JP2007270269A - Copper alloy having excellent hot workability and its production method - Google Patents

Copper alloy having excellent hot workability and its production method Download PDF

Info

Publication number
JP2007270269A
JP2007270269A JP2006097677A JP2006097677A JP2007270269A JP 2007270269 A JP2007270269 A JP 2007270269A JP 2006097677 A JP2006097677 A JP 2006097677A JP 2006097677 A JP2006097677 A JP 2006097677A JP 2007270269 A JP2007270269 A JP 2007270269A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
major axis
hot workability
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006097677A
Other languages
Japanese (ja)
Other versions
JP4750601B2 (en
Inventor
Masatoshi Eto
雅俊 衛藤
Satoshi Endo
智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006097677A priority Critical patent/JP4750601B2/en
Priority to TW096108677A priority patent/TW200741018A/en
Priority to KR1020070030785A priority patent/KR100885824B1/en
Priority to CNA2007100898024A priority patent/CN101275190A/en
Publication of JP2007270269A publication Critical patent/JP2007270269A/en
Application granted granted Critical
Publication of JP4750601B2 publication Critical patent/JP4750601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy for an electronic component having excellent hot workability which particularly has excellent strength and electrical conductivity without deteriorating its bending workability. <P>SOLUTION: The copper alloy having excellent hot workability has a composition comprising, by mass, 1.0 to 2.0% Ni and 0.1 to 0.5% P, and in which the ratio between the Ni content and the P content, Ni/P is 4.0 to 6.5, and also, comprising 0.005 to 0.070% B, and the balance Cu with inevitable impurities. The copper alloy may further comprise one or more kinds selected from Sn and In by 0.01 to 1.0% in total, and the number of inclusions with a major axis of 5 to 50 μm is ≤100 pieces per mm<SP>2</SP>, and also, the number of inclusions with a major axis of >50 μm is zero per mm<SP>2</SP>. In the method for producing the copper alloy, the average cooling rate in the range from 1,100°C to 950°C upon casting is preferably controlled to ≥20°C/min, and more preferably to ≥30°C/min. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度、高導電性の電子機器部品用の、熱間加工性に優れた銅合金に関するものであり、特に小型、高集積化された半導体機器リード用及び端子コネクタ用銅合金において、曲げ加工性を損なうことなく特に強度、導電性に優れた、熱間加工性に優れた電子部品用銅合金に関する。   The present invention relates to a copper alloy excellent in hot workability for high-strength, high-conductivity electronic device parts, and particularly in a small and highly integrated copper alloy for semiconductor device leads and terminal connectors. The present invention relates to a copper alloy for electronic parts that is particularly excellent in strength and conductivity without deteriorating bending workability and excellent in hot workability.

銅及び銅合金は、コネクタ、リード端子等の電子部品及びフレキシブル回路基板用として多用途に亘って幅広く利用されている材料であり、急速に展開するIT化による情報機器の高機能化及び小型化・薄肉化に対応して更なる特性(強度、曲げ加工性、導電性)の向上を要求されている。
又、ICの高集積化に伴い、消費電力の高い半導体素子が多く使用されるようになり、半導体機器のリードフレーム材には、放熱性(導電性)の良いCu−Ni−Si系やCu−Fe−P、Cu−Cr−Sn、Cu−Ni−P等の析出型合金が使用されるようになった。上記Cu−Ni−P系合金はNi−P系化合物の微細析出により強化が生じるが、特許文献1では合金中のNi、P、Mg成分量を調整して、強度及び導電性、耐応力緩和性を備えた合金を得たことが報告されている。
Copper and copper alloys are materials that are widely used for electronic parts such as connectors and lead terminals and flexible circuit boards, and are highly functional and miniaturized due to the rapid development of IT.・ Further improvements in properties (strength, bending workability, conductivity) are required in response to thinning.
In addition, with the high integration of ICs, many semiconductor elements with high power consumption are used, and the lead frame material of semiconductor devices has a good heat dissipation (conductivity) such as Cu-Ni-Si or Cu. Precipitation alloys such as -Fe-P, Cu-Cr-Sn, and Cu-Ni-P have come to be used. The Cu—Ni—P alloy is strengthened by the fine precipitation of the Ni—P compound, but in Patent Document 1, the amount of Ni, P, and Mg components in the alloy is adjusted to reduce the strength, conductivity, and stress resistance. It has been reported that an alloy with properties is obtained.

特開2000−273562号公報JP 2000-273562 A

一般に、銅合金の鋳造、例えば連続或いは半連続鋳造において、鋳塊はモールドにより抜熱され、塊の表層の数mmを除いて内部はやや時間をかけて凝固する。この際に、凝固時及び凝固後の冷却過程で限界を超えて含有された合金元素が結晶粒界及び結晶粒内に晶出又は析出する。1.0%以上のNi及び0.2%以上のPを含有する銅合金は、高強度高導電という長所を有するが、室温においてはCu母相への固溶限以上のNi−P成分を多く含有しているため、鋳塊を製造すると通常はNi−P系化合物が結晶粒界に晶出又は析出してしまう。そして、Cu−Ni−P系合金の結晶粒界に晶出又は析出したNi−P系化合物は母相のCuより融点が低いため、これら銅合金の凝固は不均一なものとなり内部歪が発生し、その応力や外力によりNi−P系化合物の部分で破壊が生じ、鋳造、冷却段階での割れを引き起こす。又、熱間圧延の加熱時にもNi−P系化合物が母相よりも先に軟化又は液相化するため同様に割れが生じる。
しかし、特許文献1のCu−Ni−P系合金の組成はNiが0.01〜1.0%、Pが0.01〜0.2%であるため上記問題は特に意識されていなかった。
本発明の目的は、鋳造、冷却、熱間加工加熱又は熱間加工中に発生する割れを防止し、高温延性に優れており熱間加工性が良好なCu−Ni−P系合金を提供しようとするものである。
In general, in the casting of a copper alloy, for example, continuous or semi-continuous casting, the ingot is heat-extracted by a mold, and the inside solidifies with some time except for a few mm of the surface layer of the ingot. At this time, alloy elements contained exceeding the limit during the solidification and after the solidification cooling process are crystallized or precipitated in the crystal grain boundaries and in the crystal grains. A copper alloy containing 1.0% or more of Ni and 0.2% or more of P has the advantage of high strength and high conductivity, but at room temperature, it has a Ni-P component exceeding the solid solubility limit in the Cu matrix. Since it is contained in a large amount, when an ingot is produced, a Ni-P compound is usually crystallized or precipitated at the crystal grain boundary. And since the melting point of the Ni-P compound compound crystallized or precipitated at the grain boundary of the Cu-Ni-P alloy is lower than that of the parent phase Cu, the solidification of these copper alloys becomes uneven and internal strain occurs. However, due to the stress and external force, fracture occurs in the Ni-P-based compound portion, causing cracks in the casting and cooling stages. Moreover, since the Ni-P compound softens or becomes a liquid phase prior to the parent phase during the hot rolling, cracks are similarly generated.
However, since the composition of the Cu-Ni-P alloy of Patent Document 1 is 0.01 to 1.0% for Ni and 0.01 to 0.2% for P, the above problem was not particularly conscious.
An object of the present invention is to provide a Cu-Ni-P alloy that prevents cracking during casting, cooling, hot working heating or hot working, has excellent high temperature ductility and good hot workability. It is what.

本発明者らは上記の目的を達成すべく、研究を重ねた結果、下記構成を特定することにより優れた熱間加工性と優れた強度及び導電性を具備するCu−Ni−P系合金が得られることを見出した。
本発明は銅合金においてNi:1.0%以上2.0%以下(本明細書では、成分割合を表す%は質量%とする)、P:0.15%以上0.50%以下を含有し、NiとPの含有量比率Ni/P:4.0以上6.5以下で且つ、B:0.005%以上0.070%以下で残部がCu及び不可避的不純物から成ることを特徴とする熱間加工性に優れた銅合金であり、好ましくは長径5〜50μmの介在物の個数が1mm2当たり100個以下であり、且つ長径50μmを超える介在物の個数が1mm2当たり0個である銅合金、並びに鋳造時の1100℃から950℃の冷却速度が20℃/分以上であることを特徴とする上記熱間加工性に優れた銅合金の製造方法に関する。
As a result of repeated research to achieve the above object, the present inventors have identified a Cu-Ni-P alloy having excellent hot workability, excellent strength and conductivity by specifying the following configuration. It was found that it can be obtained.
In the present invention, the copper alloy contains Ni: 1.0% or more and 2.0% or less (in the present specification,% indicating the component ratio is mass%), P: 0.15% or more and 0.50% or less The content ratio of Ni and P is Ni / P: 4.0 or more and 6.5 or less, and B: 0.005% or more and 0.070% or less, and the balance is made of Cu and inevitable impurities. Copper alloy excellent in hot workability, preferably the number of inclusions having a major axis of 5 to 50 μm is 100 or less per 1 mm 2 , and the number of inclusions exceeding 50 μm of major axis is 0 per 1 mm 2 The present invention relates to a copper alloy and a method for producing a copper alloy having excellent hot workability, wherein a cooling rate from 1100 ° C. to 950 ° C. during casting is 20 ° C./min or more.

本発明は、Cu−Ni−P系合金にBを特定量添加することによって、Ni−P系化合物の結晶粒界への晶出又は析出を抑制し、好ましくは鋳造時の冷却速度を制御することで粗大なNi−P−B系及びP−B系化合物の生成を抑制する。上記構成を採用することによって、本発明は粒界の高温脆性を改善して熱間加工性の向上を図ったものである。
本発明の熱間加工性に優れた銅合金は高強度高導電電子機器用として優れた効果を奏する。
In the present invention, by adding a specific amount of B to a Cu-Ni-P-based alloy, crystallization or precipitation of Ni-P-based compounds at the grain boundaries is suppressed, and preferably the cooling rate during casting is controlled. This suppresses the formation of coarse Ni—P—B and P—B compounds. By adopting the above configuration, the present invention improves the hot workability by improving the high temperature brittleness of the grain boundaries.
The copper alloy excellent in hot workability of the present invention has an excellent effect for high-strength and high-conductivity electronic equipment.

次に、本発明において銅合金の成分組成の数値範囲を限定した理由をその作用と共に説明する。
[Ni量]
Niは合金の強度及び耐熱性を確保する作用があると共に後述するPとのNi−P系化合物を析出させ、合金の強度上昇に寄与する。しかし、その含有量が1.0%未満であると所望の強度が得られず、一方、2.0%を超えてNiを含有させると熱間加工性が低下すると共に製品の曲げ加工性及び導電率の低下が顕著となる。更にその上、長径の大きなNi−P系析出物の面積率を増してしまい好ましくない。Ni及びPの含有量和(Ni+P)が2.5%を超えると粗大粒子の晶出量が増大し、更に時効処理での析出が顕著になり大きさ50nm以下の微細なNi−Pの析出の制御が難しくなる。従って本発明の合金のNi含有量は1.0%〜2.0%、好ましくは1.1〜1.8%である。
Next, the reason for limiting the numerical range of the component composition of the copper alloy in the present invention will be described together with its action.
[Ni content]
Ni has the effect of ensuring the strength and heat resistance of the alloy and precipitates a Ni—P compound with P, which will be described later, thereby contributing to an increase in the strength of the alloy. However, if the content is less than 1.0%, the desired strength cannot be obtained. On the other hand, if Ni exceeds 2.0%, the hot workability decreases and the bending workability of the product and The decrease in conductivity becomes remarkable. Furthermore, the area ratio of Ni—P-based precipitates having a large major axis is increased, which is not preferable. When the total content of Ni and P (Ni + P) exceeds 2.5%, the crystallization amount of coarse particles increases, and the precipitation due to aging treatment becomes more prominent, resulting in the precipitation of fine Ni-P having a size of 50 nm or less. It becomes difficult to control. Therefore, the Ni content of the alloy of the present invention is 1.0% to 2.0%, preferably 1.1 to 1.8%.

[P量]
Pは、Niとの化合物を析出して合金の強度及び耐熱性を向上させる。P含有量が0.15%未満であると化合物の析出が不充分であるため、所望の強度が得られない。一方、P含有量が0.5%を超えて含有させると熱間加工性が低下すると共に導電率の低下が顕著となる。更にその上、長径の大きなNi−P系析出物の面積率を増してしまい好ましくない。従って本発明の合金のP含有量は0.15%〜0.5%、好ましくは0.2〜0.4%である。
[P amount]
P precipitates a compound with Ni to improve the strength and heat resistance of the alloy. If the P content is less than 0.15%, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, if the P content exceeds 0.5%, the hot workability is lowered and the conductivity is significantly lowered. Furthermore, the area ratio of Ni—P-based precipitates having a large major axis is increased, which is not preferable. Therefore, the P content of the alloy of the present invention is 0.15% to 0.5%, preferably 0.2 to 0.4%.

[Ni/P比]
NiとPの含有量が上記の限定範囲内にあってもNiとPの含有比率Ni/PがNi−P系化合物の適切な化学量論的組成比から外れると、すなわち、4.0未満の場合にはPの、6.5を超えた場合にはNiの固溶する量が増大してしまい、導電率の低下が顕著となり好ましくない。従って本発明の合金のNi/P比は4.0以上6.5以下、好ましくは4.5〜6.0である。
[Ni / P ratio]
If the Ni / P content ratio Ni / P deviates from the appropriate stoichiometric composition ratio of the Ni-P compound even if the Ni and P contents are within the above-mentioned limited range, that is, less than 4.0 In this case, when P exceeds 6.5, the amount of Ni dissolved increases, which is not preferable because the decrease in conductivity is remarkable. Therefore, the Ni / P ratio of the alloy of the present invention is 4.0 or more and 6.5 or less, preferably 4.5 to 6.0.

[Ni−P系析出物の大きさと面積率]
Ni−P系析出物の長径をa(nm)、短径をb(nm)とすると、最終冷間圧延前のaが20nm未満の析出物は、加工歪η=2以上の圧延加工を行うと、析出物が銅中に再固溶してしまい導電率を低下させてしまい好ましくない。一方、最終冷間圧延前のaが20nm以上の析出物は、加工歪η=2以上の圧延加工でも再固溶しにくく、10nm以上の析出物として存在する。上記20nm以上の析出物は圧延前後で大きさの変化が少なく、特に圧延前の長径aが50nmを超える析出物は圧延後の50nmを超える長径を保ち、合金中の析出物の分散間隔が大きくなりすぎるため析出強化効果が得られなくなる。
尚、長径a及び短径bは最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面画像を画像解析装置を用いて長径aが5nm以上の析出物のすべてについて測定した全析出物の長径及び短径それぞれの平均値である。又、加工歪ηは、圧延前の板厚をt0、圧延後の板厚をtとした場合、η=ln(t0/t)で表される。
上記より、本発明の合金の最終冷間圧延前のNi−P系析出物の大きさは、好ましくは長径aが20nm〜50nmである。
又析出物のアスペクト比をa/bで表すと、a/bが5を超える場合には、η=2以上の圧延加工を行うと析出物が銅中に再固溶してしまい導電率を低下させてしまう。従って析出物のアスペクト比a/bは、好ましくは1〜5、更に好ましくは1〜3である。
強度及び導電率の低下を防ぐために好ましくは、最終冷間圧延後のaは10nm〜50nmかつa/bは1〜5である。
[Size and area ratio of Ni-P-based precipitates]
When the major axis of the Ni-P-based precipitate is a (nm) and the minor axis is b (nm), the precipitate with a before the final cold rolling of less than 20 nm undergoes rolling with a work strain η = 2 or more. Then, the precipitate is re-dissolved in copper, which lowers the conductivity, which is not preferable. On the other hand, a precipitate having a of 20 nm or more before the final cold rolling is not easily re-dissolved even in a rolling process having a working strain η = 2 or more, and exists as a precipitate having a thickness of 10 nm or more. Precipitates of 20 nm or more have little change in size before and after rolling. Particularly, precipitates with a major axis a before rolling exceeding 50 nm maintain a major axis exceeding 50 nm after rolling, and the dispersion interval of the precipitates in the alloy is large. Therefore, the precipitation strengthening effect cannot be obtained.
The major axis a and the minor axis b are obtained by cutting the alloy strip before the final cold rolling in a direction perpendicular to the thickness parallel to the rolling direction, and measuring all the precipitates having a major axis a of 5 nm or more using an image analyzer. It is the average value of each major axis and minor axis of all the precipitates. Further, the processing strain eta, the plate thickness before rolling t 0, when the plate thickness after rolling was t, is expressed by η = ln (t 0 / t ).
From the above, the major axis “a” of the Ni—P-based precipitate before the final cold rolling of the alloy of the present invention is preferably 20 nm to 50 nm.
Moreover, when the aspect ratio of the precipitate is expressed by a / b, when a / b exceeds 5, when the rolling process is performed with η = 2 or more, the precipitate is re-dissolved in the copper, and the conductivity is reduced. It will decrease. Therefore, the aspect ratio a / b of the precipitate is preferably 1 to 5, more preferably 1 to 3.
In order to prevent a decrease in strength and electrical conductivity, a after the final cold rolling is preferably 10 nm to 50 nm and a / b is 1 to 5.

しかしながら、全ての析出物を上記a及びa/bの好ましい範囲内にすることは困難であるため、上記a及びa/bの範囲となる析出物の全析出物に対する割合が重要になる。そこで、合金中の全析出物の面積総和に対する、上記a及びa/bの好ましい範囲にある析出物の面積総和の割合を面積率Cとすると、本発明の面積率Cは好ましくは80%以上である。
面積率Cが80%未満の場合とは、aが50nmを超える析出物又は20nm未満の析出物が多く存在する場合である。例えば、aが50nmを超える析出物や溶解鋳造時に生じた晶出物が熱間圧延や溶体化処理で固溶せずに残存した1000nm以上のNi−P系の粒子(晶出物)が多く存在する時には、強度向上に寄与する大きさ20から50nmの微細な析出物の数が少なく分散間隔が大きいため、圧延加工での加工硬化によっての所望の強度は得られない。一方、aが20nm未満の析出物は、圧延加工での加工によって再固溶してしまうため、やはり所望の強度は得られない。
However, since it is difficult to make all the precipitates within the preferable ranges of a and a / b, the ratio of the precipitates within the ranges of a and a / b to the total precipitates is important. Therefore, when the ratio of the total area of precipitates in the preferable range of a and a / b to the total area of all precipitates in the alloy is defined as area ratio C, the area ratio C of the present invention is preferably 80% or more. It is.
The case where the area ratio C is less than 80% is a case where there are many precipitates in which a exceeds 50 nm or precipitates less than 20 nm. For example, there are many Ni-P-based particles (crystallized material) of 1000 nm or more in which precipitates with a exceeding 50 nm or crystallized products generated during melt casting remain without being dissolved by hot rolling or solution treatment. When present, since the number of fine precipitates having a size of 20 to 50 nm that contributes to the strength improvement is small and the dispersion interval is large, the desired strength by work hardening in the rolling process cannot be obtained. On the other hand, since the precipitate with a of less than 20 nm is re-dissolved by processing in the rolling process, the desired strength cannot be obtained.

[B量]
Bは、Cu−Ni−P系合金の凝固時や凝固後の冷却過程及び熱間加工の加熱時にNi−P系化合物の結晶粒界への晶出又は析出を抑制し、合金の熱間加工性を向上させる。しかし、その含有量が0.005%未満であると熱間加工性の改善効果が得られず、一方、0.070%を超えてBを含有させるとNi−P−B、B−P等の化合物が介在物として溶解中又は凝固中に生じてしまう。これらのBを含む化合物は、通常結晶粒界に集約化、粗大化を伴って晶出又は析出して溶体化処理でCu母相中に固溶しないため、時効処理で析出するNi−P系化合物が減少し、合金の強度低下を招く。更にNi−P−B、B−P等の化合物は、製品では長径5μm以上の介在物となって製品に残存し、製品の表面欠陥、曲げ加工時の割れの起点、めっき処理時の欠陥の起点になるため、好ましくない。従って、本発明の合金のB含有量は、0.005%〜0.070%以下、好ましくは0.007%〜0.060%である。
[B amount]
B suppresses the crystallization or precipitation of the Ni-P-based compound at the grain boundary during the solidification of the Cu-Ni-P-based alloy, the cooling process after the solidification and the heating during the hot working, and the hot working of the alloy. Improve sexiness. However, if the content is less than 0.005%, the effect of improving hot workability cannot be obtained. On the other hand, if the content of B exceeds 0.070%, Ni-P-B, BP, etc. This compound occurs as an inclusion during dissolution or coagulation. Since these B-containing compounds are usually crystallized or precipitated with agglomeration and coarsening at the grain boundaries and do not dissolve in the Cu matrix by solution treatment, they are precipitated by aging treatment. The compound is reduced and the strength of the alloy is reduced. Further, compounds such as Ni-P-B and BP remain in the product as inclusions having a major axis of 5 μm or more, and surface defects of the product, starting points of cracks during bending, and defects during plating processing. Since it becomes a starting point, it is not preferable. Therefore, the B content of the alloy of the present invention is 0.005% to 0.070% or less, preferably 0.007% to 0.060%.

[介在物]
本発明の「介在物」とは、Cu−Ni−P系合金中の結晶粒界及び/又は結晶粒内に晶出若しくは析出した、Ni−P−B化合物、B−P化合物等を主成分とする晶出物を意味し、結晶粒内に晶出又は析出する微細Ni−P系化合物を含むものではない。介在物の長径とは、圧延平行断面での大きさ5μm以上の介在物の平均長径を言う。
長径50μmを超える介在物が存在すると曲げ加工時の割れの起点となり製品の曲げ加工性を劣化させる。従って本発明の銅合金は、好ましくは長径50μmを超える介在物の個数が1mm2当たり0個である。又、長径5〜50μmの介在物が存在すると介在物中に含まれるB量が増大し、Bの添加目的であるNi−P系化合物の結晶粒界への晶出を抑制する効果が得られなくなる。従って本発明の銅合金は、好ましくは長径5〜50μmの介在物の個数が1mm2当たり100個以下、更に好ましくは50個以下である。
[Inclusion]
The “inclusion” of the present invention is mainly composed of a Ni—P—B compound, a BP compound, or the like crystallized or precipitated in a crystal grain boundary and / or crystal grain in a Cu—Ni—P-based alloy. And does not contain a fine Ni-P compound that crystallizes or precipitates in the crystal grains. The major axis of inclusions means the average major axis of inclusions having a size of 5 μm or more in the rolling parallel section.
If inclusions with a major axis of more than 50 μm are present, they become the starting point of cracking during bending and deteriorate the bending workability of the product. Therefore, in the copper alloy of the present invention, the number of inclusions having a major axis exceeding 50 μm is preferably 0 per 1 mm 2 . Further, when inclusions having a major axis of 5 to 50 μm are present, the amount of B contained in the inclusions increases, and the effect of suppressing crystallization of Ni—P compounds, which is the purpose of addition of B, to the crystal grain boundaries can be obtained. Disappear. Therefore, in the copper alloy of the present invention, the number of inclusions having a major axis of 5 to 50 μm is preferably 100 or less, more preferably 50 or less per mm 2 .

[Sn、In量]
Sn及びIn量は、いずれも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有している。従って必要に応じてこれらの金属を1種類以上添加するが、その含有量が総量で0.01%未満であると固溶強化による強度向上の効果が得られず、一方、総量で1.0%以上を添加すると合金の導電率及び曲げ加工性低下が顕著になる。このため、単独添加又は2種類以上の複合添加されるSn及びIn量は、0.01%〜1.0%、好ましくは総量で0.05%〜0.8%である。なお、これらの元素は本発明においては、意図的に添加される元素であり、不可避的不純物とはみなさない。
[O量]
Oは、Bと合金中で反応しやすく、Oが合金中に酸化物の状態で存在するとB添加効果が得られない。従って、本発明の合金のO含有量は、0.0050%以下、好ましくは0.0030%以下である。
[Sn, In amount]
Both the Sn and In contents have the effect of improving the strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy. Accordingly, if necessary, one or more of these metals are added. If the total content is less than 0.01%, the effect of improving the strength by solid solution strengthening cannot be obtained, while the total amount is 1.0. When adding more than%, the electrical conductivity and bending workability of the alloy are significantly reduced. For this reason, the amount of Sn and In added individually or in combination of two or more types is 0.01% to 1.0%, preferably 0.05% to 0.8% in total. In the present invention, these elements are intentionally added elements and are not regarded as inevitable impurities.
[O amount]
O easily reacts with B in the alloy, and if O exists in an oxide state in the alloy, the B addition effect cannot be obtained. Therefore, the O content of the alloy of the present invention is 0.0050% or less, preferably 0.0030% or less.

[引張強さ及び導電率]
本発明の銅合金は熱間加工性に優れ、更に優れた導電性、引張強さ、曲げ加工性を兼備する。本発明の銅合金の引張強さは、好ましくは700MPa以上、更に好ましくは750MPa以上であり、その上限は通常950MPa程度である。又、導電率は好ましくは40%IACS以上、更に好ましくは40%IACS以上であり、その上限は通常65%IACS程度である。
[Tensile strength and conductivity]
The copper alloy of the present invention is excellent in hot workability and further has excellent conductivity, tensile strength and bending workability. The tensile strength of the copper alloy of the present invention is preferably 700 MPa or more, more preferably 750 MPa or more, and the upper limit is usually about 950 MPa. Further, the conductivity is preferably 40% IACS or more, more preferably 40% IACS or more, and the upper limit is usually about 65% IACS.

[凝固時の冷却速度と介在物の大きさ]
上記本発明の要件を満たすCu−Ni−P系合金は、通常当業者が製造において採用する、インゴット鋳造、熱間圧延、溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍等において、適宜加熱温度、時間、冷却速度、圧延加工度等を選択することにより製造することが出来る。通常行われる連続又は半連続鋳造における凝固速度は、凝固段階で採用する装置、方式により異なり、かつ冷却均一化手段を採用しない置き注ぎ式などの場合、鋳塊の外側と内側とで差異が生じる。例えば、鉄製の鋳型(φ700×h1500mm)に溶銅を注いで凝固する置き注ぎ式の場合、1100℃から950℃の冷却速度は1℃/分程度である。
本発明の銅合金の鋳造時における凝固温度範囲は好ましくは1100℃から950℃であり、この冷却温度範囲での冷却速度が遅いとNi−P−B系及び/又はP−B系化合物が凝固段階で粗大に生成しやすく、B添加による熱間延性の向上が認められないおそれがある。
[Cooling rate during solidification and size of inclusions]
The Cu—Ni—P alloy satisfying the above-mentioned requirements of the present invention is generally used by those skilled in the art for ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, final cold rolling, strain. In the annealing and the like, it can be manufactured by appropriately selecting the heating temperature, time, cooling rate, rolling degree, and the like. The solidification speed in continuous or semi-continuous casting that is usually performed differs depending on the equipment and method used in the solidification stage, and in the case of a pouring type that does not employ cooling uniformization means, there is a difference between the outside and inside of the ingot. . For example, in the case of a pouring type in which molten copper is poured into an iron mold (φ700 × h1500 mm) and solidified, the cooling rate from 1100 ° C. to 950 ° C. is about 1 ° C./min.
The solidification temperature range at the time of casting of the copper alloy of the present invention is preferably 1100 ° C. to 950 ° C. If the cooling rate in this cooling temperature range is slow, the Ni—PB system and / or the PB system compound is solidified. It is easy to produce coarsely at a stage, and there is a possibility that improvement of hot ductility by addition of B is not recognized.

上記Ni−P−B系及び/又はP−B系化合物を主成分とする介在物個数と熱間延性には、次に示す相関が認められた。鋳造、凝固段階での1100℃から950℃の冷却速度が20℃/分未満の鋳塊を850℃に1時間加熱後、水冷して得られた試料の介在物の計測結果では、長径5〜50μmの介在物の個数が1mm2当たり100個以上であるか、又は長径50μmを超える介在物の個数が1mm2当たり1個以上の場合、Bを所定量添加した合金でも850℃の熱間圧延で割れが発生した。従って、鋳造、凝固段階での1100℃から950℃の冷却速度は20℃/分以上が好ましい。更に、合金の曲げ加工性を劣化させないためにはNi−P−B系化合物、P−B系化合物の粗大析出化を抑制するため、鋳造、凝固段階での1100℃から950℃の冷却速度は30℃/分以上が好ましい。尚、1500℃/分を超える冷却速度は凝固収縮部への溶銅供給が間に合わず引け巣による欠陥が増大するため好ましくない。 The following correlation was recognized between the number of inclusions mainly composed of the Ni—P—B and / or P—B compounds and the hot ductility. In the measurement results of the inclusions in the sample obtained by heating an ingot at 1100 ° C. to 950 ° C. at a cooling rate of less than 20 ° C./min in the casting and solidification stage to 850 ° C. for 1 hour, When the number of inclusions of 50 μm is 100 or more per 1 mm 2 , or when the number of inclusions exceeding 50 μm in the major axis is 1 or more per 1 mm 2 , hot rolling at 850 ° C. even for an alloy to which a predetermined amount of B is added Cracking occurred. Accordingly, the cooling rate from 1100 ° C. to 950 ° C. in the casting and solidification stage is preferably 20 ° C./min or more. Furthermore, in order not to deteriorate the bending workability of the alloy, the cooling rate from 1100 ° C. to 950 ° C. in the casting and solidification stage is set to suppress coarse precipitation of Ni—P—B compounds and P—B compounds. 30 ° C./min or more is preferable. Note that a cooling rate exceeding 1500 ° C./min is not preferable because the supply of molten copper to the solidification shrinkage portion is not in time and defects due to shrinkage increase.

本発明例及び比較例1〜18
試料の製造(a):
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金(P)、2%B−Cu母合金(B)、錫(Sn)、インジウム(In)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、材質鋳鉄製の鋳型を使用して45×45×90mmのインゴットに鋳造した。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.15mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」及び「導電率」の評価を行った。
Invention Example and Comparative Examples 1-18
Sample preparation (a):
Electrical copper or oxygen-free copper as the main raw material, nickel (Ni), 15% P-Cu master alloy (P), 2% B-Cu master alloy (B), tin (Sn), indium (In) as auxiliary raw materials And melted in a high-frequency melting furnace in a vacuum or in an argon atmosphere, and cast into a 45 × 45 × 90 mm ingot using a cast iron material. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.15mm. Various test pieces of the obtained plate material were collected and tested, and “strength” and “conductivity” were evaluated.

インゴットの熱間加工性評価(a):
「熱間加工性」は、熱間圧延によって評価した。即ち、インゴットを45×45×25mmに切断し、850℃に1時間加熱後、厚さ25mmから5mmまで3パスで熱間圧延試験を行った。熱間圧延後の試料の表面及びエッジについて目視により割れが認められた場合を、“割れ有り”、表面及びエッジに割れが無く、平滑な場合を、“割れなし”とした。
Ingot hot workability evaluation (a):
“Hot workability” was evaluated by hot rolling. That is, the ingot was cut into 45 × 45 × 25 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in three passes from a thickness of 25 mm to 5 mm. The case where cracks were visually observed on the surface and edge of the sample after hot rolling was defined as “cracked”, and the case where the surface and edge were not cracked and smooth was defined as “no crack”.

試験片の物性評価(a):
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。
「導電率」は4端子法を用いて試験片の電気抵抗を測定し、%IACSで表示した。
Physical property evaluation of test piece (a):
About "strength", it carried out using the No. 13 B test piece by the tension test prescribed | regulated to JISZ2241, and measured the tensile strength.
“Conductivity” was measured by measuring the electrical resistance of a test piece using a four-terminal method and expressed in% IACS.

Ni−P系析出物の評価(a);
最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、走査型電子顕微鏡及び透過型電子顕微鏡を使用して、断面の析出物を10視野観察した。析出物の大きさが5〜50nmの場合は50万倍〜70万倍の視野(約1.4×1010〜2.0×1010nm2)、100〜2000nmの場合は5万倍〜10万倍の視野(約1.0×1013〜2.0×1013nm2)で撮影を行った。撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて長径aが5nm以上の析出物のすべてについて個々に長径a、短径b、及び面積を測定した。これら析出物からランダムに100個選び、全析出物の長径の平均ataと短径の平均bta及びこれらから求めた平均のアスペクト比ata/btaを得て、それぞれ長径a、短径b及びアスペクト比a/bとした。長径aが5μm以上の全ての析出物の面積の総和を全析出物の総面積とした。その全析出物の総面積に対して、長径aが10nm〜50nm、アスペクト比a/bが1〜5である析出物の面積総和の割合を面積率C(%)とした。
尚、最終冷間圧延(通常は加工歪η=2以上)により、長径20nm以下のNi−P系析出物又は長径20nmを超えているがアスペクト比が3を超える析出物は固溶してしまうが、20nm以上かつアスペクト比が1〜3の析出物は最終冷間圧延後もその長径、短径及びアスペクト比を保つことを確認した。又、析出物の面積率Cも、200nmを超える析出物は固溶しないため最終冷間圧延後もほとんど変化しなかった。
Evaluation of Ni-P-based precipitate (a);
The alloy strips before the final cold rolling were cut parallel to the rolling direction at a right angle to the thickness, and using a scanning electron microscope and a transmission electron microscope, 10 precipitates of the cross section were observed. When the size of the precipitate is 5 to 50 nm, the field of view is about 500,000 to 700,000 times (about 1.4 × 10 10 to 2.0 × 10 10 nm 2 ), and when the size is 100 to 2000 nm, the field is 50,000 times to Photographing was performed with a 100,000 × field of view (approximately 1.0 × 10 13 to 2.0 × 10 13 nm 2 ). Using the image of the photographed photograph, the major axis a, the minor axis b, and the area of each of the precipitates having a major axis a of 5 nm or more were measured using an image analyzer (manufactured by Nireco Corporation, trade name Luzex). Select 100 randomly from these deposits, with the average of the aspect ratio a ta / b ta the major axis determined from the mean a ta and and average b ta of minor all these precipitates, respectively major axis a, the minor axis b and aspect ratio a / b. The total area of all precipitates having a major axis a of 5 μm or more was taken as the total area of all precipitates. The ratio of the total area of the precipitates having a major axis a of 10 nm to 50 nm and an aspect ratio a / b of 1 to 5 was defined as an area ratio C (%) with respect to the total area of all the precipitates.
In addition, by the final cold rolling (usually processing strain η = 2 or more), Ni—P-based precipitates having a major axis of 20 nm or less or precipitates having a major axis exceeding 20 nm but having an aspect ratio exceeding 3 are dissolved. However, it was confirmed that a precipitate having an aspect ratio of 1 to 3 at 20 nm or more maintained its major axis, minor axis and aspect ratio even after the final cold rolling. Also, the area ratio C of the precipitates hardly changed even after the final cold rolling because the precipitates exceeding 200 nm were not dissolved.

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表1に示す成分組成の銅合金について、比較例とともに説明する。
本発明の合金実施例1〜6は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。
一方、比較例7〜18については、本発明の合金組成の範囲又はNi/P比率から外れた成分での合金である。比較例7〜10は、Bの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例11は、Niの添加量が2.0%を超えるため、比較例12は、Pの添加量が0.50%を超えるため、比較例13は、SnとInの添加量の合計が1.0%を超えるため、比較例14は、Snの添加量の合計が1.0%を超えるため、それぞれ熱間圧延時に割れが発生した。比較例15は、Ni/P比が適切な組成比から低く外れるために、Pの固溶する量が増大して導電率の低下が生じた。比較例16は、Ni/P比が適切な組成比から高く外れるために、Niの固溶する量が増大して導電率の低下が生じ、析出量が少ないため強度も低い。比較例17は、B添加量が0.070%を超えるため、Ni−P−B、B−P等の化合物が凝固時に晶出又は析出したことにより、Ni−P系の析出物量が減少し、強度も導電率も低く、曲げ加工性が劣る。比較例18はNi及びPの添加量が本発明の規定する範囲から低く外れるため、強度が低い。
熱間圧延試験後の外観写真図1〜4に示す。図1は本発明例3、図2は比較例8、図3は比較例9、図4は比較例10の試料である。
Examples of the high-strength, high-conductivity copper alloy excellent in hot workability according to the present invention will be described with respect to the copper alloys having the composition shown in Table 1 together with comparative examples.
Alloy Examples 1 to 6 of the present invention had excellent strength and conductivity without cracking during hot rolling.
On the other hand, Comparative Examples 7 to 18 are alloys with components out of the alloy composition range or Ni / P ratio of the present invention. In Comparative Examples 7 to 10, there was no addition of B or less than the specified amount, and therefore cracking occurred during hot rolling. Since Comparative Example 11 has an addition amount of Ni exceeding 2.0%, Comparative Example 12 has an addition amount of P exceeding 0.50%, and Comparative Example 13 has a total addition amount of Sn and In. Since it exceeds 1.0%, in Comparative Example 14, the total amount of Sn exceeds 1.0%, and thus cracks occurred during hot rolling. In Comparative Example 15, since the Ni / P ratio deviated from an appropriate composition ratio, the amount of dissolved P increased and the conductivity decreased. In Comparative Example 16, since the Ni / P ratio deviates from an appropriate composition ratio, the amount of Ni dissolved increases and the conductivity decreases, and the amount of precipitation is small, so the strength is low. In Comparative Example 17, since the B addition amount exceeds 0.070%, Ni—P-based precipitates are reduced due to crystallization or precipitation of compounds such as Ni—P—B and BP during solidification. In addition, strength and conductivity are low, and bending workability is inferior. Comparative Example 18 has low strength because the amounts of Ni and P added deviate from the range defined by the present invention.
Appearance photograph after hot rolling test Shown in FIGS. 1 is a sample of the present invention example 3, FIG. 2 is a sample of comparative example 8, FIG. 3 is a sample of comparative example 9, and FIG.

本発明例及び比較例19〜39
試料の製造(b):
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金(P)、2%B−Cu母合金(B)、錫(Sn)、インジウム(In)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、45×45×90mmまたはφ50×90mmのインゴットに鋳造した。鋳造、凝固時の冷却速度を変化させるため、鋳型の材質を鋳鉄、アルミナ、シリカ製とした。鋳型の中心部に熱電対を挿入して鋳造、凝固時の1100から950℃の冷却速度を測定した結果、鋳鉄鋳型は340℃/分、アルミナ鋳型は85℃/分、シリカ鋳型は33℃/分であった。冷却速度20℃/分以下のインゴットを作製するため、一方向凝固装置で20℃/分、15及び10℃/分の冷却速度のインゴットを得た。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.10mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」、「導電率」及び「曲げ加工性」の評価を行った。
Invention Examples and Comparative Examples 19-39
Sample preparation (b):
Electrical copper or oxygen-free copper as the main raw material, nickel (Ni), 15% P-Cu master alloy (P), 2% B-Cu master alloy (B), tin (Sn), indium (In) as auxiliary raw materials And melted in a high-frequency melting furnace in a vacuum or argon atmosphere, and cast into an ingot of 45 × 45 × 90 mm or φ50 × 90 mm. In order to change the cooling rate during casting and solidification, the mold material was made of cast iron, alumina, or silica. As a result of measuring the cooling rate from 1100 to 950 ° C. during casting and solidification by inserting a thermocouple into the center of the mold, the cast iron mold was 340 ° C./min, the alumina mold was 85 ° C./min, and the silica mold was 33 ° C./min. Minutes. In order to produce ingots with a cooling rate of 20 ° C./min or less, ingots with cooling rates of 20 ° C./min, 15 and 10 ° C./min were obtained with a unidirectional solidification apparatus. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.10mm. Various test pieces of the obtained plate material were collected and tested, and “strength”, “conductivity” and “bending workability” were evaluated.

インゴットの熱間加工性評価(b):
インゴットを45×45×45mmまたはφ50×45mmに切断し、850℃に1時間加熱後、厚さ45mmから12mmまで4パスで熱間圧延試験を行った以外は上記インゴットの熱間加工性評価Aと同様に行った。
Ingot hot workability evaluation (b):
The ingot was evaluated for hot workability A, except that the ingot was cut to 45 × 45 × 45 mm or φ50 × 45 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in 4 passes from a thickness of 45 mm to 12 mm. As well as.

試験片の介在物評価(b):
試料中の介在物の評価はインゴットを熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.10mmの平板試料の圧延平行断面を鏡面研磨して、電子顕微鏡SEM像の500倍で大きさ5μm以上の介在物を5視野(約0.35mm2)観察し、1mm2当たりの介在物個数を算出した。一方、インゴットの熱間加工性評価で割れが生じたものについてはインゴットを850℃に1時間加熱後、水冷した試料で介在物の評価を行った。試料を鏡面研磨して、前述の平板試料と同様に電子顕微鏡で介在物を観察し、1mm2当たりの介在物個数を算出した。熱間加工性が良好であった合金について、平板試料とインゴットを850℃1時間加熱後、水冷した試料で介在物個数を比較したところ、ほぼ同等の結果が得られた。
Inclusion evaluation of test piece (b):
The inclusions in the sample were evaluated in the order of hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing, and a flat plate sample having a thickness of 0.10 mm. The rolled parallel section was mirror-polished, and 5 views (about 0.35 mm 2 ) of inclusions having a size of 5 μm or more at 500 times the electron microscope SEM image were observed, and the number of inclusions per 1 mm 2 was calculated. On the other hand, with respect to those in which cracking occurred in the hot workability evaluation of the ingot, the inclusion was evaluated using a water-cooled sample after heating the ingot to 850 ° C. for 1 hour. The sample was mirror-polished, and the inclusions were observed with an electron microscope in the same manner as the flat plate sample described above, and the number of inclusions per 1 mm 2 was calculated. When the number of inclusions was compared between the flat sample and the ingot heated at 850 ° C. for 1 hour and the water-cooled sample for the alloy having good hot workability, almost the same results were obtained.

試験片の物性評価(b):
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。「導電率」はダブルブリッジ法を用いて試験片の電気抵抗を測定し、%IACSで表示した。「曲げ加工性」は90度W曲げ試験で評価した。試験はCES−M0002−6に準拠し、R−0.1mmの治具を使用して50kNの荷重で90度曲げ加工を行った。曲げ部の評価は、中央部山表面の状況を光学顕微鏡で観察して割れが発生したものを×、シワが発生したものを△、良好なものを○とした。曲げ軸は圧延方向に対して直角(Good way)とした。
Physical property evaluation of test piece (b):
About "strength", it carried out using the No. 13 B test piece by the tension test prescribed | regulated to JISZ2241, and measured the tensile strength. “Conductivity” was measured in% IACS by measuring the electrical resistance of the test piece using the double bridge method. “Bending workability” was evaluated by a 90 ° W bending test. The test was performed in accordance with CES-M0002-6, and bending was performed 90 degrees with a load of 50 kN using an R-0.1 mm jig. In the evaluation of the bent portion, the state of the surface of the central mountain was observed with an optical microscope. The bending axis was set at a right angle to the rolling direction (Good way).

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表1に示す成分組成の銅合金について、比較例とともに説明する。
本発明の合金実施例19〜26は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。本発明例22は鋳造時の冷却速度が20℃/分と遅いため、他の本発明例に比較して介在物個数が多く、曲げ加工性が若干劣る。
一方、比較例9〜21までの結果を検討すると、比較例27〜39については、本発明の合金組成の範囲又はNi/P比率から外れた成分での合金である。比較例27〜29は、Bの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例30は、Niの添加量が2.0%を超えるため、比較例31は、Pの添加量が0.50%を超えるため、比較例32は、SnとInの添加量の合計が1.0%を超えるため、比較例33は、Snの添加量の合計が1.0%を超えるため、それぞれ熱間圧延時に割れが発生した。比較例34は、Ni/P比が適切な組成比から低く外れるために、Pの固溶する量が増大して導電率の低下が生じた。比較例35は、Ni/P比が適切な組成比から高く外れるために、Niの固溶する量が増大して導電率の低下が生じ、析出量が少ないため強度も低い。比較例36は、B添加量が0.070%を超えるため、Ni−P−B、B−P等の化合物が凝固時に晶出又は析出したことにより、Ni−P系の析出物量が減少し、強度と導電率が低く、曲げ加工性が劣る。比較例37〜39は鋳造時の冷却速度が20℃/分未満と規定値より遅いため、熱間圧延で割れが発生した。
Examples of the high-strength, high-conductivity copper alloy excellent in hot workability according to the present invention will be described with respect to the copper alloys having the composition shown in Table 1 together with comparative examples.
Alloy Examples 19 to 26 of the present invention had excellent strength and conductivity without cracking during hot rolling. Inventive Example 22 has a slow cooling rate of 20 ° C./min during casting, and therefore has a larger number of inclusions and is slightly inferior in bending workability as compared with other inventive examples.
On the other hand, when the results of Comparative Examples 9 to 21 are examined, Comparative Examples 27 to 39 are alloys with components out of the alloy composition range or Ni / P ratio of the present invention. In Comparative Examples 27 to 29, there was no addition of B or less than the specified amount, and therefore cracking occurred during hot rolling. Since Comparative Example 30 has an addition amount of Ni exceeding 2.0%, Comparative Example 31 has an addition amount of P exceeding 0.50%, and Comparative Example 32 has a total addition amount of Sn and In. Since it exceeds 1.0%, since the total amount of Sn added exceeds 1.0% in Comparative Example 33, cracks occurred during hot rolling. In Comparative Example 34, since the Ni / P ratio deviated from an appropriate composition ratio, the amount of dissolved P increased and the conductivity decreased. In Comparative Example 35, since the Ni / P ratio deviates from an appropriate composition ratio, the amount of Ni dissolved increases and the conductivity decreases, and the amount of precipitation is small, so the strength is low. In Comparative Example 36, the addition amount of B exceeds 0.070%, and thus the amount of Ni-P-based precipitates decreased due to crystallization or precipitation of compounds such as Ni-P-B and BP during solidification. , Strength and conductivity are low and bending workability is inferior. In Comparative Examples 37 to 39, the cooling rate during casting was less than the specified value, which was less than 20 ° C./min, and therefore cracking occurred during hot rolling.

Figure 2007270269
Figure 2007270269

Figure 2007270269
Figure 2007270269

本発明例3における熱間圧延試験後の試料エッジ部の外観写真である。It is an external appearance photograph of the sample edge part after the hot rolling test in Example 3 of this invention. 比較例8における熱間圧延試験後の試料エッジ部の外観写真である。14 is an appearance photograph of a sample edge portion after a hot rolling test in Comparative Example 8. 比較例9における熱間圧延試験後の試料エッジ部の外観写真である。14 is an appearance photograph of a sample edge portion after a hot rolling test in Comparative Example 9. 比較例10における熱間圧延試験後の試料エッジ部の外観写真である。It is an external appearance photograph of the sample edge part after the hot rolling test in Comparative Example 10.

Claims (7)

質量割合にて、Ni:1.0%〜2.0%、P:0.1%〜0.5%を含有し、NiとPの含有量比率Ni/P:4.0〜6.5で且つ、B:0.005%〜0.070%であり、残部がCu及び不可避的不純物から成ることを特徴とする熱間加工性に優れた銅合金。   Ni: 1.0% to 2.0%, P: 0.1% to 0.5% in terms of mass ratio, Ni / P content ratio Ni / P: 4.0 to 6.5 And B: 0.005% to 0.070%, the balance being made of Cu and inevitable impurities, a copper alloy having excellent hot workability. 質量割合にて、Ni:1.0%〜2.0%、P:0.1%〜0.5%を含有し、NiとPの含有量比率Ni/P:4.0〜6.5で且つ、B:0.005%〜0.070%であり、更にSn及びInのうち1種以上を合計で0.01%以上1.0%以下含み、残部がCu及び不可避的不純物から成ることを特徴とする熱間加工性に優れた銅合金。   Ni: 1.0% to 2.0%, P: 0.1% to 0.5% in terms of mass ratio, Ni / P content ratio Ni / P: 4.0 to 6.5 And B: 0.005% to 0.070%, and further contains one or more of Sn and In in a total of 0.01% to 1.0%, with the balance being Cu and inevitable impurities. A copper alloy with excellent hot workability. 長径5〜50μmの介在物の個数が1mm2当たり100個以下であり、且つ長径50μmを超える介在物の個数が1mm2当たり0個である請求項1又は2に記載の熱間加工性に優れた銅合金。 The number of inclusions having a major axis of 5 to 50 µm is 100 or less per 1 mm 2 , and the number of inclusions having a major axis exceeding 50 µm is 0 per 1 mm 2. Copper alloy. 最終冷間圧延前のNi−P系析出物の長径aが20nm〜50nm、アスペクト比a/bが1〜5である請求項1〜3いずれか1項記載の熱間加工性に優れた銅合金。   The copper with excellent hot workability according to any one of claims 1 to 3, wherein the major axis a of the Ni-P-based precipitate before final cold rolling is 20 nm to 50 nm and the aspect ratio a / b is 1 to 5. alloy. 引張強さ:700MPa以上で且つ、導電率:40%IACS以上である請求項1〜4いずれか1項記載の熱間加工性に優れた銅合金。   The copper alloy excellent in hot workability according to any one of claims 1 to 4, wherein the tensile strength is 700 MPa or more and the conductivity is 40% IACS or more. 鋳造時の1100℃から950℃の平均冷却速度が20℃/分以上である請求項1〜5いずれか1項記載の熱間加工性に優れた銅合金の製造方法。   The method for producing a copper alloy having excellent hot workability according to any one of claims 1 to 5, wherein an average cooling rate from 1100 ° C to 950 ° C during casting is 20 ° C / min or more. 鋳造時の1100℃から950℃の平均冷却速度が30℃/分以上である請求項6に記載された製造方法。   The manufacturing method according to claim 6, wherein an average cooling rate from 1100 ° C to 950 ° C during casting is 30 ° C / min or more.
JP2006097677A 2006-03-31 2006-03-31 Copper alloy excellent in hot workability and manufacturing method thereof Expired - Fee Related JP4750601B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006097677A JP4750601B2 (en) 2006-03-31 2006-03-31 Copper alloy excellent in hot workability and manufacturing method thereof
TW096108677A TW200741018A (en) 2006-03-31 2007-03-14 Copper alloy having excellent hot workability
KR1020070030785A KR100885824B1 (en) 2006-03-31 2007-03-29 Copper alloy having superior hot workability and method for producing same
CNA2007100898024A CN101275190A (en) 2006-03-31 2007-03-30 Copper alloy having superior hot workability and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097677A JP4750601B2 (en) 2006-03-31 2006-03-31 Copper alloy excellent in hot workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007270269A true JP2007270269A (en) 2007-10-18
JP4750601B2 JP4750601B2 (en) 2011-08-17

Family

ID=38673367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097677A Expired - Fee Related JP4750601B2 (en) 2006-03-31 2006-03-31 Copper alloy excellent in hot workability and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4750601B2 (en)
CN (1) CN101275190A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603253B (en) * 2016-01-15 2017-10-17 宁波博威合金材料股份有限公司 A kind of nickeliferous phosphorus, the Cu alloy material of nickel boron phase and its manufacture method
CN109022900B (en) * 2018-08-17 2020-05-08 宁波博威合金材料股份有限公司 Copper alloy with excellent comprehensive performance and application thereof
CN110643850B (en) * 2019-10-24 2020-12-01 宁波博威合金材料股份有限公司 Copper alloy with excellent bending performance and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613857A (en) * 1984-06-18 1986-01-09 Furukawa Electric Co Ltd:The Copper alloy for wiring connector
JPH0219433A (en) * 1988-07-05 1990-01-23 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH04231444A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Production of electrifying material
JPH04231432A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Electrifying material
JP2000119779A (en) * 1998-10-15 2000-04-25 Dowa Mining Co Ltd Copper alloy for lead frame excellent in etching workability and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613857A (en) * 1984-06-18 1986-01-09 Furukawa Electric Co Ltd:The Copper alloy for wiring connector
JPH0219433A (en) * 1988-07-05 1990-01-23 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH04231444A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Production of electrifying material
JPH04231432A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Electrifying material
JP2000119779A (en) * 1998-10-15 2000-04-25 Dowa Mining Co Ltd Copper alloy for lead frame excellent in etching workability and its production

Also Published As

Publication number Publication date
CN101275190A (en) 2008-10-01
JP4750601B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP6155405B2 (en) Copper alloy material and method for producing the same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4937628B2 (en) Copper alloy with excellent hot workability
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4175920B2 (en) High strength copper alloy
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2008056974A (en) Copper alloy superior in hot workability
JP4750602B2 (en) Copper alloy with excellent hot workability
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
KR100885824B1 (en) Copper alloy having superior hot workability and method for producing same
JP3755272B2 (en) Manufacturing method of high strength and high conductivity copper alloy
KR100885825B1 (en) Copper alloy having superior hot workability and method for producing same
TWI384083B (en) High-strength, high-conductivity copper alloy with excellent hot workability
JP2008081817A (en) Cu-Cr-Si-BASED ALLOY FOIL
JPH1136056A (en) Production of copper alloy material for electronic equipment
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees