JP2507723B2 - Copper wire for signal transmission - Google Patents

Copper wire for signal transmission

Info

Publication number
JP2507723B2
JP2507723B2 JP580687A JP580687A JP2507723B2 JP 2507723 B2 JP2507723 B2 JP 2507723B2 JP 580687 A JP580687 A JP 580687A JP 580687 A JP580687 A JP 580687A JP 2507723 B2 JP2507723 B2 JP 2507723B2
Authority
JP
Japan
Prior art keywords
copper wire
signal transmission
ofc
conductivity
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP580687A
Other languages
Japanese (ja)
Other versions
JPS63174217A (en
Inventor
正秀 篠原
秀明 工藤
耕作 中野
明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP580687A priority Critical patent/JP2507723B2/en
Publication of JPS63174217A publication Critical patent/JPS63174217A/en
Application granted granted Critical
Publication of JP2507723B2 publication Critical patent/JP2507723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオーディオ機器,ビデオ機器又はコンピュー
ター等の機器間配線や機器内配線等に用いる信号伝送用
銅線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a copper wire for signal transmission, which is used for inter-device wiring such as audio equipment, video equipment, computers and the like, wiring inside equipment, and the like.

〔従来の技術〕[Conventional technology]

従来信号伝送用銅線としては、タフピッチ(TPC)軟
銅線が使用され、更に高級なものには無酸素銅(OFC)
軟銅線が使用されてきた。これ等は何れもSCR法やディ
ップフォーミング法等の連続鋳造圧延後、伸線加工する
もので、熱間加工を経るため、微細な再結晶を有してお
り、優れた伝送効率を得ることは難しい。一般に銅線の
信号伝送が電線の長手方向、即ち信号伝送方向に存在す
る結晶粒界の数や、そこに集積するCu2O,硫化物等の不
純物の層に大きく依存する。その理由は結晶粒界やそこ
に集積した不純物があたかも微小容量を持つコンデンサ
ーとして働き、静電容量や検波作用を持ち込むためと考
えられている。つまり伝導効率を改善するためには、酸
素量を低くすると共に結晶粒の数を少なくすることが効
果的であり、最近一部高級オーディオ用としてOFC銅線
の結晶粒を熱処理により粗大化させた後、伸線を行なっ
て結晶粒を長手方向に配向させた硬銅線が特開昭60-380
8号公報により提案されている。
Conventionally, tough pitch (TPC) annealed copper wire is used as the copper wire for signal transmission, and oxygen-free copper (OFC) is used for higher-grade ones.
Annealed copper wire has been used. All of these are drawn and rolled after continuous casting and rolling such as SCR method and dip forming method.Since they undergo hot working, they have fine recrystallization and it is not possible to obtain excellent transmission efficiency. difficult. Generally, the signal transmission of a copper wire largely depends on the number of crystal grain boundaries existing in the longitudinal direction of the electric wire, that is, the signal transmission direction, and the layer of impurities such as Cu 2 O and sulfide accumulated there. The reason for this is thought to be that the grain boundaries and the impurities accumulated there act as if they were capacitors with a very small capacitance, bringing in capacitance and detection. In other words, in order to improve the conduction efficiency, it is effective to reduce the amount of oxygen and the number of crystal grains, and recently the crystal grains of OFC copper wire were coarsened by heat treatment for some high-grade audio. After that, a hard copper wire in which crystal grains are oriented in the longitudinal direction by drawing is disclosed in JP-A-60-380.
No. 8 has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら結晶粒を巨大化させているとはいえ、技
術的には線径の1/5〜1/3程度の粒径、例えば直径1.6mm
の線では0.3〜5mm程度の粒径にするのが限界であり、依
然として多結晶体であることには変りはなく、また冷間
で線引により縮径しているので、銅線中の転移密度,原
子空孔等の格子欠陥が増えている。このような格子欠陥
は結晶粒界やそこに集積する不純物と同様の働きをして
伝送効率を低下させる。
However, although it is enlarging the crystal grains, technically, the diameter is about 1/5 to 1/3 of the wire diameter, for example 1.6 mm in diameter.
In the wire of No. 3, the grain size is limited to 0.3-5 mm, and it is still a polycrystal, and since the diameter is reduced by drawing in the cold, the transition in the copper wire Lattice defects such as density and atomic vacancies are increasing. Such lattice defects act similarly to the crystal grain boundaries and impurities accumulated there, and reduce the transmission efficiency.

