JPH02277747A - Semiprocess nonoriented silicon steel sheet having excellent blanking properties - Google Patents

Semiprocess nonoriented silicon steel sheet having excellent blanking properties

Info

Publication number
JPH02277747A
JPH02277747A JP9844989A JP9844989A JPH02277747A JP H02277747 A JPH02277747 A JP H02277747A JP 9844989 A JP9844989 A JP 9844989A JP 9844989 A JP9844989 A JP 9844989A JP H02277747 A JPH02277747 A JP H02277747A
Authority
JP
Japan
Prior art keywords
steel sheet
recrystallization rate
steel
punchability
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9844989A
Other languages
Japanese (ja)
Inventor
Akihiko Nishimoto
昭彦 西本
Kunikazu Tomita
邦和 冨田
Seiji Nakamura
清治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9844989A priority Critical patent/JPH02277747A/en
Publication of JPH02277747A publication Critical patent/JPH02277747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain the steel sheet having improved blanking properties by regulating the compositional limiting value and controlling the recrystallization rate in the structure of the steel sheet after subjected to final finish annealing to a prescribed range. CONSTITUTION:Sheet-manufacturing is executed so that the recrystallization rate (alpha) after final finish annealing in a steel sheet of prescribed sheet thickness constituted of, by weight, <=0.005% C, <=1.0% Si, 0.1 to 0.5% Mn, <=0.2% P, <0.01% S, <=0.5% Al and the balance Fe with inevitable impurities is controlled to 50<=alpha<=80 (%). In this way, good punching properties in which the height of burrs is reduced can be obtd. and no problem is produced as for the growth of the grains at the time of stress relief annealing even if unrecrystallization structure is left, by which stable magnetic characteristics can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、需要家における歪取り焼鈍を前提としたセミ
プロセス無方向性電磁鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semi-processed non-oriented electrical steel sheet that is intended for strain relief annealing in customers.

〔従来の技術〕[Conventional technology]

Si量が1%以下のいわゆる低級無方向性電磁鋼板は、
鉄損値は高いものの磁束密度が高く、また低コストであ
ることなどにより、家庭電気製品用小型モーター等に多
量に使用されている。このような鋼板は需要家で打抜か
れた後、そのまま製品に組み立てられるフルプロセス材
と、打抜き後に歪取り焼鈍が施されるセミプロセス材に
大別される。セミプロセス材においては、歪取り焼鈍前
の磁気特性は重要でなく、歪取り焼鈍後に優れた磁気特
性を示すことが必要とされる。またこれら鋼板は連続打
抜き機で多量に打抜かれることから、安定して良好な形
状に打抜けること、また金型の摩耗が小さいことなど、
優れた打抜き性を具備することが商品の特性として非常
に重要視されている。
So-called low-grade non-oriented electrical steel sheets with a Si content of 1% or less are
Although it has a high iron loss value, it has a high magnetic flux density and is low cost, so it is used in large quantities in small motors for household electrical appliances. Such steel sheets are broadly divided into fully processed materials, which are punched by customers and then assembled into products as is, and semi-processed materials, which are subjected to strain relief annealing after punching. For semi-processed materials, the magnetic properties before strain relief annealing are not important, and it is necessary to show excellent magnetic properties after strain relief annealing. In addition, since these steel plates are punched in large quantities using a continuous punching machine, they can be stably punched into good shapes, and the wear of the molds is small.
Excellent punchability is considered to be a very important characteristic of products.

打抜き性には鋼板の平坦度や材質、あるいは絶縁皮膜の
種類や膜厚といった鋼板サイドの要因のほかに、金型の
材質、クリアランス、使用する潤滑油の種類や量といっ
た需要家サイドでの要因が複雑に作用する。このため、
打抜き性の改善は今なお十分とは言えず、少しでも打抜
き性の優れた鋼板に対する要求は依然として高い。
Punching performance is determined not only by factors on the steel plate side, such as the flatness and material of the steel plate, and the type and thickness of the insulating film, but also by factors on the customer side, such as the material of the mold, clearance, and the type and amount of lubricant used. acts in a complex manner. For this reason,
Improvements in punchability are still not sufficient, and there is still a high demand for steel sheets with even a slight improvement in punchability.

