JP6001420B2 - Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method - Google Patents

Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method Download PDF

Info

Publication number
JP6001420B2
JP6001420B2 JP2012245834A JP2012245834A JP6001420B2 JP 6001420 B2 JP6001420 B2 JP 6001420B2 JP 2012245834 A JP2012245834 A JP 2012245834A JP 2012245834 A JP2012245834 A JP 2012245834A JP 6001420 B2 JP6001420 B2 JP 6001420B2
Authority
JP
Japan
Prior art keywords
alloy body
alloy
area
wire drawing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012245834A
Other languages
Japanese (ja)
Other versions
JP2014095107A (en
Inventor
亮 坂巻
亮 坂巻
圭二 深浦
圭二 深浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012245834A priority Critical patent/JP6001420B2/en
Priority to CN201310525185.3A priority patent/CN103805801B/en
Publication of JP2014095107A publication Critical patent/JP2014095107A/en
Application granted granted Critical
Publication of JP6001420B2 publication Critical patent/JP6001420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、Cu−Mg合金体、Cu−Mg合金体の製造方法および伸線材の製造方法に関する。
The present invention relates to a Cu-Mg alloy body, a method for producing a Cu-Mg alloy body, and a method for producing a wire drawing material.

Cu−Mg合金体は、高強度かつ高導電率を有するため、例えばトロリ線などの架空電線に用いる伸線材に利用されている。   Since the Cu-Mg alloy body has high strength and high electrical conductivity, it is used as a wire drawing material used for an overhead electric wire such as a trolley wire.

Cu−Mg合金体は一般には、連続鋳造法により製造される。例えば下記特許文献1には、Cu合金溶湯から鋳造ダイスを通し連続的に引上げを行うことにより製造される鋳造材及び、この鋳造材を伸線加工することにより製造される伸線材が開示されている。また、下記特許文献1においては、伸線加工がなされた際に、得られる伸線材の表面に割れが発生するのを防ぐため、伸線加工の前に鋳造材の表面を削る皮剥き加工をすることも開示されている。   The Cu—Mg alloy body is generally manufactured by a continuous casting method. For example, Patent Document 1 below discloses a cast material manufactured by continuously pulling a cast alloy from a Cu alloy molten metal and a wire drawing material manufactured by drawing the cast material. Yes. Moreover, in the following patent document 1, in order to prevent the surface of the resulting wire drawing material from being cracked when the wire drawing is performed, a skinning process for cutting the surface of the cast material before the wire drawing is performed. It is also disclosed to do.

特開2010−201505号公報JP 2010-201505 A

しかし、上記特許文献1に記載の鋳造材は、伸線加工の前に鋳造材の表面を削る皮剥き加工を必要とするため、伸線材の生産性に関して改善の余地があった。   However, since the cast material described in Patent Document 1 requires a stripping process for scraping the surface of the cast material before the wire drawing, there is room for improvement in the productivity of the wire drawing material.

そこで、伸線加工の前に皮剥き加工を行わなくても、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制できるCu−Mg合金体が望まれていた。   Therefore, there is a demand for a Cu-Mg alloy body that can sufficiently suppress the occurrence of cracks on the surface of the drawn wire material when the wire drawing process is performed without performing a stripping process before the wire drawing process. It was.

本発明は上記事情に鑑みてなされたものであり、十分な強度を有し、伸線加工して得られる伸線材の表面における割れの発生を十分に抑制することができるCu−Mg合金体、Cu−Mg合金体の製造方法および伸線材の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, has a sufficient strength, Cu-Mg alloy body that can sufficiently suppress the occurrence of cracks on the surface of the wire drawing material obtained by wire drawing, It aims at providing the manufacturing method of a Cu-Mg alloy body, and the manufacturing method of a wire drawing material.

本発明者らは、鋳造によって製造したCu−Mg合金体を伸線加工する際に、得られる伸線材の表面に割れが発生する原因を突き止めるべく鋭意研究を行った。   The inventors of the present invention have intensively studied to find out the cause of the occurrence of cracks on the surface of the obtained wire drawing material when the Cu—Mg alloy body manufactured by casting is drawn.

その結果、本発明者らは、伸線材の表面に割れが発生する原因が、鋳造されたCu−Mg合金体の表層部において偏析しているMgにあることを突き止めた。   As a result, the present inventors have found that the cause of cracks on the surface of the wire drawing material is Mg segregated in the surface layer portion of the cast Cu—Mg alloy body.

そこで、本発明者らはさらに鋭意研究を重ねた結果、Cu−Mg合金体におけるMgの含有率を特定の範囲に調整し、Cu−Mg合金体の表層部に占めるMgの偏析物の割合を特定の範囲に調整することで、上記課題を解決できることを見出した。   Therefore, as a result of further earnest studies, the present inventors adjusted the Mg content in the Cu-Mg alloy body to a specific range, and determined the ratio of Mg segregated matter in the surface layer portion of the Cu-Mg alloy body. It has been found that the above-mentioned problems can be solved by adjusting to a specific range.

さらに本発明者らは、Cu−Mg合金体の表層部に占めるMgの偏析物の割合が特定の範囲にあるCu−Mg合金体を得るには、Cu−Mg合金体を鋳造によって製造する際に、CuおよびMgを含む原料を溶解してなる合金溶湯の冷却速度を特定の範囲に調整することが有効であることを見出し、本発明を完成するに至った。   Furthermore, the present inventors obtain a Cu-Mg alloy body in which the ratio of Mg segregated matter in the surface layer portion of the Cu-Mg alloy body is in a specific range, when the Cu-Mg alloy body is produced by casting. In addition, it has been found that it is effective to adjust the cooling rate of the molten alloy obtained by melting the raw material containing Cu and Mg within a specific range, and the present invention has been completed.