また従来のTPC銅線は冷却鋳型を用いて鋳造した鋳塊
を熱間圧延後伸線したもので、表面及び内部に無数の鋳
塊欠陥を有している。即ち表面には鋳型と鋳塊のこすれ
により生じた割れ、肌荒れ等の欠陥が存在し、また内部
には凝固収縮の際に生じた割れ、ブロホール等の欠陥が
残り易い。このような内部欠陥が好ましくないのは前述
の通りであり、表面欠陥についても線材の表面付近を流
れる高周波の信号電流に好ましくない。また撚線として
使用する場合は、表面欠陥のある素線同志が接触して複
雑な回路が形成され、信号の位相差や減衰の原因とな
る。
Further, the conventional TPC copper wire is an ingot cast by using a cooling mold and is drawn after hot rolling, and has innumerable ingot defects on the surface and inside. That is, the surface has defects such as cracks and surface roughness caused by rubbing between the mold and the ingot, and the defects such as cracks and blowholes generated during solidification shrinkage tend to remain inside. As described above, such an internal defect is not preferable, and a surface defect is not preferable for a high frequency signal current flowing near the surface of the wire. When used as a twisted wire, the wires having surface defects come into contact with each other to form a complicated circuit, which causes phase difference and attenuation of signals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、OFC銅線の信号
伝送特性はその製造法及び加工法に強い関連性があるこ
とを知見し、更に検討の結果信号伝送特性の優れた信号
伝送用銅線を開発したもので、無酸素銅(OFC)の単結
晶組織又は長手方向の一方向凝固組織を有し、かつ導電
率が100%以上又は引張強さが20kg/mm2以下としたこと
を特徴とするものである。
As a result of various studies in view of this, the present invention has found that the signal transmission characteristics of the OFC copper wire are strongly related to the manufacturing method and the processing method thereof, and further studies have revealed that the signal transmission copper having excellent signal transmission characteristics. We have developed a wire that has a single crystal structure of oxygen free copper (OFC) or a unidirectional solidification structure in the longitudinal direction, and has an electrical conductivity of 100% or more or a tensile strength of 20 kg / mm 2 or less. It is a feature.

即ち本発明はOFCの単結晶組織又は長手方向の一方向
凝固組織を有する線棒状鋳塊又はこれに僅かの伸線等に
よる塑性加工を加えて信号伝送用銅線とするもので、そ
の導電率が100%IACS以上又は引張強さが20kg/mm2以下
であれば極めて優れた信号伝送特性を有するものであ
る。
That is, the present invention is a wire rod-shaped ingot having a single crystal structure of OFC or a unidirectionally solidified structure in the longitudinal direction or a plastic wire by a slight drawing or the like to make a copper wire for signal transmission, and its conductivity Is 100% IACS or more or the tensile strength is 20 kg / mm 2 or less, it has extremely excellent signal transmission characteristics.

尚OFC単結晶又は長手方向の一方向凝固組織を有する
銅線を得る方法としてはOFCの融点以上に加熱した鋳型
を用いる加熱鋳型連続鋳造法,チョコラルスキー法を応
用した鋳塊無回転鋳造法又はブリッジマン法を用いて鋳
造するか又は得られた鋳塊に僅かの塑性加工を加えれば
よいが、鋳塊品質や生産性を考慮すれば加熱鋳型鋳造方
が最も望ましい。
As a method for obtaining an OFC single crystal or a copper wire having a unidirectionally solidified structure in the longitudinal direction, a hot mold continuous casting method using a mold heated above the melting point of OFC, an ingot non-rotating casting method applying the Czochralski method, or The bridgman method may be used for casting, or slight plastic working may be applied to the obtained ingot, but the hot mold casting method is most preferable in consideration of ingot quality and productivity.

