JPS6360052A - Production of rapidly cooled metal - Google Patents

Production of rapidly cooled metal

Info

Publication number
JPS6360052A
JPS6360052A JP20287786A JP20287786A JPS6360052A JP S6360052 A JPS6360052 A JP S6360052A JP 20287786 A JP20287786 A JP 20287786A JP 20287786 A JP20287786 A JP 20287786A JP S6360052 A JPS6360052 A JP S6360052A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
ribbon
droplet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20287786A
Other languages
Japanese (ja)
Other versions
JPH0620612B2 (en
Inventor
Tsukasa Shiomi
塩見 司
Hidetoshi Inoue
秀敏 井上
Katsuyuki Yoshikawa
吉川 克之
Tsuneyuki Nakazono
中園 常幸
Kunio Kawabata
川端 邦男
Yuichi Ando
安堂 優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP20287786A priority Critical patent/JPH0620612B2/en
Publication of JPS6360052A publication Critical patent/JPS6360052A/en
Publication of JPH0620612B2 publication Critical patent/JPH0620612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To simply prevent development of deteriorated ribbon by detecting unstabilization or droplet of molten metal jetting and blowing away rapidly cooled solidified material toward reversing direction to flying direction. CONSTITUTION:In order to detecting the condition, which the molten metal jetting becomes to the unstabilization or droplet, a flood-light 10 for photoelectric switch is arranged at gas injecting pipe 8 side and on the other side, a receiver 12 for photoelectric switch is arranged as facing at a receiving vessel 9 side. When the molten metal jetting becomes to the droplet, it is detected as photoelectric change, and by opening a solenoid valve 14 arranged to the gas injecting pipe 8 through a controller 13, inert gas is injected from the gas injecting pipe 8, to receive the droplet in the vessel 9 by flying away. In this way, the mixing of the deteriorated ribbon into good quality ribbon or of slow cooling powder is prevented by simple equipment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回転ロール上に小径ノズルを用いて溶融金属を
噴射して急冷する凝固材(リボン、テープ、フレーク等
)の製造方法の改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an improvement in a method for producing solidified materials (ribbons, tapes, flakes, etc.) in which molten metal is rapidly cooled by injecting it onto a rotating roll using a small-diameter nozzle. It is something.

(従来技術とその問題点) 溶融金属を急冷凝固し、得られた急冷材を固化成形して
種々の製品を製造する方法は、従来の溶解鋳造法(以下
1/M法と略記)に比べ、(1)合金元素の種類及び添
加量を大幅に増大することができ、(2)結晶粒の微細
化及び第二相粒子の微細分散等が促進されるため、従来
の11M法では得ることのできない新合金の開発が期待
できるため、最近特に注目を集めている。
(Prior art and its problems) Compared to the conventional melting and casting method (hereinafter abbreviated as 1/M method), the method of manufacturing various products by rapidly cooling and solidifying molten metal and solidifying and molding the obtained rapidly solidified material is , (1) The types and amounts of alloying elements added can be greatly increased, and (2) crystal grain refinement and fine dispersion of second phase particles are promoted, which cannot be obtained with the conventional 11M method. Recently, it has been attracting particular attention as it is expected to lead to the development of new alloys that cannot be used.

ところで、この種の急冷凝固技術を促進させて゛いくう
えで特に重要なことは、原料となる急冷凝固材を如何に
効率良く大量に且つ安定して製造するかということであ
り、こうした要請に答えるべく種々の方法及び装置が提
案されている。
By the way, what is particularly important in promoting this type of rapid solidification technology is how to efficiently produce the rapid solidification material, which is the raw material, in large quantities and stably. Various methods and devices have been proposed for this purpose.

現在比較的汎用されているのは、単ロール法、双ロール
法であり、特に単ロール法は設備的にも比較的単純であ
るため、最らよく利用されている。
Currently, the single-roll method and the twin-roll method are relatively widely used, and the single-roll method in particular is the most commonly used because it is relatively simple in terms of equipment.

審決の原理、使用方法の概略を簡単に説明すると、第5
図に示すように、まず、誘導加熱コイルあるいは加熱ヒ
ーター等の加熱装置5を有する密閉型るつぼ4内で溶解
された金属溶fhlは、ガス導入管(通常A r 、 
N を等の不活性ガスを使用)3により導入された不活
性ガスにより加圧され、小径のノズル2(通常0.2〜
1 、0 miφ)を通って噴射され、金属溶湯ジェッ
ト6が形成される。金属溶湯ジェット(以下ジェット)
6は、ノズル2の直下に配置された回転ロール7の面上
で薄帯状に引き伸ばされると同時に、ロールからの急激
な奪熱効果により急冷凝固されてリボンRを形成した後
、回収容器あるいは巻取装置等へ送られ回収される(一
般に、メルトスピニング(Melt  S pinni
ng)法と呼ばれている)。
To briefly explain the principle of the trial decision and how to use it, the fifth
As shown in the figure, first, the metal melt fhl is melted in a closed crucible 4 equipped with a heating device 5 such as an induction heating coil or a heating heater.
(Using an inert gas such as N) 3 is pressurized by an inert gas introduced through a small diameter nozzle 2 (usually 0.2~
1,0 miφ) to form a molten metal jet 6. Molten metal jet (hereinafter referred to as jet)
6 is stretched into a thin strip on the surface of a rotating roll 7 placed directly below the nozzle 2, and at the same time is rapidly solidified by the rapid heat removal effect from the roll to form a ribbon R. After that, the ribbon R is stored in a collection container or rolled. It is sent to a collecting device and collected (generally, melt spinning
ng) law).

かかる単ロール法においては、メルトスピニング方式を
採用して、均質な連続リボンを製造するためには如何に
安定したジェットを形成させるかが重要因子の一つであ
り、そのためにはノズル/ロール間距離(12)を極力
小さくして操業するのが普通である。
In such a single roll method, one of the important factors is how to form a stable jet in order to manufacture a homogeneous continuous ribbon using the melt spinning method. It is normal to operate with the distance (12) as small as possible.

また、生産性を上げるため、第8図に示す如く、ノズル
を複数化して同時に多数のリボンRを得ることも行なわ
れる。
Furthermore, in order to increase productivity, as shown in FIG. 8, a plurality of nozzles are used to obtain a large number of ribbons R at the same time.

しかしながら、この種のノズル径は0.2〜1,0II
IIIlφといった小径のため非常に閉塞し易いもので
あり、溶湯中に含有された介在物(酸化物、耐火材、酸
化膜等)により、比較的頻繁に閉塞してしまう。閉塞の
原因としては、上記以外に、噴射開始前るつぼ内で溶解
・保持中にノズルを通じて流れ込む大気等によるノズル
近傍の溶湯の酸化等がある。
However, this kind of nozzle diameter is 0.2~1,0II
Because of its small diameter of IIIlφ, it is very easily clogged, and is relatively frequently clogged by inclusions (oxides, refractory materials, oxide films, etc.) contained in the molten metal. In addition to the above, causes of blockage include oxidation of the molten metal near the nozzle due to air flowing through the nozzle during melting and holding in the crucible before injection starts.

こうした原因によりノズルが閉塞(ノズルの一部もしく
は全部)が生じた場合、噴射されるジェットは不安定と
なり、例えば■流速の変動■流径の縮小■噴射角度の変
動(第6図(a))■ジェットが形成されず滴下状態と
なる(第6図(b))■完全閉塞による噴射不能といっ
た現象が起こる。その結果、■〜■の軽微な場合には初
期目的と異なる品質のリボンが出来たり、■〜■の重度
の場合、あるいは■の場合にはリボンが形成されなくな
るばかつか、第7図に示す如くロール面上で不安定ジェ
ット又は滴下溶滴がはじき飛ばされ小滴となって飛散し
、第図8の場合のように複数ノズルを採用した時には隣
接の健全なリボンに一部が付着したり、また一部は回収
容器または巻取装置に混入することになる。このような
飛散小滴はロール面上で急冷凝固したものではなく、ロ
ール面上での反射飛行中に周囲の雰囲気ガスにより奪熱
凝固するため、冷却速度が非常に遅いものであり(以下
徐冷粉という)、徐冷粉が付着、混入したリボンはその
後の固化成形材中で組織的不均一の原因となるため、特
性劣化を引き起こし、良好な最終製品が得られなくなる
If the nozzle becomes clogged (part or all of the nozzle) due to these reasons, the ejected jet will become unstable, such as ■ Fluctuations in flow velocity ■ Reduction in flow diameter ■ Fluctuations in injection angle (Figure 6 (a)) ) ■ No jet is formed and a dripping state occurs (Fig. 6(b)) ■ Phenomena such as complete blockage and inability to inject occur. As a result, in the case of minor cases of ■ to ■, a ribbon with a quality different from the initial purpose may be formed, and in the case of severe cases of ■ to ■, or in the case of ■, the ribbon may not be formed, as shown in Figure 7. As shown in Fig. 8, unstable jets or dripping droplets are repelled and scattered as small droplets on the roll surface, and when multiple nozzles are used as in the case of Fig. 8, some of them may adhere to adjacent healthy ribbons. In addition, some of it will end up in the collection container or winding device. Such scattered droplets are not rapidly solidified on the roll surface, but are solidified by heat absorption by the surrounding atmospheric gas during reflection flight on the roll surface, so the cooling rate is very slow (hereinafter referred to as slow droplets). Ribbons to which slow-cooled powder (referred to as cold powder) and slow-cooled powder are attached or mixed cause structural non-uniformity in the solidified molded material thereafter, causing property deterioration and making it impossible to obtain a good final product.

特に、多穴ノズルで連続リボンを生産する場合、複数個
のノズルの1個でも前述の様な閉塞が起こり、ジェット
が不安定化する(第8図)と、残りの正常なノズルから
製造されるリボンまでも品質が劣化してしまう。そのた
め、これまではそのチャージで得られた製品を全量廃却
するか、または閉塞(もしくはジェットの不安定)が発
見された場合は直ちに操業を停止する等の対策を取って
おり、歩留まりすなわち生産性低下の大きな原因であっ
た。この様な生産性の低下はAQ、Mg等酸化性の著し
い活性金属で特に著しかった。
In particular, when producing a continuous ribbon using a multi-hole nozzle, if even one of the multiple nozzles becomes clogged as described above and the jet becomes unstable (Figure 8), the remaining normal nozzles will be used to produce a continuous ribbon. The quality of even the ribbons used will deteriorate. To this end, we have taken measures such as discarding all the products obtained from the charge, or immediately stopping operations if a blockage (or jet instability) is discovered. It was a major cause of sexual decline. This decrease in productivity was particularly significant for highly oxidizing active metals such as AQ and Mg.

そこで、生産性低下を防ぐためには、ジェットの不安定
となった閉塞ノズルを閉じる必要があるが、溶湯ノズル
の開閉にスライドノズルあるいは浸漬式のストッパー等
を適用した場合、前者はノズル/ロール間の小間隙(通
常10mm以下)に駆動するノズルを取り付けざるを得
す、技術的に不可能と言えないまでも高度なストッパー
加工技術とその駆動技術が必要となり、設備費の高騰を
招くことになる。特に近年、品質向上の要求からリボン
の酸化を抑えるため、気密性チャンバー内の不活性ガス
雰囲気中でリボンの製造を行う必要が生じており、この
場合、気密性ヂャンバー内に上記の駆動ストッパーを設
は且つその制御を行うことは益々困難となり、また高価
な設備が必要となることは言うまでもない。また、生産
性をさらに向上させるため、10穴、20穴といった多
数のノズルに各々独立して駆動ストッパーを取り付ける
ことも設備の高騰を招くことは明らかである。
Therefore, in order to prevent a drop in productivity, it is necessary to close the blocked nozzle where the jet has become unstable. However, if a slide nozzle or immersion stopper is used to open and close the molten metal nozzle, the former will close between the nozzle and the roll. It is necessary to install a driving nozzle in a small gap (usually 10 mm or less), which requires advanced stopper processing technology and its driving technology, although it is technically impossible, which leads to a rise in equipment costs. Become. Particularly in recent years, in order to suppress ribbon oxidation due to demands for improved quality, it has become necessary to manufacture ribbons in an inert gas atmosphere inside an airtight chamber. Needless to say, it is becoming increasingly difficult to set up and control the equipment, and expensive equipment is required. Furthermore, in order to further improve productivity, it is clear that installing drive stoppers independently to each of a large number of nozzles, such as 10 holes and 20 holes, will also lead to a rise in equipment costs.

後者の場合についても同様、多数の上下駆動式ストッパ
ーを各ノズルに独立して配設することは設備の複雑性、
高価格を招くことになる。
Similarly, in the latter case, arranging a large number of vertically driven stoppers independently for each nozzle increases the complexity of the equipment.
This will lead to high prices.

また、前者、後者いずれの場合にも操業終了後ストッパ
ーの交換等、メンテナンス上の煩わしさによる生産性の
低下も否めない。
Furthermore, in either the former or the latter case, it is undeniable that productivity decreases due to troublesome maintenance such as replacing the stopper after the end of the operation.

さらに、両者いずれの方式でも、数十穴といった非常に
多数のノズルで生産性を上げようとした場合、ストッパ
ーを配設する関係上、ノズル間隙を10mn+、20m
mと広くせざるを得ず、そのためのるつぼ、溶解炉等の
大型化を招くといった不利益も発生する。
Furthermore, in both methods, when trying to increase productivity with a very large number of nozzles, such as several tens of holes, the nozzle gap must be set to 10mm+ or 20mm due to the provision of stoppers.
m, which has the disadvantage of increasing the size of the crucible, melting furnace, etc.

(発明の目的) 本発明は、メルトスピニング法等で、るつぼ内金属溶湯
を小径ノズルから溶湯ジェットとして噴射し、該ノズル
直下に配置された回転ロール上で急冷凝固させてリボン
、テープ、フレーク等の凝固材を製造するにあたり、ノ
ズル閉塞から起こるジェットの不安定に起因した不良リ
ボンの発生を、極めて簡単に且つ低価格の設備で防止す
ることにより、生産性・歩留りに優れた技術を提供する
ことを目的とする。
(Object of the invention) The present invention uses a melt spinning method or the like to inject molten metal in a crucible as a molten metal jet from a small diameter nozzle, rapidly solidify it on a rotating roll placed directly below the nozzle, and produce ribbons, tapes, flakes, etc. To provide a technology with excellent productivity and yield by preventing the occurrence of defective ribbons due to jet instability caused by nozzle blockage in the production of coagulated materials in an extremely simple and low-cost equipment. The purpose is to

(発明の目的を達成するための手段) 本発明は、るつぼ内金属溶湯を小径ノズルから溶湯ジェ
ットとして噴射し、該ノズル直下に配置された回転ロー
ル上で急冷凝固させてリボン、テープ、フレーク等の凝
固材を製造するにあたっては、金属溶湯ジェットが不安
定化または液滴化するときを検出し、上記ノズルと回転
ロール間に凝固材飛行方向に平行にかつ反対方向にガス
を噴射して、上記ノズルより噴射される不安定溶湯ジェ
ットあるいは溶滴を急冷凝固材の飛行方向とは反対方向
に吹き飛ばずようにすると、ノズル閉塞から起こるジェ
ットの不安定に起因した不良リボンの発生を、極めて簡
単に且つ低価格の設備で防止することができることを見
出し、完成したものである。
(Means for Achieving the Object of the Invention) The present invention involves injecting molten metal in a crucible as a molten metal jet from a small-diameter nozzle, rapidly solidifying it on a rotating roll placed directly below the nozzle, and forming ribbons, tapes, flakes, etc. In producing the coagulating material, detecting when the molten metal jet becomes unstable or turning into droplets, and injecting gas between the nozzle and the rotating roll parallel to and in the opposite direction to the coagulating material flying direction, By preventing the unstable molten metal jet or droplets injected from the above nozzle from being blown away in the opposite direction to the flight direction of the rapidly solidified material, it is extremely easy to prevent the generation of defective ribbons due to instability of the jet caused by nozzle blockage. It was discovered that this can be prevented using low-cost equipment.

以下、本発明を添付図面に示す具体例に基づき、詳細に
説明する。
Hereinafter, the present invention will be described in detail based on specific examples shown in the accompanying drawings.

(実施例) 第1図は本発明方法を実施するための装置の概略立面図
であり、第5図に示す従来の単ロール法と同様、加熱装
置5を有する密閉型るつぼ4内で溶解された金属溶ti
h lは、ガス導入管(通常Ar。
(Example) FIG. 1 is a schematic elevational view of an apparatus for carrying out the method of the present invention. Similar to the conventional single roll method shown in FIG. metal molten ti
hl is a gas introduction pipe (usually Ar).

N1等の不活性ガスを使用)3により導入された不活性
ガスにより加圧され、小径のノズル2(通常0.2〜1
.Ommφ)を通って噴射され、形成される金属溶湯ジ
ェット(以下ジェット)6は、ノズル2の直下に配置さ
れた回転ロール7の面上で薄帯状に引き伸ばされると同
時に、ロールからの急激な奪熱効果により急冷凝固され
た後、回収容器あるいは巻取装置等へ送られ回収される
ようになっている。但し、図1.2は複数ノズル採用の
場合の例である。
(Using an inert gas such as N1) 3 is pressurized by the inert gas introduced through the small diameter nozzle 2 (usually 0.2 to 1
.. The molten metal jet (hereinafter referred to as jet) 6 that is injected and formed through the nozzle 2 is stretched into a thin strip on the surface of the rotating roll 7 placed directly below the nozzle 2, and at the same time is rapidly deprived of the roll. After being rapidly solidified by thermal effects, it is sent to a collection container or winding device and collected. However, Figure 1.2 is an example in which multiple nozzles are employed.

本発明においては、第1図および第2図に示すように、
上記各ノズル2.・・・と回転ロール7間に、リボン飛
行方向に平行に、即ちロール回転軸方向に垂直に、且つ
噴射口がリボン飛行方向と反対方向となるように小径の
ガス噴射管8.・・・を配置する一方、該ガス噴射管8
に対向して吹き飛ばされた飛沫を受け、収納する容器9
を設ける。
In the present invention, as shown in FIGS. 1 and 2,
Each of the above nozzles 2. ... and the rotating roll 7, a small-diameter gas injection pipe 8 is installed parallel to the ribbon flight direction, that is, perpendicular to the roll rotation axis direction, and with the injection port in the opposite direction to the ribbon flight direction. ..., while the gas injection pipe 8
Container 9 to receive and store droplets blown away from the
will be established.

上記噴射管8の管径は、操業時に設定するノズル/ロー
ル間距離gより小さくすることはもちろんであるが、対
象とするノズルから正常にリボンが形成されている間は
、リボンの飛行を妨げない範囲でその管径を選べば良い
The diameter of the injection tube 8 is of course smaller than the nozzle/roll distance g set during operation, but it also prevents the ribbon from flying while the ribbon is being formed normally from the target nozzle. All you have to do is choose the pipe diameter within the range.

また、その取付位置に関しては、上記リボンの飛行の障
害とならぬ様、極力ノズル側に取付けるのがよく、要は
障害とならぬ範囲でノズル/ロール間に配設すれば良い
。更に、噴射管8の先端位置、噴射圧について説明する
と、まず、先端位置は不安定ジェット又は滴下溶滴を効
率良く、且つ確実に吹き飛ばずために、極力ノズルに近
接させる方が好ましいが、管径、装置の構造、取付方法
、操業のためのノズルの監視等の制約から一定の距離を
確保する必要が生じた場合には、該噴射管からの噴射ガ
スが、隣接ノズルのジェットに作用してジェットの安定
性を乱さない範囲まで後退させれば良い。また、噴射管
8に導入するガスの圧力は、不安定ジェット又は滴下溶
滴を確実にリボン飛行方向と反対側に吹き飛ばすために
は大きくする方が有利であるが、大きくし過ぎると導入
ガスの浪費、隣接ジェットへの悪影響、チャンバー内で
の無用なガス対流による吹き飛ばされた微粉のリボンへ
の混入等が起こるため、収納容器9に確実に送り込める
程度の圧力を選定すれば良い。しかし、圧力過小の場合
は、吹き飛ばしが不十分となり、ジェット又は滴下溶滴
の一部又は全部がロール面上に落下し、前述の不具合を
発生するので、注意を要する。
Regarding the mounting position, it is best to install it as close to the nozzle side as possible so as not to interfere with the flight of the ribbon, and in short, it can be placed between the nozzle and the roll as long as it does not become an obstacle. Furthermore, to explain the tip position and injection pressure of the injection tube 8, firstly, it is preferable that the tip position be as close to the nozzle as possible in order to efficiently and reliably blow away unstable jets or dripping droplets. If it becomes necessary to maintain a certain distance due to constraints such as the diameter, equipment structure, installation method, or nozzle monitoring for operation, the injection gas from the injection pipe may act on the jet of the adjacent nozzle. All you have to do is move it back to a range that does not disturb the stability of the jet. In addition, it is advantageous to increase the pressure of the gas introduced into the injection tube 8 in order to reliably blow off unstable jets or dripping droplets in the opposite direction to the ribbon flight direction, but if it is too high, the pressure of the introduced gas Since waste, adverse effects on adjacent jets, and contamination of the blown fine powder into the ribbon due to unnecessary gas convection within the chamber occur, a pressure that can reliably feed the powder into the storage container 9 may be selected. However, if the pressure is too low, the blowing will not be sufficient and some or all of the jet or dripping droplets will fall onto the roll surface, causing the above-mentioned problems, so care must be taken.

他方、金属溶湯ジェットが不安定化(第6図(a))ま
たは液滴化(第6図(b))となった状態を検出するた
めに、ガス噴射管8側に光電スイッチ用投光器IOを配
置する一方、収納容器9側には光電スイッチ用受光器1
2を対向配置する。金属溶湯ジェットが液滴となると、
かかる状態は光量変化となって検出され、制御機器I3
を介してガス噴射管8に設けられた電磁バルブ14を解
放してガス噴射管8から不活性ガスを噴射し、液滴を容
器9内に吹きとばして収納するようになっている。図面
では、投光器および受光器の冷却および飛沫粉の付着を
避けるため、投光器10はガス噴射管内に内蔵され、受
光器12前面には不活性ガスを供給する配管15が施さ
れている。なお、IIは投光用電源である。
On the other hand, in order to detect when the molten metal jet becomes unstable (FIG. 6(a)) or becomes droplets (FIG. 6(b)), a photoelectric switch floodlight IO is installed on the gas injection pipe 8 side. is placed, while a photoelectric switch receiver 1 is placed on the side of the storage container 9.
2 are placed facing each other. When the molten metal jet turns into droplets,
Such a state is detected as a change in the amount of light, and the control device I3
The electromagnetic valve 14 provided in the gas injection pipe 8 is opened via the gas injection pipe 8 to inject inert gas from the gas injection pipe 8, and the droplets are blown away and stored in the container 9. In the drawing, the projector 10 is housed in a gas injection tube, and a pipe 15 for supplying inert gas is provided in front of the receiver 12 in order to cool the projector and receiver and to avoid adhesion of splashed powder. In addition, II is a power source for light projection.

上記光電検出に代え、第3図(a)および(b)に示す
ように、赤外線撮像装置20を使用してもよい。
Instead of the photoelectric detection described above, an infrared imaging device 20 may be used as shown in FIGS. 3(a) and 3(b).

この場合は、カメラ部をロール前上方に配置し、複数本
のリボン温度を常時測定するようにすると、液滴発生時
(第3図(b))にはロール表面温度(通常、水冷効果
により200〜250°Cに低下)が測定される結果、
飛行リボンの表面温度(通常300〜500℃)を測定
する場合(第3図(a))に比し低温となるので、画像
解析に上り液滴発生時を検出することができる。
In this case, if the camera section is placed above the front of the roll and the temperature of multiple ribbons is constantly measured, the roll surface temperature (normally due to the water cooling effect) when droplets are generated (Fig. 3 (b)) 200-250°C) is measured.
Since the surface temperature of the flying ribbon (normally 300 to 500° C.) is lower than that in FIG. 3(a), it is possible to detect when a droplet is generated by image analysis.

なお、装置構造は金属の種類、操業条件(ノズル径、ノ
ズル/ロール間距離、隣接ノズル間距離等)に応じて適
宜決定すれば良い。
Note that the device structure may be appropriately determined depending on the type of metal and operating conditions (nozzle diameter, nozzle/roll distance, distance between adjacent nozzles, etc.).

以上は単ロール法の場合について本発明を説明したもの
であるが、双ロール法においても、ノズルをロール上面
より上側に配置して実施する場合、第4図に示すように
して適用可能である。同一部材には同一番号を付し、説
明を省略する。
Although the present invention has been explained above in the case of a single roll method, it can also be applied to a double roll method when the nozzle is placed above the top surface of the roll as shown in Fig. 4. . Identical members are given the same numbers and their explanations will be omitted.

(製造例) 八ρ−8%Fe−8%(La%Ce)合金を使用し、本
発明方法でリボンを製造する一方、本発明を適用しない
場合とで、リボンの製造状況、リボンの品質を比較調査
した結果は、以下に示す表の通りであった。
(Manufacturing example) Ribbon manufacturing conditions and quality of ribbon are manufactured using the method of the present invention using the 8ρ-8%Fe-8% (La%Ce) alloy, and when the present invention is not applied. The results of a comparative investigation are shown in the table below.

尚、本調査実施に当たって主要条件は以下の通りである
The main conditions for conducting this study are as follows.

(a)リボン製造条件:溶解量=3に9ノズル径=0.
5闘φ ノズル数、ノズル間隔 =前記表 ロール径=300mmφ ロール回転数= 2500rpm ノズル/ロール間距離 =7mm (b)本発明実施条件:ガス噴射径−3曲ガス噴射管先
端物位置 =ノズル中心より2mm 噴射圧= 2 、0 kg/ mm” 噴射ガス=Ar (発明の作用効果) 以上の説明で明らかなように、本発明によれば、ノズル
閉塞から起こる不安定ジェットあるいは滴下溶滴をリボ
ン飛行方向と反対方向に吹き飛ばし、良質リボン中への
劣質リボンあるいは徐冷粉の混入を極めて簡単な設備で
防止できる様にしたので、従来全量廃却あるいは操業中
止をせざるを得なかった場合でも、そのまま操業を継続
でき、且つ良質のリボンのみを回収できるようにしたの
で、急冷凝固リボンの品質ならびに生産性を著しく高め
得ることになる。
(a) Ribbon manufacturing conditions: melting amount = 3, 9 nozzle diameter = 0.
5 to φ Number of nozzles, nozzle spacing = above-mentioned front roll diameter = 300 mm φ Roll rotation speed = 2500 rpm Nozzle/roll distance = 7 mm (b) Present invention implementation conditions: Gas injection diameter - 3 curved gas injection pipe tip position = nozzle center 2mm Injection pressure = 2, 0 kg/mm” Injection gas = Ar (Operations and Effects of the Invention) As is clear from the above explanation, according to the present invention, unstable jets or dripping droplets caused by nozzle blockage are reduced to ribbons. By blowing in the opposite direction to the flight direction, we have made it possible to prevent inferior quality ribbons or slow-cooled powder from mixing with good quality ribbons using extremely simple equipment, even in cases where conventionally the entire amount had to be disposed of or operations had to be discontinued. Since the operation can be continued as is and only high-quality ribbons can be recovered, the quality and productivity of rapidly solidified ribbons can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の概略を示す
立面図、第2図は第1図の■−■線断面図、第3図は赤
外線撮像装置にて液滴発生状態を検出する場合の作動説
明図、第4図は双ロール法に本発明を適用した場合の装
置の概要を示す立面図、第5図は従来の単ロール法の装
置構成を示す立面図、第6図(a)及び(b)はそれぞ
れ金属溶湯ジェットの噴射角変動状態および液滴下現象
を示す各説明図、第7図は液滴化による飛沫形成状態を
示す説明図、第8図は飛沫(徐冷粉)形成によって隣接
リボンが劣化される現象を示す説明図である。 ■・・・金属溶湯、2・・・小径ノズル、4・・・密閉
るつぼ、6・・・金属溶湯ジェット、7・・・回転ロー
ル、訃・・ガス噴射管、IO・・・投光器、12・・・
受光器、20・・・赤外線撮像装置、 R・・・リボン、L・・・飛沫。 特許出願人 アルミニウム粉末冶金技術研究組合化 理
 人 弁理士 青白 葆 ばか2名筑4図 第7図 雷QFT R/
Fig. 1 is an elevational view schematically showing an apparatus for carrying out the method of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 shows the state of droplet generation using an infrared imaging device. An explanatory diagram of the operation in the case of detection, FIG. 4 is an elevation view showing the outline of the device when the present invention is applied to the twin roll method, and FIG. 5 is an elevation view showing the device configuration of the conventional single roll method. FIGS. 6(a) and (b) are explanatory diagrams showing the injection angle fluctuation state of the molten metal jet and the droplet drop phenomenon, respectively. FIG. 7 is an explanatory diagram showing the state of droplet formation due to droplet formation, and FIG. FIG. 2 is an explanatory diagram showing a phenomenon in which adjacent ribbons are deteriorated due to the formation of droplets (slowly cooled powder). ■...Metal molten metal, 2...Small diameter nozzle, 4...Sealed crucible, 6...Metal molten metal jet, 7...Rotating roll, butt...Gas injection pipe, IO...Floodlight, 12 ...
Receiver, 20... Infrared imaging device, R... Ribbon, L... Droplets. Patent applicant: Aluminum powder metallurgy technology research association.

Claims (1)

【特許請求の範囲】[Claims] (1)るつぼ内金属溶湯を小径ノズルから溶湯ジェット
として噴射し、該ノズル直下に配置された回転ロール上
で急冷凝固させてリボン、テープ、フレーク等の凝固材
を製造するにあたり、 上記ノズルより噴射される金属溶湯ジェットが不安定化
または液滴化した場合、これを検出し、上記ノズルと回
転ロール間に凝固材飛行方向に平行にかつ反対方向にガ
スを噴射して、上記ノズルより噴射される不安定溶湯ジ
ェットあるいは溶滴を急冷凝固材の飛行方向とは反対方
向に吹き飛ばすようにすることを特徴とする急冷金属の
製造方法。
(1) The molten metal in the crucible is injected as a molten metal jet from a small-diameter nozzle, and is rapidly solidified on a rotating roll placed directly below the nozzle to produce solidified materials such as ribbons, tapes, and flakes. If the molten metal jet becomes unstable or becomes droplets, this is detected, and gas is injected between the nozzle and the rotating roll in parallel to and opposite to the flight direction of the solidified material, and the gas is injected from the nozzle. A method for producing rapidly solidified metal, which comprises blowing out unstable molten metal jets or droplets in a direction opposite to the flight direction of the rapidly solidified material.
JP20287786A 1986-08-28 1986-08-28 Quenched metal manufacturing method Expired - Lifetime JPH0620612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20287786A JPH0620612B2 (en) 1986-08-28 1986-08-28 Quenched metal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20287786A JPH0620612B2 (en) 1986-08-28 1986-08-28 Quenched metal manufacturing method

Publications (2)

Publication Number Publication Date
JPS6360052A true JPS6360052A (en) 1988-03-16
JPH0620612B2 JPH0620612B2 (en) 1994-03-23

Family

ID=16464677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20287786A Expired - Lifetime JPH0620612B2 (en) 1986-08-28 1986-08-28 Quenched metal manufacturing method

Country Status (1)

Country Link
JP (1) JPH0620612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761069A (en) * 2020-09-01 2020-10-13 西安赛隆金属材料有限责任公司 Powder making equipment and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761069A (en) * 2020-09-01 2020-10-13 西安赛隆金属材料有限责任公司 Powder making equipment and method

Also Published As

Publication number Publication date
JPH0620612B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JPH05214411A (en) Controlled process for producing atomized liquid metal drops
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
JP2721281B2 (en) Cooling method and mold for continuous casting
JPS6360052A (en) Production of rapidly cooled metal
JPH0523800A (en) Method and apparatus for producing rapid solidified alloy foil
CN113333697B (en) Three-roller thin belt continuous casting machine with stripping roller
CN1330440C (en) Strip temperature regulating device in a continuous metal strip casting plant
CN208322027U (en) A kind of amorphous magnesium alloy process units
CN219324741U (en) Ingot casting device for smelting bottom drop-down crystallization by utilizing water-cooled crucible
JPH0729187B2 (en) Quenched metal ribbon guiding / transporting device
JPS60108143A (en) Production of quenched thin metallic strip by single roll method
JPH09253804A (en) Apparatus for producing metallic thin strip
JPS62124241A (en) Manufacture of rapidly-cooled foil of high-melting point aluminum alloy
JPH02247306A (en) Device for removing metal for nozzle charging nd alloy
JPH06179070A (en) Method and device for jet molding of metal
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
CN114309561A (en) Alloy casting equipment and method
JPH0252582B2 (en)
JPS6336956A (en) Crucible having molten metal injection mechanism for producing ultra rapidly cooled metal
JP2942644B2 (en) Control method for continuous outflow of molten material
JPH03254338A (en) Continuous casting method
JPS60199551A (en) Method and device for producing thin metallic strip
JP3651538B2 (en) Metal strip manufacturing apparatus and method
JPS6213253A (en) Dropping type casting device
JPS59133944A (en) Method and device for producing light-gage alloy strip