JP3292846B2 - Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same - Google Patents

Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same

Info

Publication number
JP3292846B2
JP3292846B2 JP2000105420A JP2000105420A JP3292846B2 JP 3292846 B2 JP3292846 B2 JP 3292846B2 JP 2000105420 A JP2000105420 A JP 2000105420A JP 2000105420 A JP2000105420 A JP 2000105420A JP 3292846 B2 JP3292846 B2 JP 3292846B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
annealing
oriented electrical
grain growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000105420A
Other languages
Japanese (ja)
Other versions
JP2001294997A (en
Inventor
健一 村上
猛 久保田
岳顕 脇坂
竜太郎 川又
和文 半澤
吉宏 有田
浩明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18618780&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3292846(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000105420A priority Critical patent/JP3292846B2/en
Publication of JP2001294997A publication Critical patent/JP2001294997A/en
Application granted granted Critical
Publication of JP3292846B2 publication Critical patent/JP3292846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器鉄心材料
として使用される無方向性電磁鋼板に関し、特に方位集
積度及び粒成長性の良好な無方向性電磁鋼板及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used as a core material for electric equipment, and more particularly to a non-oriented electrical steel sheet having a good degree of orientation accumulation and grain growth, and a method for producing the same. .

【0002】[0002]

【従来の技術】電気機器の高効率化は、世界的な電力・
エネルギー節減さらには地球環境保全の動向の中で近年
強く要望されている。特に最近、回転機の高効率化が進
展する中でローターまたはステーターとして用いられる
無方向性電磁鋼板においては、現状よりもさらに磁気特
性の良好な、すなわち鉄損が低く、磁束密度が高い材料
が求められつつある。同時に、上記モータコアの形状も
複雑化し、打ち抜きの際の加工性が良好であることも磁
気特性と同様強く求められている。
2. Description of the Related Art Efficiency of electric equipment is increasing worldwide.
In recent years, there is a strong demand for energy saving and global environmental conservation. In particular, in recent years, as non-oriented electrical steel sheets used as rotors or stators have become more efficient as rotating machines have become more efficient, materials that have better magnetic properties than the current situation, that is, materials with lower iron loss and higher magnetic flux density, have been developed. It is being sought. At the same time, the shape of the motor core becomes complicated, and good workability in punching is also strongly required as well as magnetic properties.

【0003】無方向性電磁鋼板の低鉄損化の手段として
は、Si、Al、Mn等の合金元素含有量を増加し電気抵抗を
増大させ渦電流損失を低減する方法が広く一般に用いら
れている。さらに成分決定後は、コアに成形した後の結
晶粒径を100 μm 程度に調節することにより低鉄損化を
行なうことも試みられている。一方、磁束密度に関して
は、Si、Al、Mn等の合金元素を添加していくと飽和磁束
密度Bsが低下するため、磁束密度B50は低下してしま
う。従って、所定の鉄損を得るために合金元素量を決定
した後は、Bsが低下した分、磁気特性に好ましい結晶方
位の集積度を向上させないとBs低下に伴いB50も低下し
てしまう。このため、合金元素の調整、あるいは工程条
件の変更により結晶方位集積度を向上させる手段が必要
となってきた。
[0003] As a means of reducing the iron loss of a non-oriented electrical steel sheet, a method of increasing the content of alloying elements such as Si, Al and Mn to increase the electric resistance and reduce the eddy current loss is widely and generally used. I have. Further, after determining the components, attempts have been made to reduce the iron loss by adjusting the crystal grain size after forming into a core to about 100 μm. On the other hand, with respect to the magnetic flux density, Si, Al, since the saturation magnetic flux density Bs will by adding alloy elements such as Mn is lowered, the magnetic flux density B 50 is lowered. Thus, after determining the amounts of alloying elements in order to obtain a predetermined iron loss amount that Bs is decreased and does not improve the degree of integration of preferred crystal orientation on the magnetic properties with the Bs drop B 50 also decreases. Therefore, means for improving the degree of crystal orientation integration by adjusting alloy elements or changing process conditions has been required.

【0004】また加工性に関しては、モータコア打ち抜
きの際に、鋼板の結晶粒径が大き過ぎるとバリ、カエリ
等の問題が発生することが最近判明してきた。ところ
が、製品板結晶粒径が小さ過ぎるとコアの鉄損が劣化し
てしまう。このため、コア打ち抜き時には結晶粒径が小
さく、コアの歪取焼鈍の際にある程度結晶粒成長するよ
うな無方向性電磁鋼板のニーズが高まってきた。
[0004] Regarding workability, it has recently been found that, when punching a motor core, if the crystal grain size of the steel sheet is too large, problems such as burrs and burrs occur. However, if the crystal grain size of the product sheet is too small, the core loss of the core deteriorates. For this reason, there has been an increasing need for non-oriented electrical steel sheets which have a small crystal grain size during core punching and allow crystal grains to grow to some extent during strain relief annealing of the core.