〔作用〕[Action]

OFCの単結晶組織又は長手方向の一方向凝固組織の銅
線を信号伝送用とするのは、従来材が何れも銅線とする
のに熱間又は冷間加工を十分に受けているが、この加工
歪が信号伝送特性を低下させる原因となっており、これ
を排除するため鋳塊又は鋳塊に僅かの塑性加工を加えて
銅線とするものである。また銅線の導電率を100%IACS
以上又は引張強さを20kg/mm2以下としたのは、OFC銅線
をそのまま導体として用いる場合の信号伝送特性は導電
率の値が100%IACSを境にし、また引張強さの値が20kg/
mm2を境にして著しく変化するためである。即ち導電率
が100%IACS以上又は引張強さが20kg/mm2以下で信号の
減衰量が極めて小さくなるためである。
The OFC single crystal structure or the copper wire of the longitudinal direction unidirectionally solidified structure is used for signal transmission, although the conventional material has undergone sufficient hot or cold working to make it a copper wire. This processing strain causes deterioration of the signal transmission characteristics, and in order to eliminate this, the ingot or the ingot is slightly plastically processed to form a copper wire. In addition, the conductivity of the copper wire is 100% IACS
The above or the tensile strength of 20 kg / mm 2 or less means that the signal transmission characteristics when the OFC copper wire is used as a conductor as it is is that the value of conductivity is 100% IACS and the value of tensile strength is 20 kg. /
This is because the value changes remarkably at mm 2 . That is, the signal attenuation becomes extremely small when the conductivity is 100% IACS or more or the tensile strength is 20 kg / mm 2 or less.

OFC銅線の導電率の値は、通常鋳塊の比重値と正の相
関性を持っている。何故ならOFC銅線中には例えばOFCと
言えども僅かながらの酸素や水素ガスを含有するため、
凝固条件の不適切によってはピンホール等の微小な欠陥
が存在する。従って微小な欠陥が多いときには比重値が
低下し、導電率も低下する。通常水冷鋳型を用いて製造
されたOFC鋳塊の導電率は品質良好なもので99.8%IACS
(但し比重値8.935)程度であり、100%IACS以上の電導
率を得ようとするならば、長手方向の一方向凝固組織と
する必要がある。その理由は一方向凝固組織において
は、電流の進行方向にその進行を防げる粒界がなく、ま
た鋳造時においては酸素,水素ガス,その他の不純物が
凝固界面から溶湯中へ排出され、それによる欠陥が発生
し難いためである。
The conductivity value of OFC copper wire usually has a positive correlation with the specific gravity value of the ingot. Because OFC copper wire contains a small amount of oxygen and hydrogen gas even if it is OFC, for example.
There are minute defects such as pinholes depending on the inappropriate solidification conditions. Therefore, when there are many minute defects, the specific gravity value decreases and the conductivity also decreases. The conductivity of the OFC ingot produced using a normal water-cooled mold is 99.8% IACS with good quality.
(However, the specific gravity value is about 8.935), and in order to obtain a conductivity of 100% IACS or more, it is necessary to form a unidirectionally solidified structure in the longitudinal direction. The reason is that in a unidirectionally solidified structure, there is no grain boundary that prevents the current from flowing in the direction of current flow, and during casting, oxygen, hydrogen gas, and other impurities are discharged from the solidification interface into the molten metal, causing defects. Is less likely to occur.

また長手方向に一方向凝固させたOFC銅線の信号伝送
特性、特に信号の減衰量の増加をきたす要因は一様に銅
線の強度アップの要因となっており、銅線の強度の低い
ものを用いれば信号伝送特性に極めて良好なものとな
る。銅線の強度を高める要因としては、銅線の歪及び不
純物元素が主な要因であり、銅線の歪及び不純物元素を
極力少なくして実際にOFCの一方向凝固組織を有する鋳
塊又はこれに僅かな塑性加工を加えるも導電率を100%I
ACS以上、引張強さを20kg/mm2以下とする。
Also, the signal transmission characteristics of OFC copper wire unidirectionally solidified in the longitudinal direction, especially the factors that increase the amount of signal attenuation, are factors that uniformly increase the strength of the copper wire. Is used, the signal transmission characteristic becomes extremely good. As a factor that enhances the strength of the copper wire, the strain of the copper wire and the impurity element are the main factors. Conductivity is 100% I even if a slight plastic working is applied to
The tensile strength should be ACS or more and 20kg / mm 2 or less.