従来、電磁鋼板の打抜き性を改善するために、セミプロ
セス材においては、 ■一般に知られているような、仕上焼鈍後の調質圧延に
より硬度調整を図る技術。
Conventionally, in order to improve the punchability of electrical steel sheets, for semi-processed materials, the following techniques were used: ■ A commonly known technique of adjusting hardness through skin pass rolling after finish annealing.

■最終仕上焼鈍を700℃以下の低温短時間で行い、再
結晶粒径の細粒化により硬度上昇を図る技術。(特開昭
60−106915号)■最終仕上焼鈍を再結晶温度未
満の回復焼鈍とし、硬度上昇を図る技術。(特公昭62
−21849号、特公昭82−49321号) ■C含有量を0.03〜0.1θ%程度に調整し、焼鈍
後に急冷し、引続き調質圧延を行い、硬度上昇を図る技
術。(特開昭58−34114号)のように、鋼板の硬
度調整、特に硬度上昇に力点を置いた検討がなされてき
た。
■Technology that performs final finish annealing at a low temperature of 700°C or less for a short time to increase hardness by reducing the recrystallized grain size. (Unexamined Japanese Patent Publication No. 60-106915) ■ A technique for increasing hardness by performing final finish annealing as recovery annealing below the recrystallization temperature. (Tokuko Showa 62
(No. 21849, Japanese Patent Publication No. 82-49321) (1) A technique of adjusting the C content to about 0.03 to 0.1 θ%, rapidly cooling after annealing, and subsequently performing temper rolling to increase hardness. (Japanese Unexamined Patent Publication No. 58-34114), studies have been conducted with emphasis on adjusting the hardness of steel plates, particularly on increasing the hardness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の方法によれば、確かに鋼板の硬度は上昇し、打抜
き性は多少改善されるが、そのレベルは決して満足のい
(ものではなく、単に硬度調整のみを手段とする方法で
は十分な打抜き性は達成できない。そこで本発明者らは
、より優れた打抜き性を持つ電磁鋼板を開発すべく鋭意
実験を重ねた結果、より優れた打抜き性を得るためには
、単なる硬度調整ではなく、鋼板の組織制御の観点から
組織の最適化を図り、再結晶率を制御する必要があるこ
とを見い出したものである。
According to the above method, the hardness of the steel sheet increases and the punching property is improved to some extent, but the level is by no means satisfactory (it is not sufficient to achieve sufficient punching with a method that uses only hardness adjustment). Therefore, the inventors of the present invention conducted extensive experiments in order to develop an electrical steel sheet with better punchability.The inventors of the present invention found that in order to obtain better punchability, it was necessary to improve the strength of the steel sheet rather than simply adjusting the hardness. It was discovered that it is necessary to optimize the structure and control the recrystallization rate from the viewpoint of structure control.

〔発明の構成〕[Structure of the invention]

本発明はこのような知見に基づきなされたもので、歪取
り焼鈍を前提としたセミプロセス無方向性電磁鋼板の打
抜き性向上を狙いとし、その技術的特徴は最終仕上焼鈍
後の鋼板組織の再結晶部の割合を50%〜80%に制御
して打抜き性を向上させるようにしたことにある。
The present invention was made based on such knowledge, and aims to improve the punchability of semi-processed non-oriented electrical steel sheets that are subject to strain relief annealing. The punching property is improved by controlling the ratio of crystalline parts to 50% to 80%.

すなわち本発明のセミプロセス無方向性電磁鋼板は、C
:0.005wt%以下、Si:1.0wt%以下、M
n:O,1〜0.5wt%、P:0.2wt%以下、S
 : 0.01wt%未満、^jl:o、5wt%以下
、残部Fcおよび不可避的不純物からなり、最終仕上焼
鈍後の再結晶率αが50≦α≦80(%)であることを
その基本的特徴とする。
That is, the semi-processed non-oriented electrical steel sheet of the present invention has C
: 0.005wt% or less, Si: 1.0wt% or less, M
n: O, 1 to 0.5 wt%, P: 0.2 wt% or less, S
: less than 0.01 wt%, ^jl:o, 5 wt% or less, the remainder consists of Fc and unavoidable impurities, and its basic principle is that the recrystallization rate α after final annealing is 50≦α≦80 (%). Features.

以下に、本発明者らが打抜き住改善のために行った実験
結果に基づき、本発明の内容について詳細に説明する。
Below, the content of the present invention will be explained in detail based on the results of experiments conducted by the present inventors for improving punched housing.

ga1表の鋼Aと鋼Bのスラブを、1200℃に加熱後
、仕上温度850℃で熱間圧延を行い、引き続き酸洗、
冷間圧延を施し0.5m厚の鋼板とした。第1図は、こ
れら鋼板について温度を変えて仕上焼鈍を行うことによ
って硬度を変化させた試料を、各々1万枚打抜いた時の
鋼板硬度とパリ高さの関係を示したものである。図のよ
うに、本実験においては鋼A、Bとも、パリ高さは硬度
にともなって一様に変化するのではなく、特定の領域の
み極めて優れた打抜き性を示すことが分かる。更に、鋼
種により打抜き性の優れた領域の硬度レベルが40ポイ
ント以上も違うこと、また同一硬度レベルを有する他制
種材に比べても格段に良好であることなどより、打抜き
性の極めて優れた鋼板を硬度により一義的に規定できな
いことが分かる。そこで、打抜き性に対する支配要因を
再度詳細に検討したところ、これら極めて優れた打抜き
性を示すものは、いずれも再結晶温度近傍で焼鈍された
ため部分再結晶組織であることが判明した。これは、打
抜き性を左右している第一の要因は鋼板の組織であり、
鋼板硬度は二次的な要因に過ぎないということ、そして
、打抜き性を改善するためには、未再結晶組織あるいは
再結晶組織において【11に硬度を調整する従来の方法
よりも、鋼板組織を部分再結晶化する方がより大きな効
果が得られるということを示唆するものである。
Slabs of steel A and steel B in Table GA1 were heated to 1200°C, then hot rolled at a finishing temperature of 850°C, followed by pickling,
It was cold rolled into a 0.5 m thick steel plate. Figure 1 shows the relationship between steel plate hardness and paring height when 10,000 samples were punched out of each of these steel plates whose hardness was varied by final annealing at different temperatures. As shown in the figure, in this experiment, it can be seen that for both Steels A and B, the par height does not change uniformly with hardness, but that only specific regions exhibit extremely excellent punching properties. Furthermore, the hardness level of the region with excellent punchability varies by more than 40 points depending on the steel type, and it is also much better than other types of materials with the same hardness level. It can be seen that steel plates cannot be uniquely defined by their hardness. Therefore, we again examined in detail the factors governing punchability, and found that all of these specimens exhibiting extremely excellent punchability had a partially recrystallized structure because they were annealed near the recrystallization temperature. This is because the first factor that influences punchability is the structure of the steel sheet.
The hardness of the steel plate is only a secondary factor, and in order to improve punchability, it is necessary to improve the steel plate structure in the unrecrystallized or recrystallized structure [11] This suggests that a greater effect can be obtained by partial recrystallization.

第2図は上記打抜き性に対する再結晶率の影響をより詳
細に見るために、第1図のデータのうち、打抜き性の極
めて優れた領域とその近傍について、再結晶率αでリプ
ロットしたものである。なお、再結晶率は断面組織写真
より面積率として求めた。
Figure 2 is a replot of the recrystallization rate α for the region with extremely excellent punchability and its vicinity from the data in Figure 1, in order to see in more detail the influence of the recrystallization rate on the punchability. be. Incidentally, the recrystallization rate was determined as an area ratio from a photograph of the cross-sectional structure.

図から明らかなようにパリ高さは鋼種による差はあまり
なく、再結晶率にほぼ一義的に依存しており、鋼種A、
Cとも再結晶率が50%〜80%の領域で最もパリ高さ
が小さく、それ以外の再結晶率が80〜100%、ある
いは再結晶率が50〜0%の領域ではパリ高さが急激に
増加していることが分かる。パリ高さがこのような変化
を示すのは、再結晶率が低い場合には硬い未再結晶部に
より金型の摩耗が進行するためと考えられ、逆に再結晶
率が100%近傍の場合には、軟らかい再結晶組織の存
在により鋼板と金型の間で凝着が発生し金型の摩耗が進
むためと考えられる。
As is clear from the figure, there is not much difference in Paris height depending on the steel type, and it depends almost exclusively on the recrystallization rate.
For both C, the Paris height is the smallest in the region where the recrystallization rate is 50% to 80%, and in other regions where the recrystallization rate is 80 to 100% or the recrystallization rate is 50 to 0%, the Paris height is sharp. It can be seen that there is an increase in The reason why the Paris height shows such a change is thought to be that when the recrystallization rate is low, the wear of the mold progresses due to hard unrecrystallized parts, and conversely, when the recrystallization rate is close to 100%. This is thought to be due to the presence of a soft recrystallized structure that causes adhesion between the steel sheet and the mold, leading to accelerated wear of the mold.

一方、再結晶率が50%〜80%の本発明鋼では、硬い
未再結晶部の比率が小さいため、型摩耗への悪影響は小
さい。むしろ脆い未再結晶部が適当量存在することによ
り、打抜き時にクラックが伝播しやすく、また剪断エネ
ルギーも完全再結晶材に比べ低くなり、打抜き性を向上
させているものと考えられる。また凝着の問題に関して
も、再結晶組織と未再結晶組織が混在するため、金型に
焼き付いた再結晶部を硬い未再結晶部が剥離させると考
えられ、鋼板と金型との凝着も発生しにくい。
On the other hand, in the steel of the present invention having a recrystallization rate of 50% to 80%, the ratio of hard unrecrystallized parts is small, so that the adverse effect on die wear is small. Rather, it is thought that due to the presence of a suitable amount of brittle unrecrystallized parts, cracks propagate easily during punching, and the shear energy is lower than that of a completely recrystallized material, improving punchability. Regarding the problem of adhesion, since there is a mixture of recrystallized and non-recrystallized structures, it is thought that the hard non-recrystallized parts will peel off the recrystallized parts that have been baked into the mold, and the adhesion between the steel sheet and the mold will increase. is also less likely to occur.

本発明では上記した打抜き性に対する再結晶率の影響に
基づき、パリ高さが著しく低下する、再結晶率が50%
〜80%の範囲を、打抜き性改善のための最適組織範囲
として規定する。
In the present invention, based on the influence of the recrystallization rate on the punchability described above, the recrystallization rate is 50%, which significantly reduces the par height.
The range of ~80% is defined as the optimal tissue range for improving punchability.

次に本発明における成分の限定理由について説明する。Next, the reasons for limiting the components in the present invention will be explained.

CTCは多量に含有させた場合、脱炭焼鈍に長時間を要
し、また脱炭不足の場合には、磁気時効により磁気特性
が劣化するため、0.005wt%以下の極低炭素鋼と
する。
If a large amount of CTC is contained, decarburization annealing will take a long time, and if decarburization is insufficient, magnetic properties will deteriorate due to magnetic aging, so the steel should be made of ultra-low carbon steel with a content of 0.005 wt% or less. .

SL : Siの増加は比抵抗を高め、鉄損を減少させ
る効果が大きいが、1vL%を越えると高磁場での磁束
密度を低下させ、またコスト上昇にもつながるためlw
t%以下とする。
SL: An increase in Si has a great effect of increasing resistivity and reducing iron loss, but if it exceeds 1vL%, it decreases the magnetic flux density in a high magnetic field and also leads to an increase in cost.
t% or less.

Mn:Mnは、鋼中SをMnSとし、て析出、粗大化さ
せ、歪取り焼鈍時の粒成長性を向上させる効果があるた
め、下限を0.1νt%とする。上限についてはコスト
面より0.5wt%とする。
Mn: Mn has the effect of precipitating and coarsening S in steel as MnS and improving grain growth during strain relief annealing, so the lower limit is set to 0.1 νt%. The upper limit is set at 0.5 wt% from a cost perspective.

FDPは打抜き性の改善に効果があるが、コスト面より
0.2wt%を上限とする。
Although FDP is effective in improving punching properties, the upper limit is set at 0.2 wt% due to cost considerations.

SOSは磁気特性に存寄な元素であり、MnSの析出総
量を規制するため0.01wt%未満に限定する。
SOS is an element that is essential to magnetic properties, and is limited to less than 0.01 wt% in order to control the total amount of MnS precipitation.

AN : AIIはSiと同様に鉄損を減少させる効果
が大きいが、0.5vL%を越えると磁束密度の低下が
著しいため、0.5vL%以下とする。
AN: Like Si, AII has a great effect of reducing iron loss, but if it exceeds 0.5 vL%, the magnetic flux density decreases significantly, so it is set to 0.5 vL% or less.

なお、Sn、Sb、B等の微量元素の添加は、打抜き性
への影響が小さいため、本発明では必須ではないが、磁
気特性向上のために添加することは何らさしつかえない
Note that the addition of trace elements such as Sn, Sb, and B has little effect on punching properties and is therefore not essential in the present invention, but may be added to improve magnetic properties.

〔実 施 例〕〔Example〕

第2表に示す三種類の鋼のスラブを、1200℃加熱、
850℃仕上の条件で熱間圧延し、引き続き酸洗、冷間
圧延を行い、板厚0.5龍の鋼板とした。
The three types of steel slabs shown in Table 2 were heated to 1200°C.
Hot rolling was carried out under finishing conditions of 850°C, followed by pickling and cold rolling to obtain a steel plate with a thickness of 0.5 mm.

これらについて仕上焼鈍温度を変えることにより再結晶
率を変えた鋼板について、−ガロ打抜いた後のパリ高さ
により打抜き性の評価を行い、また歪取り焼鈍後の磁気
特性も調査した。第3表に示した結果から明らかなよう
に、再結晶率が50%〜80%の本発明鋼においては、
いずれもパリ高さが非常に低減しており、良好な打抜き
性が得られていることが分かる。一方、各発明鋼とも、
歪取り焼鈍後の磁気特性は再結晶率にかかわらずいずれ
も同レベルであり、未再結晶組織を残しても歪取り焼鈍
時の粒成長性は全く問題なく、安定した磁気特性が得ら
れる。本発明範囲以外の再結晶率材では、いずれもパリ
高さが高く良好な打抜き性は得られていない。
For these steel sheets whose recrystallization rate was changed by changing the finish annealing temperature, the punchability was evaluated by the par height after -Gallo punching, and the magnetic properties after strain relief annealing were also investigated. As is clear from the results shown in Table 3, in the steel of the present invention with a recrystallization rate of 50% to 80%,
It can be seen that the par height was extremely reduced in all cases, and good punching performance was obtained. On the other hand, each invented steel
The magnetic properties after strain relief annealing are at the same level regardless of the recrystallization rate, and even if an unrecrystallized structure remains, there is no problem with grain growth during strain relief annealing, and stable magnetic properties can be obtained. All of the materials with recrystallization rates other than the range of the present invention had a high par height and good punchability was not obtained.

〔効  果〕〔effect〕

以上のように本発明によれば、セミプロセス無方向性電
磁鋼板において、合金元素の多量添加や、調圧等の工程
の追加といったコストアップを招くことなく、また、C
による磁気時効や、調圧による平坦度の悪化など商品特
性が劣化することもなく、経済的に極めて優れた打抜き
性を有する鋼板を提供できる。
As described above, according to the present invention, in a semi-processed non-oriented electrical steel sheet, C
There is no deterioration in product properties such as magnetic aging caused by pressure adjustment or deterioration of flatness due to pressure adjustment, and it is possible to provide a steel sheet with extremely excellent punchability economically.

第1表 第 表 4、Table 1 No. table 4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板硬度とパリ高さの関係を示すグラフ、 第2図は鋼板の再結晶率とパリ高さの関係を示すグラフ
である。 第2図 再 結 晶 率 (CA)
Fig. 1 is a graph showing the relationship between steel sheet hardness and paris height, and Fig. 2 is a graph showing the relationship between steel plate recrystallization rate and paris height. Figure 2 Recrystallization rate (CA)

Claims (1)

【特許請求の範囲】[Claims] C:0.005wt%以下、Si:1.0wt%以下、
Mn:0.1〜0.5wt%、P:0.2wt%以下、
S:0.01wt%未満、Al:0.5wt%以下、残
部Feおよび不可避的不純物からなり、最終仕上焼鈍後
の再結晶率αが50≦α≦80(%)であることを特徴
とする打抜性に優れたセミプロセス無方向性電磁鋼板。
C: 0.005wt% or less, Si: 1.0wt% or less,
Mn: 0.1 to 0.5 wt%, P: 0.2 wt% or less,
It consists of S: less than 0.01 wt%, Al: 0.5 wt% or less, the remainder Fe and unavoidable impurities, and the recrystallization rate α after final annealing is 50≦α≦80 (%). A semi-processed non-oriented electrical steel sheet with excellent punchability.
JP9844989A 1989-04-18 1989-04-18 Semiprocess nonoriented silicon steel sheet having excellent blanking properties Pending JPH02277747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9844989A JPH02277747A (en) 1989-04-18 1989-04-18 Semiprocess nonoriented silicon steel sheet having excellent blanking properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9844989A JPH02277747A (en) 1989-04-18 1989-04-18 Semiprocess nonoriented silicon steel sheet having excellent blanking properties

Publications (1)

Publication Number Publication Date
JPH02277747A true JPH02277747A (en) 1990-11-14

Family

ID=14220038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9844989A Pending JPH02277747A (en) 1989-04-18 1989-04-18 Semiprocess nonoriented silicon steel sheet having excellent blanking properties

Country Status (1)

Country Link
JP (1) JPH02277747A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104430A (en) * 1982-12-03 1984-06-16 Kawasaki Steel Corp Preparation of high magnetic permeability semi-process electric steel strip excellent in blanking property
JPS60106915A (en) * 1983-11-15 1985-06-12 Kawasaki Steel Corp Production of semiprocess electrical steel sheet having excellent punchability
JPS62274047A (en) * 1986-05-21 1987-11-28 Nippon Kokan Kk <Nkk> High-silicon iron sheet excellent in formability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104430A (en) * 1982-12-03 1984-06-16 Kawasaki Steel Corp Preparation of high magnetic permeability semi-process electric steel strip excellent in blanking property
JPS60106915A (en) * 1983-11-15 1985-06-12 Kawasaki Steel Corp Production of semiprocess electrical steel sheet having excellent punchability
JPS62274047A (en) * 1986-05-21 1987-11-28 Nippon Kokan Kk <Nkk> High-silicon iron sheet excellent in formability

Similar Documents

Publication Publication Date Title
CN113366124A (en) Non-oriented electromagnetic steel sheet and method for producing same
KR20030011794A (en) Method for producing non grain-oriented electric sheets
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JPH03229820A (en) Production of nonoriented silicon steel sheet
TW202311537A (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH02277747A (en) Semiprocess nonoriented silicon steel sheet having excellent blanking properties
EP0422223A1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristics
JPH09283316A (en) Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
CN114616353B (en) Non-oriented electromagnetic steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0533063A (en) Production of semiprocessed electrical steel sheet excellent in blankability
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP3845871B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3846019B2 (en) Method for producing non-oriented electrical steel sheet
JPH0580527B2 (en)
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0629461B2 (en) Method for producing silicon steel sheet having good magnetic properties
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2001323352A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2718403B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
TW202311538A (en) Non-oriented electromagnetic steel sheet and production method therefor, and motor core
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
TW202307229A (en) Non-oriented electromagnetic steel sheet and method for manufacturing same