すなわち本発明は、Cu−Mg合金からなるCu−Mg合金体であって、前記Cu−Mg合金体中のMgの含有率が0.3〜1.0質量%であり、前記Cu−Mg合金体の断面において、表面から深さ30μmまでの表層部に占めるMgの偏析物の面積の割合である第1偏析Mg占有率が3.0面積%以下であるCu−Mg合金体である。
That is, the present invention is a Cu-Mg alloy body made of a Cu-Mg alloy, wherein the content of Mg in the Cu-Mg alloy body is 0.3 to 1.0 mass%, and the Cu-Mg alloy In the cross section of the body, the first segregated Mg occupancy ratio, which is a ratio of the area of Mg segregated matter in the surface layer portion from the surface to a depth of 30 μm, is a Cu—Mg alloy body of 3.0 area% or less.

本発明のCu−Mg合金体によれば、十分な強度を有し、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができる。
また、本発明は、Cu及びMgからなる原料を溶解させ、合金溶湯を得る溶解工程と、前記合金溶湯を、鋳造ダイスを通して冷却しながら連続的に引き取り、Cu−Mg合金体を得る鋳造工程と、を含み、前記鋳造工程における前記合金溶湯の冷却速度が250K/分以上400K/分以下であり、前記Cu−Mg合金体中のMgの含有率が0.3〜1.0質量%であり、前記Cu−Mg合金体の断面において、表面から深さ30μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第1偏析Mg占有率が3.0面積%以下であるCu−Mg合金体の製造方法である。
本発明のCu−Mg合金体の製造方法によれば、十分な強度を有し、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができるCu−Mg合金体を製造することができる。
According to the Cu-Mg alloy body of the present invention, it has sufficient strength and can sufficiently suppress the occurrence of cracks on the surface of the obtained wire drawing material when wire drawing is performed.
The present invention also includes a melting step of melting a raw material consisting of Cu and Mg to obtain a molten alloy, and a casting step of continuously taking out the molten alloy while cooling it through a casting die to obtain a Cu-Mg alloy body. The cooling rate of the molten alloy in the casting step is 250 K / min or more and 400 K / min or less, and the Mg content in the Cu—Mg alloy body is 0.3 to 1.0 mass%. In the cross section of the Cu-Mg alloy body, the first segregated Mg occupancy ratio, which is the ratio of the area of the Mg segregated material to the area of the surface layer portion from the surface to a depth of 30 μm, is 3.0 area% or less. -Manufacturing method of Mg alloy body.
According to the method for producing a Cu-Mg alloy body of the present invention, Cu having sufficient strength and capable of sufficiently suppressing the occurrence of cracks on the surface of the drawn wire material when drawn. -A Mg alloy body can be manufactured.

上記Cu−Mg合金体においては、前記第1偏析Mg占有率が1.5面積%以下であることが好ましい。   In the said Cu-Mg alloy body, it is preferable that the said 1st segregation Mg occupation rate is 1.5 area% or less.

この場合、第1偏析Mg占有率が1.5面積%を超える場合にくらべて、伸線加工がなされた際に、得られる伸線材の表面における割れの発生をより十分に抑制することができる。   In this case, compared with the case where the first segregation Mg occupancy ratio exceeds 1.5 area%, the occurrence of cracks on the surface of the drawn wire material can be more sufficiently suppressed when the wire drawing is performed. .

また、上記Cu−Mg合金体においては、前記Cu−Mg合金体の断面において、表面から深さ100μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第2偏析Mg占有率が1.0面積%以下であることが好ましい。   Moreover, in the said Cu-Mg alloy body, in the cross section of the said Cu-Mg alloy body, the 2nd segregation Mg occupation rate which is a ratio of the area of the Mg segregation matter which occupies the area of the surface layer part from the surface to a depth of 100 micrometers Is preferably 1.0 area% or less.

この場合、第2偏析Mg占有率が1.0面積%を超える場合にくらべて、伸線加工がなされた際に、得られる伸線材の表面における割れの発生をより十分に抑制することができる。   In this case, compared with the case where the second segregation Mg occupancy rate exceeds 1.0 area%, the occurrence of cracks on the surface of the drawn wire material can be more sufficiently suppressed when the wire drawing is performed. .

また、上記Cu−Mg合金体においては、前記Cu−Mg合金体中のMgの含有率が0.3〜0.9質量%であることが好ましい。   Moreover, in the said Cu-Mg alloy body, it is preferable that the content rate of Mg in the said Cu-Mg alloy body is 0.3-0.9 mass%.

この場合、Cu−Mg合金体中のMgの含有率が上記範囲を外れる場合に比べて、伸線加工がなされた際に、得られる伸線材の表面における割れの発生をより十分に抑制することができる。   In this case, compared with the case where the Mg content in the Cu-Mg alloy body is out of the above range, the occurrence of cracks on the surface of the resulting wire drawing material is more sufficiently suppressed when wire drawing is performed. Can do.

また、本発明は、上記のCu−Mg合金体を伸線加工して伸線材を得る伸線材の製造方法である。
Moreover, this invention is a manufacturing method of the wire drawing material which draws the said Cu-Mg alloy body and obtains a wire drawing material .

本発明の伸線材の製造方法によれば、十分な強度を有し、表面における割れの発生が十分に抑制される伸線材が得られる
According to the method for producing a wire drawing material of the present invention, a wire drawing material having sufficient strength and sufficiently suppressing the occurrence of cracks on the surface can be obtained .

本発明によれば、十分な強度を有し、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができるCu−Mg合金体、Cu−Mg合金体の製造方法および伸線材の製造方法が提供される。
According to the present invention, a Cu-Mg alloy body and a Cu-Mg alloy that have sufficient strength and can sufficiently suppress the occurrence of cracks on the surface of the drawn wire material when drawn. A body manufacturing method and a wire drawing material manufacturing method are provided.