【0005】[0005]

【発明が解決しようとする課題】本発明は、磁気特性に
好ましい結晶方位の集積度が高く、かつユーザーにおけ
る歪取焼鈍時に結晶粒成長が良好な無方向性電磁鋼板、
及びその製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a non-oriented electrical steel sheet having a high degree of integration of crystal orientations preferable for magnetic properties and good crystal grain growth during strain relief annealing by a user.
And a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、以下の構成を
要旨とする。 (1)質量%で、C:0.0005% 以上0.010%以下、Mn:0.1%
以上0.5%以下、Si:0.6%以上1.4%以下、Al:0.9% 以上1.6
%以下、かつ1.6%≦Si + Al ≦2.7%を満たす成分を含有
し、残部はFe及び不可避不純物元素より成る無方向性電
磁鋼板において、歪取焼鈍後における磁束密度B50を飽
和磁束密度Bsで除した値B50/Bs が、B50/Bs ≧0.83
鉄損W 15/50 がW 15/50 ≦3.01W/kgを満たすことを特徴と
する方位集積度及び粒成長性の良好な無方向性電磁鋼
板。 (2)質量%で、C:0.0005% 以上0.010%以下、Mn:0.1%
以上0.5%以下、Si:0.6%以上1.4%以下、Al:0.9% 以上1.6
%以下、かつ1.6%≦Si + Al ≦2.7%を満たす成分を含有
し、残部はFe及び不可避不純物元素より成る鋼片を熱間
圧延後、熱延板焼鈍と1回の冷間圧延、もしくは中間焼
鈍を介挿する2回以上の冷間圧延を行い、引き続き仕上
焼鈍を行う無方向性電磁鋼板の製造方法において、熱延
板焼鈍もしくは最後の中間焼鈍の温度を950 ℃以上とす
ることを特徴とする、方位集積度及び粒成長性の良好な
無方向性電磁鋼板の製造方法。 (3)最終の冷間圧延における鋼板温度の最大値を150
℃以上とすることを特徴とする(2)記載の方位集積度
及び粒成長性の良好な無方向性電磁鋼板の製造方法。 (4)鋼中に含有されるS量が質量%で0.004%を超えな
いことを特徴とする(1)〜(3)のいずれかの項に記
載の方位集積度及び粒成長性の良好な無方向性電磁鋼板
とその製造方法。
The gist of the present invention is as follows. (1) In mass%, C: 0.0005% or more and 0.010% or less, Mn: 0.1%
0.5% or less, Si: 0.6% or more and 1.4% or less, Al: 0.9% or more 1.6
% Or less, and a component that satisfies 1.6% ≦ Si + Al ≦ 2.7%, with the balance being a non-oriented electrical steel sheet comprising Fe and unavoidable impurity elements, the magnetic flux density B 50 after strain relief annealing is changed to the saturation magnetic flux density Bs in divided by the B 50 / Bs is, B 50 / Bs ≧ 0.83,
A non-oriented electrical steel sheet having a good degree of orientation accumulation and grain growth, wherein the iron loss W 15/50 satisfies W 15/50 ≦ 3.01 W / kg . (2) In mass%, C: 0.0005% or more and 0.010% or less, Mn: 0.1%
0.5% or less, Si: 0.6% or more and 1.4% or less, Al: 0.9% or more 1.6
% Or less, and a component that satisfies 1.6% ≦ Si + Al ≦ 2.7%, and the rest is hot-rolled a slab made of Fe and unavoidable impurity elements, then hot-rolled sheet annealing and one cold-rolling, or In a method for producing a non-oriented electrical steel sheet in which cold rolling is performed twice or more with intermediate annealing followed by finish annealing, the temperature of hot-rolled sheet annealing or the last intermediate annealing is set to 950 ° C or more. A method for producing a non-oriented electrical steel sheet characterized by good orientation accumulation and grain growth characteristics. (3) Set the maximum value of the steel sheet temperature in the final cold rolling to 150
(2) The method for producing a non-oriented electrical steel sheet according to (2), wherein the non-oriented electrical steel sheet has a good degree of orientation accumulation and grain growth. (4) The steel according to any one of (1) to (3), wherein the amount of S contained in the steel does not exceed 0.004% by mass%.
Non-oriented electrical steel sheet with good orientation orientation and grain growth
And its manufacturing method.

【0007】[0007]

【発明の実施の形態】発明者らは低鉄損でありながら、
結晶方位集積度が良好であり、かつ歪取焼鈍において結
晶粒成長を生じせしめる無方向性電磁鋼板を開発するた
め、その方位集積度を向上させるための成分と製造条件
について鋭意研究した。以下の実験に基づき本発明を詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Although the present inventors have low iron loss,
In order to develop a non-oriented electrical steel sheet that has a good degree of crystallographic orientation and allows crystal grains to grow during strain relief annealing, we have conducted intensive research on components and manufacturing conditions for improving the degree of orientational accumulation. The present invention will be described in detail based on the following experiments.

【0008】実験室にて真空溶解を行ない、表1に示す
如くSi、Al量を変更した素材を用意した。このとき他の
成分は、Mn:0.2% 、C:0.001 〜0.002%、S:0.001 〜0.00
2%、N:0.001 〜0.002%、Ti:0.0015 〜0.0025% の範囲に
調整した。本素材から板厚2.3mm の熱延板を作製し、焼
鈍温度1000℃で60秒の焼鈍を行った。引き続き酸洗を行
ない、次いで冷間圧延により板厚0.50mmとした後、850
℃で30秒の連続焼鈍を施した。なお、この焼鈍温度は通
常の焼鈍温度に対して低いが、この理由はユーザにおけ
るコア打ち抜きの際にバリ・カエリ等の問題を発生させ
ないためである。このとき、各試料の結晶粒径の測定を
線分法にて行なったところ、全て40〜50μmであった。
[0008] Vacuum melting was performed in a laboratory, and raw materials in which the amounts of Si and Al were changed as shown in Table 1 were prepared. At this time, the other components are Mn: 0.2%, C: 0.001 to 0.002%, S: 0.001 to 0.00
2%, N: 0.001 to 0.002%, Ti: 0.0015 to 0.0025%. A hot-rolled sheet having a thickness of 2.3 mm was prepared from this material and annealed at an annealing temperature of 1000 ° C. for 60 seconds. Subsequently, pickling was performed, and then cold-rolled to a sheet thickness of 0.50 mm.
Continuous annealing was performed at 30 ° C. for 30 seconds. The annealing temperature is lower than the normal annealing temperature, because the user does not have problems such as burrs and burrs when punching a core. At this time, when the crystal grain size of each sample was measured by the line segment method, it was all 40 to 50 μm.

【0009】さらに、各試料を単板磁気測定可能なサイ
ズに剪断した後、750 ℃の温度で2時間、水素雰囲気中
にて箱焼鈍を行なった。この焼鈍は、ユーザにおいてコ
ア打ち抜き後に歪を除去する目的で行なう焼鈍に対応す
るものである。表1に箱焼鈍後の磁束密度B50(5000A/m
の磁場における磁束密度) 、鉄損W15/ 50(最大磁束密度
1.5T 周波数50Hzにおける鉄損) 、結晶粒径の測定結果
を示した。また、各成分における飽和磁束密度Bsも同時
に示した。このBsは、次の式(1) における回帰式により
計算した値である。
Further, each sample was sheared to a size capable of measuring a single-plate magnetic property, and then subjected to box annealing in a hydrogen atmosphere at a temperature of 750 ° C. for 2 hours. This annealing corresponds to annealing performed for the purpose of removing distortion after punching a core by a user. Table 1 shows the magnetic flux density B 50 (5000 A / m) after box annealing.
Magnetic flux density), the iron loss W 15/50 (maximum magnetic flux density at a magnetic field of
The results of measurement of 1.5T iron loss at a frequency of 50 Hz) and the crystal grain size are shown. The saturation magnetic flux density Bs for each component is also shown. This Bs is a value calculated by a regression equation in the following equation (1).

【0010】 Bs(T) = 2.1473− 0.0382 ×Si(%) − 0.0658 ×Al(%) …… (1) 表1より、鉄損3.0W/kg 以下であり、かつ結晶粒径70μ
m 以上であり、さらに磁気特性に良好な結晶方位の集積
度を簡便的にB50/Bs で表した場合その値が0.83以上と
なる成分範囲は、0.6 ≦Si≦1.4%、0.9 ≦Al≦1.6%、か
つ1.6 ≦Si + Al ≦2.7%を満足する範囲であることが判
明した。
Bs (T) = 2.1473−0.0382 × Si (%) − 0.0658 × Al (%) (1) From Table 1, the iron loss is 3.0 W / kg or less and the crystal grain size is 70 μm.
m or more, and when the degree of integration of crystal orientations with good magnetic properties is simply represented by B 50 / Bs, the component range where the value is 0.83 or more is 0.6 ≦ Si ≦ 1.4%, 0.9 ≦ Al ≦ It was found that the range satisfies 1.6% and 1.6 ≦ Si + Al ≦ 2.7%.

【0011】[0011]

【表1】 [Table 1]

【0012】図1を用いてさらに詳細に表1の結果を説
明する。図1において×で示す材料は、鉄損W15/50が3W
/kg を超えるものであり、表1の符号で、1,2,3,
4,6,7,11,16に該当する。これらの材料は、
Si、Al量が少なく比抵抗が小さいため渦電流損が増大
し、その結果鉄損値が3W/kg を超えてしまったものと推
察される。
The results in Table 1 will be described in more detail with reference to FIG. The material indicated by x in FIG. 1 has a core loss W 15/50 of 3 W
/ kg, and 1, 2, 3,
4, 6, 7, 11, and 16. These materials are
It is presumed that the eddy current loss increased due to low Si and Al contents and low specific resistance, resulting in the iron loss value exceeding 3 W / kg.

【0013】図1において△で示す材料は、鉄損は3W/k
g 以下であるものの方位集積度B50/Bs が0.83未満のも
のであり、表1の符号で、21,26,27,31,3
2に該当する。この材料の方位集積度が劣位であること
は今回初めて明らかになったことであり、添加元素成分
中にある程度のAl量が必要であることを示している。図
1において□で示す材料は、鉄損3W/kg 以下、かつ方位
集積度B50/Bs 0.83以上であるものの結晶粒径が70μm
未満、すなわち箱焼鈍における粒成長性が劣位であった
ものであり、表1の符号で、5,10,15,20,2
5,29,30,33,34,35に該当する。これら
の材料はSi、Al量が多すぎるため、結晶粒成長性が劣位
となったものと推察される。
In FIG. 1, the material indicated by △ has an iron loss of 3 W / k.
g, but the azimuth integration degree B 50 / Bs is less than 0.83, and the symbols in Table 1 indicate 21, 26, 27, 31, 3
It corresponds to 2. The fact that this material has a poor degree of azimuthal integration was first clarified this time, and indicates that a certain amount of Al is required in the additive element component. The material indicated by □ in FIG. 1 has an iron loss of 3 W / kg or less and a degree of orientation integration of B 50 / Bs 0.83 or more, but has a crystal grain size of 70 μm.
Less, that is, the grain growth in box annealing was inferior, and the symbols in Table 1 indicate that 5,10,15,20,2
5, 29, 30, 33, 34, 35. It is presumed that these materials had excessive amounts of Si and Al, so that the crystal grain growth was inferior.