実施例1 OFCを溶解し、加熱鋳型連続鋳造法により酸素量5ppm
の直径1mmの一方向凝固鋳塊を得た。即ち第1図に示す
ように鋳造炉(1)の側壁に内径1mm,外径30mmの黒鉛鋳
型(2)を取付け、鋳型(2)の内面側にカンタル線を
巻付けた発熱装置(3)により鋳型(2)の内面をOFC
の融点以上に加熱する。鋳造炉(1)内にOFCの溶湯
(4)を導入し、鋳型(2)によりピンチロール(6)
で引出す鋳塊(5)を鋳型(2)の出口近傍に設けた水
冷装置(7)により冷却し、鋳型(2)内で鋳塊(5)
と接する溶湯を連続的に凝固させた。
Example 1 OFC was dissolved, and the amount of oxygen was 5 ppm by the continuous casting method using a heating mold.
A unidirectionally solidified ingot having a diameter of 1 mm was obtained. That is, as shown in FIG. 1, a graphite mold (2) having an inner diameter of 1 mm and an outer diameter of 30 mm was attached to the side wall of the casting furnace (1), and a heating device (3) in which a kanthal wire was wound around the inner surface of the mold (2). The inner surface of the mold (2) by OFC
Heat above the melting point of. The molten OFC (4) is introduced into the casting furnace (1), and the pinch roll (6) is cast by the mold (2).
The ingot (5) drawn out by is cooled by a water cooling device (7) provided in the vicinity of the outlet of the mold (2), and the ingot (5) is placed in the mold (2).
The molten metal in contact with was solidified continuously.

このようにして鋳造速度を50mm/minから50mm/minの間
隔で600mm/minまで変化させ、得られた鋳塊からなる銅
線について、導電率と引張強さを測定し、鋳造速度と導
電率の関係を第2図に、鋳造速度と引張強さの関係を第
3図に示す。図から判るように鋳造速度が速いほど導電
率は減少し、引張強さは上昇する。これは鋳造速度が速
いほど鋳塊が急冷されるので内部に熱歪が多く残ること
と、溶湯中の不純物元素が凝固界面から溶湯中に拡散す
る時間的余裕がなく、強制的に固溶されるためである。
従ってこれを減少させるには鋳造速度をできるだけ小さ
くすればよい。
In this way, the casting speed was changed from 50 mm / min to 600 mm / min at intervals of 50 mm / min, for the copper wire made of the obtained ingot, the conductivity and the tensile strength were measured, and the casting speed and the conductivity were measured. 2 and the relationship between the casting speed and the tensile strength are shown in FIG. As can be seen from the figure, the higher the casting speed, the lower the conductivity and the higher the tensile strength. This is because as the casting speed is faster, the ingot is rapidly cooled, so that a large amount of thermal strain remains inside, and there is no time to allow the impurity elements in the molten metal to diffuse from the solidification interface into the molten metal, forcing it to form a solid solution. This is because
Therefore, in order to reduce this, the casting speed should be made as small as possible.

次に得られた鋳塊について、信号減衰特性を調べ、導
電率と信号減衰量の関係を第4図に、引張強さと信号減
衰量の関係を第5図に示す。図から判るように信号減衰
量は導電率と引張強さと相関性があり、導電率が高い
程、また引張強さが低いほど信号減衰量が小さくなり、
特に導電率100%IACS以上又は引張強さ20kg/mm2以下と
した本発明信号伝送用銅線は信号減衰量が小さいことが
判る。
The signal attenuation characteristics of the obtained ingot were examined, and the relationship between conductivity and signal attenuation is shown in FIG. 4, and the relationship between tensile strength and signal attenuation is shown in FIG. As can be seen from the figure, the signal attenuation has a correlation with the conductivity and the tensile strength.The higher the conductivity and the lower the tensile strength, the smaller the signal attenuation.
In particular, it can be seen that the signal transmission copper wire of the present invention having a conductivity of 100% IACS or more or a tensile strength of 20 kg / mm 2 or less has a small signal attenuation amount.