本発明のCu−Mg合金体の製造方法において、合金溶湯を冷却するために使用される冷却器を示す断面図である。It is sectional drawing which shows the cooler used in order to cool a molten alloy in the manufacturing method of the Cu-Mg alloy body of this invention.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

(Cu−Mg合金体)
まず本発明のCu−Mg合金体について説明する。
(Cu-Mg alloy)
First, the Cu—Mg alloy body of the present invention will be described.

本発明のCu−Mg合金体は、Cu−Mg合金を含むCu−Mg合金体であって、Cu−Mg合金体中のMgの含有率が0.3〜1.0質量%であり、Cu−Mg合金体の表面から深さ30μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第1偏析Mg占有率が3.0面積%以下である。   The Cu-Mg alloy body of the present invention is a Cu-Mg alloy body including a Cu-Mg alloy, and the content of Mg in the Cu-Mg alloy body is 0.3 to 1.0 mass%, -The 1st segregation Mg occupation rate which is a ratio of the area of the Mg segregation thing which occupies for the area of the surface layer part from the surface of a Mg alloy body to 30 micrometers in depth is 3.0 area% or less.

このCu−Mg合金体によれば、十分な強度を有し、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができる。   According to this Cu-Mg alloy body, it has sufficient strength, and when wire drawing is performed, it is possible to sufficiently suppress the occurrence of cracks on the surface of the obtained wire drawing material.

Cu−Mg合金体中のMgの含有率が0.3質量%未満の場合、Cu−Mg合金体は十分な強度を有しなくなる。また、Mgの含有率が1.0質量%を超える場合、Cu−Mg合金体は伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができない。さらに、Cu−Mg合金体中のMgの含有率が1.0質量%を超える場合、Cu−Mg合金体は十分な導電性を有することができない。また、第1偏析Mg占有率が3.0面積%を超える場合、Cu−Mg合金体は伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができない。   When the content of Mg in the Cu—Mg alloy body is less than 0.3 mass%, the Cu—Mg alloy body does not have sufficient strength. Moreover, when the content rate of Mg exceeds 1.0 mass%, when a Cu-Mg alloy body is drawn, it cannot fully suppress generation | occurrence | production of the crack in the surface of the drawn wire material obtained. Furthermore, when the content of Mg in the Cu—Mg alloy body exceeds 1.0 mass%, the Cu—Mg alloy body cannot have sufficient conductivity. Moreover, when the 1st segregation Mg occupation rate exceeds 3.0 area%, when a Cu-Mg alloy body is drawn, it can suppress generation | occurrence | production of the crack in the surface of the drawn wire material fully obtained. Can not.

Cu−Mg合金体中のMgの含有率は0.3〜0.9質量%であることが好ましい。この場合、Cu−Mg合金体中のMgの含有率が上記範囲を外れる場合に比べて、Mgの偏析物がより少ないCu−Mg合金体が得られる。   The Mg content in the Cu-Mg alloy is preferably 0.3 to 0.9 mass%. In this case, a Cu—Mg alloy body with less segregated Mg can be obtained as compared with the case where the Mg content in the Cu—Mg alloy body is out of the above range.

Cu−Mg合金体中のMgの含有率は0.3〜0.7質量%であることがより好ましい。   As for the content rate of Mg in a Cu-Mg alloy body, it is more preferable that it is 0.3-0.7 mass%.

第1偏析Mg占有率は、1.5面積%以下であることが好ましい。この場合、第1偏析Mg占有率が1.5面積%を超える場合にくらべて、伸線加工がなされた際に、得られる伸線材の表面における割れの発生をより十分に抑制することができる。第1偏析Mg占有率は、1.0面積%以下であることがさらに好ましい。   The first segregated Mg occupancy is preferably 1.5 area% or less. In this case, compared with the case where the first segregation Mg occupancy ratio exceeds 1.5 area%, the occurrence of cracks on the surface of the drawn wire material can be more sufficiently suppressed when the wire drawing is performed. . More preferably, the first segregated Mg occupancy is 1.0 area% or less.

第1偏析Mg占有率は、できるだけ小さいことが好ましいが、Cu−Mg合金体最表面に粘度の高い純銅層を形成できるという理由を考慮すると、0面積%より大きいことが好ましい。Cu−Mg合金は純粋な銅と比較して延性が小さく、割れが生じやすい。純銅の層が形成されることでCu−Mg合金体表面が保護され、均一なCu−Mg合金とするよりも割れを小さくすることができる。   The first segregated Mg occupancy is preferably as small as possible, but is preferably greater than 0 area% in view of the reason that a pure copper layer having a high viscosity can be formed on the outermost surface of the Cu-Mg alloy body. A Cu-Mg alloy is less ductile than pure copper and is likely to crack. By forming a pure copper layer, the surface of the Cu—Mg alloy body is protected, and cracks can be reduced as compared with a uniform Cu—Mg alloy.

また、Cu−Mg合金体においては、Cu−Mg合金体の断面において、表面から深さ100μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第2偏析Mg占有率が1.0面積%以下であることが好ましい。   Further, in the Cu—Mg alloy body, the second segregated Mg occupancy ratio, which is the ratio of the area of Mg segregated matter in the area of the surface layer portion from the surface to a depth of 100 μm, is 1 in the cross section of the Cu—Mg alloy body. It is preferable that it is 0.0 area% or less.

この場合、第2偏析Mg占有率が1.0面積%を超える場合に比べて、Cu−Mg合金体は伸線加工がなされた際に、得られる伸線材の表面における割れの発生をより十分に抑制することができる。   In this case, compared to the case where the second segregated Mg occupancy rate exceeds 1.0 area%, the Cu-Mg alloy body is more sufficiently generated to crack on the surface of the obtained wire drawing material when wire drawing is performed. Can be suppressed.