【0014】図1において●で示す材料は、鉄損3W/kg
以下、かつ方位集積度B50/Bs 0.83以上、さらに結晶粒
径70μm 以上を満足するものであり、表1の符号で1
2,13,14,17,18,19,22,23,2
4,27,28に該当する。(これらは何れも本発明鋼
である。)これらの試料は、何れも0.6%≦Si≦1.4%、0.
9%≦Al≦1.6%、1.6%≦Si + Al ≦2.7%を同時に満足する
範囲であり、適量にSi、Alが添加されているため鉄損は
3W/kg 以下と低く、かつ添加元素中におけるAl量がある
程度高いため方位集積度B50/Bs は0.83以上と高く、さ
らにSi、Alが多すぎないため結晶粒成長性も良好である
ものと推察される。
In FIG. 1, the material indicated by ● is iron loss 3W / kg.
Or less, and the orientation integration degree B 50 / Bs is 0.83 or more, and the crystal grain size is 70 μm or more.
2,13,14,17,18,19,22,23,2
4, 27 and 28. (These are both an invention steel.) These samples are all 0.6% ≦ Si ≦ 1.4%, 0.
9% ≤ Al ≤ 1.6% , 1.6% ≤ Si + Al ≤ 2.7% at the same time, iron loss due to the addition of appropriate amounts of Si and Al
The orientation integration degree B 50 / Bs is as high as 0.83 or more because the amount of Al in the additive element is as low as 3 W / kg or less, and the crystal grain growth is also good because there is not too much Si and Al. Inferred.

【0015】次に、熱延板焼鈍の影響を確認するため、
以下の実験を行った。表1の実験で用いた素材のうち、
8、17、18、19、28の5種類から板厚2.3mm の
熱延板を作製し、焼鈍温度を900 ℃、950 ℃、1000℃、
1050℃の4条件で60秒の焼鈍を行った。その後のプロセ
スは表1の実験と同様に行った。表2に箱焼鈍後の磁束
密度B50、鉄損W15/50、結晶粒径の測定結果について示
す。また、各成分における飽和磁束密度Bsも同時に示
す。
Next, in order to confirm the effect of hot-rolled sheet annealing,
The following experiment was performed. Of the materials used in the experiments in Table 1,
2.3mm thick hot rolled sheets were prepared from five types of 8, 17, 18, 19 and 28, and the annealing temperatures were 900 ° C, 950 ° C, 1000 ° C,
Annealing was performed for 60 seconds under four conditions of 1050 ° C. Subsequent processes were performed in the same manner as the experiment in Table 1. Table 2 shows the measurement results of the magnetic flux density B50 , the iron loss W15 / 50 , and the crystal grain size after box annealing. The saturation magnetic flux density Bs for each component is also shown.

【0016】表2に示すように、素材の成分組成に関わ
らず、また箱焼鈍後の結晶粒径に殆んど差異がないにも
かかわらず、熱延板焼鈍温度を950 ℃以上としたもので
良好な磁気特性が得られることが判明した。
As shown in Table 2, the hot-rolled sheet annealing temperature was set to 950 ° C. or higher regardless of the composition of the material and despite the fact that there was almost no difference in the crystal grain size after box annealing. It was found that good magnetic properties could be obtained in the above.

【0017】[0017]

【表2】 [Table 2]

【0018】続いて本発明における条件の数値限定理由
について示す。Cの下限を0.0005% 、上限を0.010%とし
たのは、実施例1に示すように、0.0005% 以下では固溶
C存在による集合組織改善効果がなくなり、0.010%以上
では炭化物の存在により鉄損が劣化するからである。Mn
の下限を0.1%、上限を0.5%としたのは、0.1%以下ではMn
S が微細に析出してしまい粒成長性に大きく悪影響を及
ぼすためであり、0.5%以上では固溶Mnが粒成長性を劣化
させるためである。この中でさらに良好な範囲は0.2 〜
0.3%である。
Next, the reasons for limiting the numerical values of the conditions in the present invention will be described. The lower limit of C is set to 0.0005% and the upper limit is set to 0.010%. As shown in Example 1, the effect of improving the texture due to the presence of solid solution C is lost at 0.0005% or less, and the iron loss is caused by the presence of carbide at 0.010% or more. Is deteriorated. Mn
The lower limit of 0.1% and the upper limit of 0.5% is that Mn is 0.1% or less.
This is because S precipitates finely and has a large adverse effect on the grain growth, and when it is 0.5% or more, solute Mn deteriorates the grain growth. A better range is 0.2 to
0.3%.

【0019】Si、Alの範囲は、0.6%≦Si≦1.4%、0.9%≦
Al≦1.6%、かつ1.6%≦Si + Al ≦2.7%とした。この理由
は既に図1にて詳述した通り、Si、Al量が少な過ぎる領
域においては比抵抗が小さいため鉄損W15/50が劣位であ
り、Si+Al 量は十分なもののAl量が少ない領域では方位
集積度B50/Bs が劣位となり、またSi、Al量が多過ぎる
場合には粒成長性が劣位となるため上記範囲に規定し
た。すなわち、0.6%≦Si≦1.4%、0.9%≦Al≦1.6%、かつ
1.6%≦Si + Al ≦2.7%の範囲であれば、鉄損、方位集積
度、粒成長性いずれも良好となる。このうち、さらに良
好な範囲は、0.7%≦Si≦1.1%、かつ1.0%≦Al≦1.3%であ
り、この範囲であれば鉄損W15/50≦2.9W/kg 、B50/Bs
≧0.84、結晶粒径≧90μm となる。
The range of Si and Al is 0.6% ≦ Si ≦ 1.4%, 0.9% ≦
Al ≦ 1.6% and 1.6% ≦ Si + Al ≦ 2.7%. The reason for this is that, as already described in detail in FIG. 1, in a region where the amounts of Si and Al are too small, the iron loss W15 / 50 is inferior because the specific resistance is small, and the amount of Al is small although the amount of Si + Al is sufficient. In the region, the orientation integration degree B 50 / Bs is inferior, and when the amount of Si and Al is too large, the grain growth becomes inferior. That is, 0.6% ≦ Si ≦ 1.4%, 0.9% ≦ Al ≦ 1.6% , and
Within the range of 1.6% ≦ Si + Al ≦ 2.7%, all of the iron loss, the degree of orientation accumulation, and the grain growth are good. Of these, a more favorable range is 0.7% ≦ Si ≦ 1.1%, and 1.0% ≦ Al ≦ 1.3%, and iron loss W 15/50 ≦ 2.9 W / kg, B 50 / Bs
≧ 0.84 and crystal grain size ≧ 90 μm.

【0020】また、方位集積度B50/Bs については、そ
の値が低い場合は素材成分の特性を十分に生かしきれて
いないことになるので、その下限を0.83とした。なお、
この場合のB50値は、750 ℃の温度で2時間の歪取焼鈍
後の値であり、EP値、あるいはSST であればL方向、C
方向の平均値である。鉄損、粒成長性に関しては、ユー
ザにおける歪取焼鈍条件に依存するため、特に規定はし
ないが、上記Si,Al 量の範囲内であれば鉄損、粒成長性
ともに良好となることは図1より明白である。
The lower limit of the azimuth integration degree B 50 / Bs is set to 0.83 because if the value is low, the characteristics of the material components cannot be fully utilized. In addition,
The B 50 value in this case is a value after strain relief annealing at a temperature of 750 ° C. for 2 hours.
The average value in the direction. Since the iron loss and the grain growth are dependent on the conditions of the strain relief annealing by the user, they are not particularly specified, but it is clear that both the iron loss and the grain growth are good within the above ranges of Si and Al. It is more obvious than one.

【0021】また、粒成長性の観点からは不純物量とし
て鋼中に存在するS,N,Ti,Zr 等は少ない方が好ましい。
特に粒成長性に大きく影響を及ぼすSについては、実施
例2に示すように0.004%以下であることが好ましい。次
に各工程の操業条件について説明する。スラブ加熱を施
した鋼片を熱間圧延後、950 ℃以上で熱延板焼鈍を施す
必要がある。この理由は実施例3に示すように、冷延前
結晶粒径をある程度粗大化させ仕上焼鈍後に磁気特性に
好ましいGoss方位を増加させ、方位集積度B50/Bs を向
上させるためである。
Further, from the viewpoint of grain growth, it is preferable that the amount of S, N, Ti, Zr, etc. present in the steel as an impurity is small.
In particular, as for S, which greatly affects the grain growth, as shown in Example 2, the content is preferably 0.004% or less. Next, the operating conditions of each step will be described. After hot rolling the slab heated slab, it is necessary to perform hot rolled sheet annealing at 950 ° C or higher. The reason for this is as shown in Example 3 in order to increase the crystal grain size before cold rolling to some extent, to increase the Goss orientation preferred for magnetic properties after finish annealing, and to improve the orientation integration degree B 50 / Bs.

【0022】次いで所定の板厚とするために冷間圧延を
実施する。このとき冷間圧延率としては70〜90% 程度で
行なうのが好ましい。これはこの圧延率の範囲外では、
磁気特性に好ましくない結晶方位が仕上焼鈍にて生成
し、方位集積度B50/Bs を劣化させるからである。ま
た、冷間圧延の際の鋼板温度の最大値は、実施例4に示
すように150 ℃以上であることが好ましい。この場合の
鋼板温度の最大値とは、タンデム型の冷延機で通板する
際の各スタンドにおける鋼板温度の最大値を意味し、通
常は最終スタンドでの温度である。この鋼板温度が150
℃以上が好ましい理由は、固溶Cの存在により鋼板温度
150 ℃以上で転位の固着が生じ、圧延の際の変形様式を
変え、その結果、仕上焼鈍後に磁気特性に好ましいGoss
方位の結晶粒が生じることにより、方位集積度B50/Bs
が向上するからである。
Next, cold rolling is performed to obtain a predetermined thickness. At this time, the cold rolling reduction is preferably performed at about 70 to 90%. This is outside the range of this rolling rate
This is because a crystal orientation unfavorable for magnetic properties is generated by finish annealing, and deteriorates the degree of orientation integration B 50 / Bs. Further, the maximum value of the steel sheet temperature during cold rolling is preferably 150 ° C. or more as shown in the fourth embodiment. The maximum value of the steel sheet temperature in this case means the maximum value of the steel sheet temperature at each stand when the steel sheet is passed through a tandem-type cold rolling mill, and is usually the temperature at the final stand. The temperature of this steel plate is 150
C or higher is preferable because the presence of solid solution C
At 150 ° C or higher, dislocation sticks, changes the deformation mode during rolling, and as a result, after finishing annealing, favorable Goss
Due to the generation of crystal grains of the orientation, the orientation accumulation degree B 50 / Bs
Is improved.

【0023】冷間圧延された鋼板は仕上焼鈍されるが、
焼鈍方法は公知の方法でよく、窒素、水素からなる非酸
化性雰囲気で750〜1100℃の温度範囲で、5秒〜
10分の連続焼鈍を施すのが通常である。このとき焼鈍
温度を900℃以下とすれば、再結晶粒径は約50μm
と比較的小さくできるため、ユーザにおけるコア打ち抜
きの際にバリ・カエリ等の問題を低減させることがで
き、またコア形成後の歪取焼鈍において再結晶を進行し
やすくすることができる。
The cold-rolled steel sheet is finish-annealed.
The annealing method may be a known method, and is performed in a non-oxidizing atmosphere composed of nitrogen and hydrogen in a temperature range of 750 to 1100 ° C. for 5 seconds to
Usually, continuous annealing for 10 minutes is performed. At this time, if the annealing temperature is 900 ° C. or less, the recrystallized grain size is about 50 μm.
Therefore, problems such as burrs and burrs at the time of core punching by the user can be reduced, and recrystallization can easily proceed in strain relief annealing after core formation.

【0024】次いで、仕上焼鈍された鋼板には絶縁被膜
が塗布されて製品となる。鋼板はユーザーにて所望の形
および大きさに打ち抜かれ、積層されてコアとした後、
窒素等の非酸化性雰囲気で700℃以上の温度で歪取焼
鈍される。
Next, the steel sheet subjected to the finish annealing is coated with an insulating film to obtain a product. After the steel sheet is punched into the desired shape and size by the user and laminated to form a core,
The strain relief annealing is performed at a temperature of 700 ° C. or more in a non-oxidizing atmosphere such as nitrogen.

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】(実施例1) Si 1.3% 、Al 1.3及び1.7 % 、Mn:0.2% 、C:0.0010〜0.
0015% 、さらにS量を種々変化させ、実験室にて真空溶
解を行なった。本素材から板厚2.2mm の熱延板を作製
し、1000℃の温度で50秒にて焼鈍後、酸洗を行なった。
続いて冷間圧延により板厚0.50mmとした後、870 ℃の温
度で30秒にて仕上焼鈍を施した。さらにSST 測定のため
試料を剪断し、750 ℃の温度で2時間の歪取焼鈍を行な
った。歪取焼鈍後の磁気測定結果、結晶粒径測定結果を
表3に示す。
( Example 1 ) Si 1.3%, Al 1.3 and 1.7%, Mn: 0.2%, C: 0.0010-0.
0015%, the amount of S was variously changed, and vacuum melting was performed in a laboratory. A hot-rolled sheet having a thickness of 2.2 mm was prepared from this material, annealed at a temperature of 1000 ° C. for 50 seconds, and then pickled.
Subsequently, after the sheet thickness was reduced to 0.50 mm by cold rolling, finish annealing was performed at a temperature of 870 ° C. for 30 seconds. Further, the sample was sheared for SST measurement and subjected to strain relief annealing at a temperature of 750 ° C. for 2 hours. Table 3 shows the magnetic measurement results and the crystal grain size measurement results after the strain relief annealing.

【0029】試料5〜8は、結晶粒径が70μm 未満であ
り粒成長性の観点から好ましくない。また、試料1〜4
はW15/50≦3.0W/kg 、結晶粒径≧70μm 、方位集積度B
50/Bs ≧0.84であり、鉄損、粒成長性、方位集積度いず
れも好ましい範囲である。試料1〜4のうち、鉄損、粒
成長性の観点でより好ましいのは、S≦40ppm である試
料1〜3であり、粒成長性の観点でさらに好ましいのは
S≦20ppm である試料1,2である。
Samples 5 to 8 have a crystal grain size of less than 70 μm, which is not preferable from the viewpoint of grain growth. Samples 1-4
Is W 15/50 ≦ 3.0W / kg, crystal grain size ≧ 70μm, degree of orientation integration B
50 / Bs ≧ 0.84, and all of the iron loss, the grain growth, and the degree of orientation accumulation are in the preferable ranges. Among the samples 1 to 4, samples 1 to 3 in which S ≦ 40 ppm are more preferable from the viewpoint of iron loss and grain growth, and sample 1 in which S ≦ 20 ppm is further preferable from the viewpoint of grain growth. , 2.

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例2) 実験室にて真空溶解を行ない、Si 1.4% 、Al 0.5及び0.
8%、Mn:0.2% 、C:0.0012% 、S:0.0031% 鋼塊を作製し
た。本素材を加熱、熱間圧延により板厚2.2mm の熱延板
を作製し、種々の温度で60秒間焼鈍し、酸洗を行なっ
た。続いて冷間圧延により板厚0.50mmとした後、860 ℃
の温度で30秒にて仕上焼鈍を施した。さらにSST 測定の
ため試料を剪断し、750 ℃の温度で2時間の歪取焼鈍を
行なった。歪取焼鈍後の磁気測定結果、結晶粒径測定結
果を表4に示す。
Example 2 Vacuum melting was performed in a laboratory, and Si 1.4%, Al 0.5,
8%, Mn: 0.2%, C: 0.0012%, S: 0.0031% steel ingots were produced. This material was heated and hot-rolled to produce a hot-rolled sheet having a thickness of 2.2 mm, annealed at various temperatures for 60 seconds, and pickled. Subsequently, after cold rolling to a sheet thickness of 0.50 mm,
At 30 ° C. for 30 seconds. Further, the sample was sheared for SST measurement and subjected to strain relief annealing at a temperature of 750 ° C. for 2 hours. Table 4 shows the magnetic measurement results and the crystal grain size measurement results after the strain relief annealing.

【0032】試料1〜5は、方位集積度B50/Bs が0.83
未満で好ましくない。この理由はAl量が少ないからであ
る。一方、試料6においても方位集積度B50/Bs は0.83
未満で好ましくない。この理由は、熱延板焼鈍温度が低
いため冷延前結晶粒径が小さく、その結果、製品板にお
いて磁気特性に好ましいGoss方位が少ないからである。
試料7〜10は、鉄損、粒成長性、方位集積度いずれも
好ましいが、この中でさらに好ましい範囲は、熱延板焼
鈍温度1000℃以上である試料8〜10である。
Samples 1 to 5 have an azimuth integration degree B 50 / Bs of 0.83
Less than that is not preferable. This is because the amount of Al is small. On the other hand, also in the sample 6, the azimuth integration degree B 50 / Bs is 0.83
Less than that is not preferable. The reason for this is that since the hot-rolled sheet annealing temperature is low, the crystal grain size before cold rolling is small, and as a result, the Goss orientation preferred for magnetic properties in the product sheet is small.
Samples 7 to 10 are all preferred in terms of iron loss, grain growth, and degree of orientation accumulation. Among them, more preferred ranges are samples 8 to 10 in which the hot-rolled sheet annealing temperature is 1000 ° C or higher.

【0033】[0033]

【表4】 [Table 4]

【0034】(実施例3) 実験室にて真空溶解を行ない、Si 0.9% 、Al 1.6及び1.
9%、Mn:0.3% 、C:0.0026% 、S:0.0028% 鋼塊を作製し
た。本素材を加熱、熱間圧延により板厚2.3mm の熱延板
を作製し、種々の温度で60秒間焼鈍し、酸洗を行なっ
た。続いて冷間圧延において、板厚1.69mm、1.25mm、0.
92mm、0.68mmのそれぞれに種々の温度で鋼板を加熱して
冷間圧延を行ない、最終板厚0.50mmとした。この手法
は、実際の圧延の際の各スタンドにおける温度を模試し
たものである。さらにこれらの鋼板について850 ℃の温
度で30秒にて仕上焼鈍を施した。さらにSST 測定のため
試料を剪断し、750 ℃の温度で2時間の歪取焼鈍を行な
った。歪取焼鈍後の磁気測定結果、結晶粒径測定結果を
表5に示す。
(Example 3) Vacuum melting was performed in a laboratory, and Si 0.9%, Al 1.6 and 1.
9%, Mn: 0.3%, C: 0.0026%, S: 0.0028% steel ingots were produced. This material was heated and hot rolled to produce a hot-rolled sheet having a thickness of 2.3 mm, annealed at various temperatures for 60 seconds, and pickled. Subsequently, in cold rolling, the plate thickness was 1.69 mm, 1.25 mm, 0.
The steel sheet was heated at various temperatures to 92 mm and 0.68 mm, respectively, and cold-rolled to a final thickness of 0.50 mm. This method simulates the temperature at each stand during actual rolling. Further, these steel sheets were subjected to finish annealing at a temperature of 850 ° C. for 30 seconds. Further, the sample was sheared for SST measurement and subjected to strain relief annealing at a temperature of 750 ° C. for 2 hours. Table 5 shows the magnetic measurement results and the crystal grain size measurement results after the strain relief annealing.

【0035】試料6〜10は、結晶粒径が70μm 未満で
あり粒成長性の観点から好ましくない。試料1〜5はW
15/50≦3.0W/kg 、結晶粒径≧70μm 、方位集積度B50/
Bs ≧0.83であり、鉄損、粒成長性、方位集積度いずれ
も好ましい範囲である。また、試料6〜10のうちさら
に好ましい範囲は、B50/Bs ≧0.86である試料8〜10
である。この理由は冷間圧延を150 ℃以上で実施するこ
とにより製品板において磁気特性に好ましいGoss方位の
結晶粒が増加したためである。
Samples 6 to 10 have a crystal grain size of less than 70 μm, which is not preferable from the viewpoint of grain growth. Samples 1 to 5 are W
15/50 ≦ 3.0W / kg, crystal grain size ≧ 70μm, degree of orientation integration B 50 /
Bs ≧ 0.83, and iron loss, grain growth, and degree of orientation accumulation are all in the preferred ranges. Further, a more preferable range of Samples 6 to 10 is Samples 8 to 10 in which B 50 /Bs≧0.86.
It is. The reason for this is that by performing the cold rolling at 150 ° C. or higher, the crystal grains of the Goss orientation favorable for the magnetic properties in the product sheet increased.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】本発明は、磁気特性に好ましい結晶方位
の集積度が高く、かつユーザーにおける歪取焼鈍時に結
晶粒成長が良好な無方向性電磁鋼板、及びその製造方法
を提供することが可能となる。
According to the present invention, it is possible to provide a non-oriented electrical steel sheet which has a high degree of integration of crystal orientations favorable for magnetic properties and has good crystal grain growth during strain relief annealing by a user, and a method for producing the same. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板成分と特性評価結果の関係を示す。FIG. 1 shows the relationship between steel sheet components and characteristics evaluation results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川又 竜太郎 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 半澤 和文 福岡県北九州市戸畑区飛幡町1−1 新 日本製鐵株式会社 八幡製鐵所内 (72)発明者 有田 吉宏 福岡県北九州市戸畑区飛幡町1−1 新 日本製鐵株式会社 八幡製鐵所内 (72)発明者 佐藤 浩明 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (56)参考文献 特開 平3−2323(JP,A) 特開2000−129409(JP,A) 特開 平10−183311(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 C21D 8/12 C22C 38/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ryutaro Kawamata 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Kazufumi Hanzawa 1--1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka 1 Inside Nippon Steel Corporation Yawata Works (72) Inventor Yoshihiro Arita 1-1 Inhachicho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Hiroaki Sato Himeji, Hyogo Prefecture 1 Fujimachi, Hirohata-ku, Nippon Steel Corporation Hirohata Works (56) References JP-A-3-2323 (JP, A) JP-A-2000-129409 (JP, A) JP-A-10-183311 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 303 C21D 8/12 C22C 38/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C:0.0005% 以上0.010%以下、
Mn:0.1% 以上0.5%以下、Si:0.6% 以上1.4%以下、Al:0.9
% 以上1.6%以下、かつ1.6%≦Si + Al ≦2.7%を満たす成
分を含有し、残部はFe及び不可避不純物元素よりなる無
方向性電磁鋼板において、歪取焼鈍後における磁束密度
50を飽和磁束密度Bsで除した値B50/Bs がB50/Bs ≧
0.83、鉄損W 15/50 がW 15/50 ≦3.01W/kgを満たすことを特
徴とする方位集積度及び粒成長性の良好な無方向性電磁
鋼板。
(1) In mass%, C: 0.0005% or more and 0.010% or less,
Mn: 0.1% or more and 0.5% or less, Si: 0.6% or more and 1.4% or less, Al: 0.9
% To 1.6% or less, and contain components that satisfies 1.6% ≦ Si + Al ≦ 2.7 %, the balance in the non-oriented electrical steel sheet consisting of Fe and unavoidable impurity elements, the saturation magnetic flux density B 50 after stress relief annealing The value B 50 / Bs divided by the magnetic flux density Bs is B 50 / Bs ≧
A non-oriented electrical steel sheet having a good degree of orientation accumulation and grain growth, characterized by 0.83 and an iron loss W 15/50 satisfying W 15/50 ≦ 3.01 W / kg .
【請求項2】 質量%で、C:0.0005% 以上0.010%以下、
Mn:0.1% 以上0.5%以下、Si:0.6% 以上1.4%以下、Al:0.9
% 以上1.6%以下、かつ1.6%≦Si + Al ≦2.7%を満たす成
分を含有し、残部はFe及び不可避不純物元素よりなる鋼
片を熱間圧延後、熱延板焼鈍と1回の冷間圧延、もしく
は中間焼鈍を介挿する2回以上の冷間圧延を行い、引き
続き仕上焼鈍を行う無方向性電磁鋼板の製造方法におい
て、熱延板焼鈍もしくは最後の中間焼鈍の温度を950 ℃
以上とすることを特徴とする方位集積度及び粒成長性の
良好な無方向性電磁鋼板の製造方法。
2. In mass%, C: 0.0005% or more and 0.010% or less,
Mn: 0.1% or more and 0.5% or less, Si: 0.6% or more and 1.4% or less, Al: 0.9
% Or more and 1.6% or less, and a component satisfying 1.6% ≦ Si + Al ≦ 2.7%, the remainder being a hot-rolled steel slab consisting of Fe and unavoidable impurity elements, followed by hot-rolled sheet annealing and one cold In a method for producing a non-oriented electrical steel sheet in which rolling or cold rolling is performed two or more times with intermediate annealing followed by finish annealing, the temperature of hot-rolled sheet annealing or the last intermediate annealing is set to 950 ° C.
A method for producing a non-oriented electrical steel sheet having a good degree of orientation accumulation and grain growth, as described above.
【請求項3】 最終の冷間圧延における鋼板温度の最大
値を150 ℃以上とすることを特徴とする請求項2記載
方位集積度及び粒成長性の良好な無方向性電磁鋼板の製
造方法。
3. The method for producing a non-oriented electrical steel sheet according to claim 2, wherein the maximum value of the steel sheet temperature in the final cold rolling is 150 ° C. or more. .
【請求項4】 鋼中に含有されるS量が質量%で0.004%
を超えないことを特徴とする請求項1〜3のいずれかの
項に記載の方位集積度及び粒成長性の良好な無方向性電
磁鋼板とその製造方法。
4. The amount of S contained in steel is 0.004% by mass%.
Any one of claims 1 to 3, which does not exceed
Non-directional electrode with good orientation accumulation and grain growth
Magnetic steel sheet and its manufacturing method.
JP2000105420A 2000-04-06 2000-04-06 Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same Expired - Lifetime JP3292846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000105420A JP3292846B2 (en) 2000-04-06 2000-04-06 Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000105420A JP3292846B2 (en) 2000-04-06 2000-04-06 Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001294997A JP2001294997A (en) 2001-10-26
JP3292846B2 true JP3292846B2 (en) 2002-06-17

Family

ID=18618780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000105420A Expired - Lifetime JP3292846B2 (en) 2000-04-06 2000-04-06 Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same

Country Status (1)

Country Link
JP (1) JP3292846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260996A (en) * 2007-04-11 2008-10-30 Nippon Steel Corp Non-oriented electromagnetic steel sheet superior in magnetic properties in rolling direction, and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757888B2 (en) * 1989-05-26 1995-06-21 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH10183311A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic
JP3852227B2 (en) * 1998-10-23 2006-11-29 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001294997A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
EP3859032B1 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
EP3572545B1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP2006501361A5 (en)
TWI820337B (en) Method for manufacturing non-oriented electromagnetic steel plate, method for manufacturing motor core, and motor core
JP6319465B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP3292846B2 (en) Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP3497431B2 (en) Low iron loss non-oriented electrical steel sheet having good workability and manufacturing method thereof
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP4258859B2 (en) Non-oriented electrical steel sheet with good machinability and low iron loss
JP3492075B2 (en) Non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2001323345A (en) Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
JP3294585B2 (en) Non-oriented electrical steel sheet excellent in magnetism and manufacturing method thereof
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350