実施例2 OFCを溶解し、チョコラルスキー法を応用した鋳型無
回転鋳造法により酸素量3ppmの直径1mmの一方向凝固鋳
塊を得た。即ち第5図に示すようにOFCの溶湯(4)を
保持する鋳造炉(1)の炉蓋(8)に穴を設け、該穴よ
り冷却装置(7′)を降下させ溶湯(1)の面上にセッ
トした後、上方よりOFC銅棒(5′)を冷却装置
(7′)の中心部に位置するように挿入し、湯面と接触
させる。この状態で冷却装置(7′)からN2ガスを吹付
けて銅棒(5′)を冷却しながら回転式エアーチャック
(9)により引上げ、−方向凝固組織のOFC鋳塊(5)
を得た。尚図において(10)は断熱材を示す。
Example 2 OFC was dissolved and a directionally solidified ingot having a diameter of 1 mm and an oxygen amount of 3 ppm was obtained by a mold non-rotating casting method to which the Czochralski method was applied. That is, as shown in FIG. 5, a hole is provided in the furnace lid (8) of the casting furnace (1) for holding the molten metal (4) of OFC, and the cooling device (7 ') is lowered from the hole to remove the molten metal (1). After being set on the surface, the OFC copper rod (5 ') is inserted from above so as to be located at the center of the cooling device (7') and brought into contact with the molten metal surface. In this state, while blowing the N 2 gas from the cooling device (7 ′) to cool the copper rod (5 ′), the copper rod (5 ′) is pulled up by the rotary air chuck (9), and the OFC ingot (5) having a −direction solidified structure
I got In the figure, (10) indicates a heat insulating material.

このようにして鋳塊引上げ速度(鋳造速度)を50mm/m
inから50mm/minの間隔で60mm/minまで変化させ、得られ
た鋳塊について導電率,引張強さ及び信号減衰量を測定
した。その結果実施例1とほとんど同様の結果が得られ
た。
In this way, the ingot pulling speed (casting speed) is 50 mm / m
The electrical conductivity, tensile strength, and signal attenuation of the obtained ingot were measured by changing from in to 60 mm / min at an interval of 50 mm / min. As a result, almost the same result as in Example 1 was obtained.

実施例3 実施例1及び実施例2において鋳造速度を200mm/min
として鋳造した鋳塊について、加工率0%から1%おき
に伸線加工を加え、引張強さ,導電率及び信号減衰量を
測定した。その結果を第1表に示す。
Example 3 In Example 1 and Example 2, the casting speed was 200 mm / min.
With respect to the ingots cast as above, wire drawing was applied at a working rate of 0% to every 1%, and the tensile strength, the electrical conductivity, and the signal attenuation amount were measured. The results are shown in Table 1.

第1表から明らかなようにOFCからなる単結晶又は長
手方向の一方向凝固組織を有する鋳塊は、これに軽い加
工を加えても導電率が100%IACS以上又は引張強さが20k
g/mm2以下であれば優れた信号伝送特性を示すことが判
る。
As is clear from Table 1, OFC single crystals or ingots with a unidirectional solidification structure in the longitudinal direction have a conductivity of 100% IACS or more or a tensile strength of 20k even if light processing is applied to them.
It can be seen that excellent signal transmission characteristics are exhibited at g / mm 2 or less.

〔発明の効果〕〔The invention's effect〕

このように本発明銅線は信号伝送特性が優れており、
オーディオ用,マイクロホンコード等の音響用としては
勿論のことビデオ,CTスキャン,MRI等の映像用、更には
大型コンピューターの機器間及び内部配線用、その他信
号伝送を目的としたケーブル導体に使用し、その性能を
向上することができる顕著な効果を奏するものである。
Thus, the copper wire of the present invention has excellent signal transmission characteristics,
It is used not only for audio, for audio such as microphone code, but also for video such as video, CT scan, MRI, etc., as well as for internal wiring between devices of large computers, and other cable conductors for the purpose of signal transmission, It has a remarkable effect that the performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は加熱鋳型連続鋳造法の一例を示す説明図、第2
図はOFCからなる単結晶又は一方向凝固組織を有する銅
線の導電率と鋳造速度の関係を示す説明図、第3図は同
引張強さと鋳造速度の関係を示す説明図、第4図は同信
号減衰量と導電率の関係を示す説明図、第5図は同信号
減衰量と引張強さの関係を示す説明図、第6図は鋳型無
回転鋳造法の一例を示す説明図である。 1.鋳造炉 2.鋳型 3.加熱装置 4.溶湯 5.鋳塊 5′.銅棒 6.ピンチロール 7,7′.冷却装置 8.炉蓋 9.回転式エアーチャック 10.断熱材
FIG. 1 is an explanatory view showing an example of a heating mold continuous casting method, and FIG.
FIG. 3 is an explanatory view showing the relationship between the conductivity and the casting speed of a single wire made of OFC or a copper wire having a unidirectionally solidified structure, FIG. 3 is an explanatory view showing the relationship between the tensile strength and the casting speed, and FIG. FIG. 5 is an explanatory diagram showing the relationship between the signal attenuation amount and conductivity, FIG. 5 is an explanatory diagram showing the relationship between the signal attenuation amount and tensile strength, and FIG. 6 is an explanatory diagram showing an example of the mold non-rotating casting method. . 1. Casting furnace 2. Mold 3. Heating device 4. Molten metal 5. Ingot 5 '. Copper rod 6. Pinch roll 7,7 '. Cooling device 8. Furnace lid 9. Rotary air chuck 10. Insulation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 明 日光市清滝町500番地 古河電気工業株 式会社日光電気精銅所内 (56)参考文献 特開 昭61−163505(JP,A) 特開 昭62−286650(JP,A) 特開 昭62−136707(JP,A) 特開 昭63−144849(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Yamazaki 500 Kiyotaki-cho, Nikko-shi Furukawa Electric Co., Ltd. Nikko Denki Copper Works (56) References JP-A-61-163505 (JP, A) JP-A 62-286650 (JP, A) JP 62-136707 (JP, A) JP 63-144849 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無酸素銅の単結晶組織又は長手方向の一方
向凝固組織を有し、かつ導電率が100%IACS以上又は引
張強さが20kg/mm2以下としたことを特徴とする信号伝送
用銅線。
1. A signal having a single crystal structure of oxygen-free copper or a unidirectionally solidified structure in the longitudinal direction and having a conductivity of 100% IACS or more or a tensile strength of 20 kg / mm 2 or less. Copper wire for transmission.
JP580687A 1987-01-13 1987-01-13 Copper wire for signal transmission Expired - Lifetime JP2507723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP580687A JP2507723B2 (en) 1987-01-13 1987-01-13 Copper wire for signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP580687A JP2507723B2 (en) 1987-01-13 1987-01-13 Copper wire for signal transmission

Publications (2)

Publication Number Publication Date
JPS63174217A JPS63174217A (en) 1988-07-18
JP2507723B2 true JP2507723B2 (en) 1996-06-19

Family

ID=11621324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP580687A Expired - Lifetime JP2507723B2 (en) 1987-01-13 1987-01-13 Copper wire for signal transmission

Country Status (1)

Country Link
JP (1) JP2507723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203126A (en) * 2014-04-11 2015-11-16 Fcm株式会社 Conductor for acoustic use and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263548A (en) * 1989-04-05 1990-10-26 Furukawa Electric Co Ltd:The Method for continuously casting copper single crystal cast billet
JP4691740B1 (en) 2010-10-13 2011-06-01 オーディオ・ラボ有限会社 Method for producing metal material and metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203126A (en) * 2014-04-11 2015-11-16 Fcm株式会社 Conductor for acoustic use and method for producing the same

Also Published As

Publication number Publication date
JPS63174217A (en) 1988-07-18

Similar Documents

Publication Publication Date Title
EP1794353B1 (en) Single crystal wire and manufacturing method of the same
JP2507723B2 (en) Copper wire for signal transmission
JPH051102B2 (en)
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JPH08277447A (en) Production of conductive aluminum alloy wire
JPS6143425B2 (en)
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JPS62287508A (en) Copper wire for signal transmission
JPH0313935B2 (en)
JP2915596B2 (en) Production method of extra fine wire
JPH049253A (en) Production of copper alloy
JP2996379B2 (en) Method for producing copper alloy rod for conductive wire rolled by cold rolling
KR102572477B1 (en) Rod of oxygen free copper or oxygen free copper alloy having an excellent flexibility
JPH0249169B2 (en)
JPS6355806A (en) Conductor for video cable
JP3137779B2 (en) Continuous casting method of Cu-Ni-Sn alloy
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JPH0112579B2 (en)
JPS63231802A (en) Signal transmitting conductor
JPH05131B2 (en)
JPS62287507A (en) Copper wire for signal transmission
JPS63314710A (en) Signal transmission cable
JPH059184B2 (en)
JPH0790334B2 (en) Production method for rough wire
JPS6372077A (en) Pin connector material