第2偏析Mg占有率は0.6面積%以下であることがより好ましく、0.4面積%以下であることがさらに好ましい。   The second segregation Mg occupation ratio is more preferably 0.6 area% or less, and further preferably 0.4 area% or less.

ここで、第1偏析Mg占有率は以下のようにして求められる。すなわち、第1偏析Mg占有率は、得られたCu−Mg合金体を切断して、切断面を光学顕微鏡で観察し、Cu−Mg合金体の表面から深さ30μmまでの表層部においてMgの偏析物の占有面積を測定し、このMgの偏析物の占有面積と、Cu−Mg合金体の表面から深さ30μmまでの表層部の全面積とから、下記式により求められる。
第1偏析Mg占有率(面積%)
=表層部におけるMgの偏析物の占有面積/表層部の全面積×100(面積%)
Here, the 1st segregation Mg occupation rate is calculated | required as follows. That is, the first segregated Mg occupancy rate is obtained by cutting the obtained Cu—Mg alloy body, observing the cut surface with an optical microscope, and forming Mg in the surface layer portion from the surface of the Cu—Mg alloy body to a depth of 30 μm. The occupied area of the segregated material is measured, and is obtained from the following formula from the occupied area of the Mg segregated material and the total area of the surface layer portion from the surface of the Cu—Mg alloy body to a depth of 30 μm.
First segregation Mg occupancy (area%)
= Occupied area of Mg segregated material in the surface layer portion / total area of the surface layer portion × 100 (area%)

また第2偏析Mg占有率も、上記と同様の方法で求められる。   The second segregated Mg occupancy is also determined by the same method as described above.

(Cu−Mg合金体の製造方法)
次に、本発明のCu−Mg合金体を製造するCu−Mg合金体の製造方法について説明する。
(Cu-Mg alloy manufacturing method)
Next, the manufacturing method of the Cu-Mg alloy body which manufactures the Cu-Mg alloy body of this invention is demonstrated.

まず、本発明のCu−Mg合金体を製造するCu−Mg合金体の製造方法の説明に先立ち、本発明のCu−Mg合金体の製造方法において、合金溶湯の冷却に使用される冷却器の一例について図1を参照しながら説明する。図1は、本発明のCu−Mg合金体の製造に使用する冷却器の一例を示す概略断面図である。   First, prior to the description of the method for producing a Cu-Mg alloy body for producing the Cu-Mg alloy body of the present invention, in the method for producing a Cu-Mg alloy body of the present invention, a cooler used for cooling the molten alloy An example will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing an example of a cooler used for producing the Cu—Mg alloy body of the present invention.

Cu−Mg合金体の冷却器100は、引き上げられる合金溶湯1を冷却するためのものであり、図1に示すように、その一部が合金溶湯1に浸漬されている。   The Cu-Mg alloy body cooler 100 is for cooling the molten alloy 1 to be pulled up, and a part of the cooler 100 is immersed in the molten alloy 1 as shown in FIG.

図1に示すように、冷却器100は、合金溶湯1を棒状に加工するための筒状の鋳造ダイス10と、鋳造ダイス10を包囲するように設置され、鋳造ダイス10、および、鋳造ダイス10から引き上げられた合金溶湯1を冷却する冷却体20と、冷却体20を収容する収容部30と、冷却体20の上で冷却体20を通過して固化した合金溶湯1を冷却し、合金溶湯1をCu−Mg合金体40として通過させる上部開口50aを有する冷却管50とを備えている。   As shown in FIG. 1, the cooler 100 is installed so as to surround the cylindrical casting die 10 for processing the molten alloy 1 into a rod shape, the casting die 10, and the casting die 10 and the casting die 10. A cooling body 20 that cools the molten alloy 1 pulled up from the housing, a housing portion 30 that houses the cooling body 20, and the molten alloy 1 that has solidified through the cooling body 20 on the cooling body 20 is cooled. And a cooling pipe 50 having an upper opening 50 a through which 1 passes as a Cu—Mg alloy body 40.

冷却管50の下部には、冷却水を導入する冷却水導入管50bが接続され、冷却管50の上部には、冷却水を排出する冷却水排出管50cが接続されている。このため、冷却管50内に冷却水を循環させることが可能となり、冷却体20を通過した合金溶湯1を冷却することが可能となっている。また冷却管50は、冷却体20をも冷却するようになっている。   A cooling water introduction pipe 50 b for introducing cooling water is connected to the lower part of the cooling pipe 50, and a cooling water discharge pipe 50 c for discharging cooling water is connected to the upper part of the cooling pipe 50. For this reason, it becomes possible to circulate cooling water in the cooling pipe 50 and to cool the molten alloy 1 that has passed through the cooling body 20. The cooling pipe 50 also cools the cooling body 20.

ここで、鋳造ダイス10を構成する材料としては、例えば黒鉛が用いられる。収容部30を構成する材料としては、例えば黒鉛が用いられる。   Here, as a material constituting the casting die 10, for example, graphite is used. For example, graphite is used as the material constituting the housing part 30.

なお、図1において、P1は、冷却体20と収容部30との境界面の位置であって合金溶湯1の冷却が開始される位置(以下、「冷却開始位置」と呼ぶ)を示し、P2は、冷却管50の上部開口50aの位置であって、合金溶湯1の冷却が終了する位置を示す(以下、「冷却終了位置」と呼ぶ)。   In FIG. 1, P <b> 1 indicates the position of the boundary surface between the cooling body 20 and the accommodating portion 30 and indicates the position where cooling of the molten alloy 1 is started (hereinafter referred to as “cooling start position”), P <b> 2. Indicates the position of the upper opening 50a of the cooling pipe 50 and the position where the cooling of the molten alloy 1 is completed (hereinafter referred to as "cooling end position").

次に、Cu−Mg合金体40の製造方法について説明する。   Next, a method for manufacturing the Cu—Mg alloy body 40 will be described.

まず、Cu及びMgを含む原料を溶解させて合金溶湯1を得る(溶解工程)。ここで、Cu及びMgを含む原料としては、Cu−Mg合金、又は、Cu−Mg合金と、電気銅などのCu単体金属との混合物などを用いることができる。合金溶湯1の温度は、例えば1473〜1573Kであればよい。   First, a raw material containing Cu and Mg is melted to obtain a molten alloy 1 (melting step). Here, as a raw material containing Cu and Mg, a mixture of a Cu—Mg alloy or a Cu—Mg alloy and a Cu simple metal such as electric copper can be used. The temperature of the molten alloy 1 may be 1473 to 1573K, for example.

次に、冷却器100の冷却水導入管50bから冷却管50内に冷却水を導入し、冷却水排出管50cから冷却水を排出する。こうして、冷却管50内で冷却水を循環させる。このとき、冷却体20は冷却管50によって冷却されるようになる。   Next, the cooling water is introduced into the cooling pipe 50 from the cooling water introduction pipe 50b of the cooler 100, and the cooling water is discharged from the cooling water discharge pipe 50c. In this way, the cooling water is circulated in the cooling pipe 50. At this time, the cooling body 20 is cooled by the cooling pipe 50.

この状態で、合金溶湯1を、鋳造ダイス10に通して連続的に引き上げる(鋳造工程)。合金溶湯1は、鋳造ダイス10を通過した後、冷却体20によって冷却され、その後、冷却管50によって冷却される。そして、冷却管50の上部開口50aを通過する。こうしてCu−Mg合金体40が得られる。   In this state, the molten alloy 1 is continuously pulled up through the casting die 10 (casting process). After passing through the casting die 10, the molten alloy 1 is cooled by the cooling body 20 and then cooled by the cooling pipe 50. Then, it passes through the upper opening 50 a of the cooling pipe 50. Thus, the Cu—Mg alloy body 40 is obtained.

このとき、合金溶湯1の冷却速度は、250K/分以上とする。   At this time, the cooling rate of the molten alloy 1 is 250 K / min or more.

合金溶湯1の冷却速度を250K/分以上とするのは、合金溶湯1の冷却速度が250K/分未満である場合、得られたCu−Mg合金体40は、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができないからである。   The reason why the cooling rate of the molten alloy 1 is 250 K / min or more is that when the cooling rate of the molten alloy 1 is less than 250 K / min, the obtained Cu—Mg alloy body 40 is subjected to wire drawing. This is because the occurrence of cracks on the surface of the obtained wire drawing material cannot be sufficiently suppressed.

ここで、冷却速度は以下のようにして定義される。図1において、合金溶湯1の温度をT(K)、冷却管50の上部開口50aを通過する際、すなわち冷却終了位置P2を通過する際のCu−Mg合金体40の表面の温度をT(K)、Cu−Mg合金体40の引上げ速度をv(m/分)、合金溶湯1の冷却開始位置P1から冷却終了位置P2までの高さをh(m)とすると、冷却速度は、以下の計算式で定義される。
冷却速度(K/分)=(T(K)−T(K))×v(m/分)/h(m)
Here, the cooling rate is defined as follows. In FIG. 1, the temperature of the molten alloy 1 is T 1 (K), and the temperature of the surface of the Cu—Mg alloy body 40 when passing through the upper opening 50a of the cooling pipe 50, that is, passing through the cooling end position P2, is T. 2 (K), when the pulling speed of the Cu—Mg alloy body 40 is v (m / min) and the height from the cooling start position P1 to the cooling end position P2 of the molten alloy 1 is h (m), the cooling speed is Is defined by the following formula.
Cooling rate (K / min) = (T 1 (K) −T 2 (K)) × v (m / min) / h (m)

上記のようにしてCu−Mg合金体40を製造すると、十分な強度を有し、伸線加工がなされた際に得られる伸線材の表面における割れの発生を十分に抑制することができるCu−Mg合金体40を製造することができる。   When the Cu—Mg alloy body 40 is produced as described above, Cu—having sufficient strength and sufficiently suppressing the occurrence of cracks on the surface of the wire drawing material obtained when wire drawing is performed. The Mg alloy body 40 can be manufactured.

上記冷却速度は270K/分以上であることが好ましく、300K/分以上であることがさらに好ましい。   The cooling rate is preferably 270 K / min or more, and more preferably 300 K / min or more.

但し、上記冷却速度は400K/分以下であることが好ましい。この場合、冷却速度は400K/分を超える場合に比べて、鋳造材表面の荒れをより十分に抑制する事ができる。   However, the cooling rate is preferably 400 K / min or less. In this case, as compared with the case where the cooling rate exceeds 400 K / min, the surface roughness of the cast material can be more sufficiently suppressed.

(伸線材)
伸線材は、上述したCu−Mg合金体40を伸線加工して得られる。
(Wire drawing material)
The wire drawing material is obtained by drawing the Cu-Mg alloy body 40 described above.

この伸線材によれば、十分な強度を有し、表面における割れの発生が十分に抑制される。   According to this wire drawing material, it has sufficient strength and the occurrence of cracks on the surface is sufficiently suppressed.

伸線加工の条件は、特に制限されず、公知の条件と同様でよい。但し、伸線加工の条件は、ダイス引抜きとすることが好ましい。   The conditions for wire drawing are not particularly limited, and may be the same as known conditions. However, it is preferable that the drawing process is performed by drawing a die.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1〜9および比較例1〜8)
<Cu−Mg合金体の製造>
まずCu−Mg合金体の原料として、電気銅とCu−Mg合金(Mg含有量50質量%)とを用意した。次にこれらの原料を、得られるCu−Mg合金体におけるMgの含有率が表1及び表2に示す値になるように秤量して黒鉛るつぼに仕込み、加熱溶解させて合金溶湯を得た。合金溶湯の温度が1250℃(1523K)になったところで、合金溶湯を、黒鉛からなる鋳造ダイスを通して表1及び2に示す冷却速度で冷却しながら引き上げ、実施例1〜9及び比較例1〜8のCu−Mg合金体を表1および表2に示す値の直径を有する丸線として得た。

Figure 0006001420
Figure 0006001420
(Examples 1-9 and Comparative Examples 1-8)
<Manufacture of Cu-Mg alloy body>
First, electrolytic copper and a Cu-Mg alloy (Mg content 50 mass%) were prepared as raw materials for the Cu-Mg alloy body. Next, these raw materials were weighed so that the Mg content in the obtained Cu-Mg alloy body would be the values shown in Tables 1 and 2, charged into a graphite crucible, and heated to melt to obtain a molten alloy. When the temperature of the molten alloy reached 1250 ° C. (1523 K), the molten alloy was pulled up while cooling at a cooling rate shown in Tables 1 and 2 through a casting die made of graphite. Examples 1 to 9 and Comparative Examples 1 to 8 Cu-Mg alloy bodies were obtained as round wires having the diameters shown in Tables 1 and 2.

Figure 0006001420
Figure 0006001420

<第1および第2偏析Mg占有率の測定>
実施例1〜9及び比較例1〜8のCu−Mg合金体について、丸線の長手方向に垂直に合金体を切断し、この切断面において、表面から深さ30μmまでの表層部の面積に占めるMgの偏析物の面積の割合を求めた。この値を「第1偏析Mg占有率(30μm)」として、表1及び2に示す。
<Measurement of first and second segregation Mg occupancy rates>
About the Cu-Mg alloy bodies of Examples 1-9 and Comparative Examples 1-8, the alloy body was cut perpendicularly to the longitudinal direction of the round wire, and the area of the surface layer portion from the surface to a depth of 30 μm was cut on this cut surface. The ratio of the area of Mg segregated material was calculated. This value is shown in Tables 1 and 2 as “first segregated Mg occupancy (30 μm)”.

また同様に、上記切断面において、表面から深さ100μmまでの表層部の面積に占めるMgの偏析物の面積の割合を求めた。この値を「第2偏析Mg占有率(100μm)」として、表1及び2に示す。   Similarly, in the cut surface, the ratio of the area of Mg segregated matter to the area of the surface layer part from the surface to a depth of 100 μm was determined. This value is shown in Tables 1 and 2 as “second segregated Mg occupation ratio (100 μm)”.

[特性評価]
<強度>
Cu−Mg合金体の強度の評価は、実施例1〜9及び比較例1〜8のCu−Mg合金体について、JIS Z 2241に従って測定を行い、測定された引張強さの値に基づいて行った。結果を表1及び表2に示す。表1及び表2において、引張強さの単位はMPaであり、引張強さの合否基準は下記の通りとした。

引張強さが420MPa以上:合格
引張強さが420MPa未満:不合格
[Characteristic evaluation]
<Strength>
Evaluation of the strength of the Cu-Mg alloy body was performed according to JIS Z 2241 for the Cu-Mg alloy bodies of Examples 1 to 9 and Comparative Examples 1 to 8, and based on the measured tensile strength values. It was. The results are shown in Tables 1 and 2. In Tables 1 and 2, the unit of tensile strength is MPa, and the pass / fail criteria for tensile strength are as follows.

Tensile strength is 420 MPa or more: Acceptable tensile strength is less than 420 MPa: Fail

<伸線加工して得られる伸線材の表面の割れ>
Cu−Mg合金体を伸線加工して得られる伸線材の表面の割れの評価は、以下のようにして行った。
<Crack of the surface of the wire drawing material obtained by wire drawing>
Evaluation of the cracks on the surface of the wire drawing material obtained by drawing the Cu-Mg alloy body was performed as follows.

まず、実施例1〜9及び比較例1〜8のCu−Mg合金体を冷間加工し、直径26mmの伸線材を得た。   First, the Cu—Mg alloy bodies of Examples 1 to 9 and Comparative Examples 1 to 8 were cold worked to obtain a wire drawing material having a diameter of 26 mm.

得られた伸線材の表面を光学顕微鏡で120倍に拡大して写真を撮影し、この写真上に、伸線の長手方向に平行に、伸線材の実寸0.85mmに対応する長さの線分を引き、この線分と交差する伸線表面の亀裂部の幅を測定し、上記線分の長さと、上記線分上における亀裂部の幅の総和とから、下記式により、亀裂部の線占有率を算出した。

亀裂部の線占有率(%)=線分上における亀裂部の幅の総和/線分の長さ×100(%)

この算出を10回行い、算出された亀裂部の線占有率の平均値によって、伸線表面の割れを評価した。結果を「伸線表面の割れ」として表1及び2に示す。ここで、亀裂部の線占有率の平均値が5%以下であれば合格として「○」と表示し、5%を超える場合は不合格として「×」と表示した。
The surface of the drawn wire was magnified 120 times with an optical microscope, and a photograph was taken. On this photograph, a wire having a length corresponding to the actual size of the drawn wire was 0.85 mm in parallel with the longitudinal direction of the drawn wire. The width of the crack part on the surface of the wire drawing intersecting with the line segment is measured, and the crack part is calculated from the length of the line segment and the total width of the crack part on the line segment according to the following formula. The line occupancy was calculated.

Line occupancy (%) of the crack portion = total width of the crack portion on the line segment / length of the line segment × 100 (%)

This calculation was performed 10 times, and cracks on the wire drawing surface were evaluated based on the calculated average value of the line occupancy ratio of the cracked portion. The results are shown in Tables 1 and 2 as “cracking on the wire drawing surface”. Here, if the average value of the line occupancy ratio of the crack portion is 5% or less, “◯” is displayed as a pass, and if it exceeds 5%, “x” is displayed as a failure.

表1及び2に示す結果より、実施例1〜9のCu−Mg合金体は、強度、および伸線加工した際の伸線表面の割れのいずれの点についても合格基準に達していた。これに対し、比較例1〜8のCu−Mg合金体は、強度または伸線加工した際の伸線表面の割れのいずれかについて合格基準に達していなかった。   From the results shown in Tables 1 and 2, the Cu-Mg alloy bodies of Examples 1 to 9 reached the acceptance criteria for both strength and cracks on the drawn surface when drawn. On the other hand, the Cu-Mg alloy bodies of Comparative Examples 1 to 8 did not reach the acceptance criteria for either strength or cracks on the drawn surface when drawn.

このことから、本発明のCu−Mg合金体によれば、十分な強度を有し、伸線加工がなされた際に、得られる伸線材の表面における割れの発生を十分に抑制することができることが確認された。   From this, according to the Cu-Mg alloy body of the present invention, it has sufficient strength and can sufficiently suppress the occurrence of cracks on the surface of the drawn wire material when the wire drawing is performed. Was confirmed.

1…合金溶湯
10…鋳造ダイス
40…Cu−Mg合金体
DESCRIPTION OF SYMBOLS 1 ... Molten alloy 10 ... Casting die 40 ... Cu-Mg alloy body

Claims (9)

Cu−Mg合金からなるCu−Mg合金体であって、前記Cu−Mg合金体中のMgの含有率が0.3〜1.0質量%であり、前記Cu−Mg合金体の断面において、表面から深さ30μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第1偏析Mg占有率が3.0面積%以下であるCu−Mg合金体。 A Cu-Mg alloy body made of a Cu-Mg alloy, wherein the Mg content in the Cu-Mg alloy body is 0.3 to 1.0 mass%, and in the cross section of the Cu-Mg alloy body, The Cu-Mg alloy body whose 1st segregation Mg occupation rate which is a ratio of the area of Mg segregation to the area of the surface layer part from the surface to a depth of 30 micrometers is 3.0 area% or less. 前記第1偏析Mg占有率が1.5面積%以下である請求項1に記載のCu−Mg合金体。   The Cu-Mg alloy body according to claim 1, wherein the first segregation Mg occupancy is 1.5 area% or less. 前記Cu−Mg合金体の断面において、表面から深さ100μmまでの表層部の面積に占めるMgの偏析物の割合である第2偏析Mg占有率が1.0面積%以下である請求項1又は2に記載のCu−Mg合金体。   The second segregated Mg occupancy ratio, which is a ratio of Mg segregated matter in the area of the surface layer portion from the surface to a depth of 100 µm in the cross section of the Cu-Mg alloy body, is 1.0 area% or less. 2. The Cu—Mg alloy body according to 2. 前記Cu−Mg合金体中のMgの含有率が0.3〜0.9質量%である請求項1〜3のいずれか一項に記載のCu−Mg合金体。   The content rate of Mg in the said Cu-Mg alloy body is 0.3-0.9 mass%, The Cu-Mg alloy body as described in any one of Claims 1-3. Cu及びMgからなる原料を溶解させ、合金溶湯を得る溶解工程と、
前記合金溶湯を、鋳造ダイスを通して冷却しながら連続的に引き取り、Cu−Mg合金体を得る鋳造工程と、
を含み、
前記鋳造工程における前記合金溶湯の冷却速度が250K/分以上400K/分以下であり
前記Cu−Mg合金体中のMgの含有率が0.3〜1.0質量%であり、前記Cu−Mg合金体の断面において、表面から深さ30μmまでの表層部の面積に占めるMgの偏析物の面積の割合である第1偏析Mg占有率が3.0面積%以下であるCu−Mg合金体の製造方法。
Melting a raw material composed of Cu and Mg to obtain a molten alloy;
A casting process in which the molten alloy is continuously withdrawn while cooling through a casting die to obtain a Cu-Mg alloy body;
Including
The cooling rate of the molten alloy in the casting process is 250 K / min or more and 400 K / min or less ,
The content of Mg in the Cu-Mg alloy body is 0.3 to 1.0 mass%, and in the cross section of the Cu-Mg alloy body, Mg accounts for the area of the surface layer portion from the surface to a depth of 30 μm. The manufacturing method of the Cu-Mg alloy body whose 1st segregation Mg occupation rate which is a ratio of the area of a segregation thing is 3.0 area% or less .
前記第1偏析Mg占有率が1.5面積%以下である請求項5に記載のCu−Mg合金体の製造方法。The method for producing a Cu-Mg alloy body according to claim 5, wherein the first segregated Mg occupancy is 1.5 area% or less. 前記Cu−Mg合金体の断面において、表面から深さ100μmまでの表層部の面積に占めるMgの偏析物の割合である第2偏析Mg占有率が1.0面積%以下である請求項5又は6に記載のCu−Mg合金体の製造方法。6. The second segregated Mg occupancy ratio, which is a ratio of Mg segregated matter in the surface layer area from the surface to a depth of 100 μm in the cross section of the Cu—Mg alloy body, is 1.0 area% or less. 6. A method for producing a Cu—Mg alloy body according to 6. 前記Cu−Mg合金体中のMgの含有率が0.3〜0.9質量%である請求項5〜7のいずれか一項に記載のCu−Mg合金体の製造方法。The content rate of Mg in the said Cu-Mg alloy body is 0.3-0.9 mass%, The manufacturing method of the Cu-Mg alloy body as described in any one of Claims 5-7. 請求項1〜4のいずれか一項に記載のCu−Mg合金体又は請求項5〜8のいずれか一項のCu−Mg合金体の製造方法によって製造されるCu−Mg合金体を伸線加工して伸線材を得る伸線材の製造方法
The Cu-Mg alloy body according to any one of claims 1 to 4 or the Cu-Mg alloy body produced by the method for producing a Cu-Mg alloy body according to any one of claims 5 to 8 is drawn. A method of manufacturing a wire drawing material that is processed to obtain a wire drawing material .
JP2012245834A 2012-11-07 2012-11-07 Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method Expired - Fee Related JP6001420B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012245834A JP6001420B2 (en) 2012-11-07 2012-11-07 Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method
CN201310525185.3A CN103805801B (en) 2012-11-07 2013-10-30 Cu-Mg alloy, producing method of Cu-Mg alloy and wire-drawing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245834A JP6001420B2 (en) 2012-11-07 2012-11-07 Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method

Publications (2)

Publication Number Publication Date
JP2014095107A JP2014095107A (en) 2014-05-22
JP6001420B2 true JP6001420B2 (en) 2016-10-05

Family

ID=50703182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245834A Expired - Fee Related JP6001420B2 (en) 2012-11-07 2012-11-07 Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method

Country Status (2)

Country Link
JP (1) JP6001420B2 (en)
CN (1) CN103805801B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187379B2 (en) * 2014-05-02 2017-08-30 信越化学工業株式会社 Magneto-optical material and magneto-optical device
JP6388504B2 (en) * 2014-07-28 2018-09-12 株式会社フジクラ Wire drawing material and trolley wire using the same
FI3904549T3 (en) 2018-12-26 2023-10-19 Mitsubishi Materials Corp Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products
JP6863409B2 (en) * 2018-12-26 2021-04-21 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film and manufacturing method of these
JP7443737B2 (en) * 2019-12-10 2024-03-06 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof
CN114082911A (en) * 2021-10-28 2022-02-25 苏州金仓合金新材料有限公司 Preparation equipment and preparation method of environment-friendly lead-free phosphorus-added alloy rod

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170230A (en) * 1983-03-14 1984-09-26 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JP2813652B2 (en) * 1993-05-31 1998-10-22 矢崎総業株式会社 High strength copper alloy for conductive
JPH0718354A (en) * 1993-06-30 1995-01-20 Mitsubishi Electric Corp Copper alloy for electronic appliance and its production
JPH0827531A (en) * 1994-07-14 1996-01-30 Sumitomo Electric Ind Ltd Copper alloy conductor and its production
JP3418301B2 (en) * 1997-01-09 2003-06-23 古河電気工業株式会社 Copper alloy for electrical and electronic equipment with excellent punching workability
CN1177069C (en) * 2002-09-18 2004-11-24 四川鑫炬矿业资源开发股份有限公司 Copper alloy material for contact net wire
US20040238086A1 (en) * 2003-05-27 2004-12-02 Joseph Saleh Processing copper-magnesium alloys and improved copper alloy wire
JP4333881B2 (en) * 2003-09-24 2009-09-16 株式会社マテリアルソルーション Continuous casting mold and copper alloy continuous casting method
JP2007136467A (en) * 2005-11-15 2007-06-07 Hitachi Cable Ltd Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
CN100345988C (en) * 2005-12-13 2007-10-31 江苏科技大学 High-strength electro-conductive copper alloy wire and production method thereof
CN100425717C (en) * 2006-08-16 2008-10-15 苏州有色金属加工研究院 Copper alloy for lead-wire frame and its production
JP2009174038A (en) * 2008-01-28 2009-08-06 Hitachi Cable Ltd Method for producing copper alloy conductor, copper alloy conductor, cable, and trolley wire
JP5515313B2 (en) * 2009-02-16 2014-06-11 三菱マテリアル株式会社 Method for producing Cu-Mg-based rough wire

Also Published As

Publication number Publication date
JP2014095107A (en) 2014-05-22
CN103805801A (en) 2014-05-21
CN103805801B (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6001420B2 (en) Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method
JP5975493B2 (en) Method for producing copper alloy wire
JP6782167B2 (en) Manufacturing method of aluminum alloy wire, aluminum alloy stranded wire, coated electric wire and wire harness, and aluminum alloy wire
CN109983142B (en) Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, and electric wire with terminal
KR102361765B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
JP2013155407A (en) Copper alloy and cast product
JP6529346B2 (en) High bending fatigue resistance copper based alloy wire
JP2012001813A (en) Aluminum alloy conductor electric wire and its manufacturing method
KR102544287B1 (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
JP2018003154A (en) Copper alloy, copper alloy ingot, and copper alloy solution material
JP6027807B2 (en) Copper alloy trolley wire and method for producing copper alloy trolley wire
JP2010163677A (en) Aluminum alloy wire rod
WO2014020707A1 (en) Copper alloy trolley wire and method for manufacturing copper alloy trolley wire
CN116603884A (en) Sheath extrusion method of copper-based alloy
US10718037B2 (en) Copper alloy material and production method therefor
JP2011012300A (en) Copper alloy and method for producing copper alloy
JP6969411B2 (en) Continuous casting method of Cu-Zn-Si based alloy
JP6965511B2 (en) Manufacturing method of copper alloy wire
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP6354391B2 (en) Continuous casting method of Cu-Zn-Sn alloy
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP2019090097A (en) Copper alloy and manufacturing method therefor
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JP2010095777A (en) Copper alloy conductor, trolley wire and cable using the same and method for manufacturing the copper alloy conductor
JP5742621B2 (en) Copper alloys and castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees