS62274047A (en) 1987-11-28
JPH0615705B2 true JPH0615705B2 (en) 1994-03-02

Family

ID=14645739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114750A Expired - Fee Related JPH0615705B2 (en) 1986-05-21 1986-05-21 High silicon iron plate with excellent workability

Country Status (1)

Country Link
JP (1) JPH0615705B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277747A (en) * 1989-04-18 1990-11-14 Nkk Corp Semiprocess nonoriented silicon steel sheet having excellent blanking properties
US5308411A (en) * 1990-06-20 1994-05-03 Nippon Steel Corporation Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JPH04165050A (en) * 1990-10-25 1992-06-10 Nippon Steel Corp High-si grain-oriented electrical steel sheet excellent in bendability
JP3187367B2 (en) 1997-03-31 2001-07-11 キヤノン株式会社 Electronic device and image forming apparatus using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569223A (en) * 1978-11-15 1980-05-24 Noboru Tsuya High silicon steel thin strip and its preparation
JPS60234949A (en) * 1985-04-08 1985-11-21 Noboru Tsuya High silicon steel strip and its manufacture

Also Published As

Publication number Publication date
JPS62274047A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
KR102104769B1 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP6008157B2 (en) Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
US6436199B1 (en) Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0615705B2 (en) High silicon iron plate with excellent workability
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4604467B2 (en) Iron core manufacturing method
JPS62270723A (en) Production of electromagnetic electronic parts using high-silicon iron sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP5671870B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI675113B (en) Multilayer electromagnetic steel sheet
JPH09194948A (en) Production of grain-oriented silicon steel sheet good in insulated coating adhesion
JP2010132977A (en) Extra-thin silicon steel sheet and manufacturing method therefor
EP3725907A1 (en) Multilayer electromagnetic steel sheet
JPH0742500B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3292846B2 (en) Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees