JPH02290655A - Manufacture of cu-al-ni series alloy fine wire - Google Patents

Manufacture of cu-al-ni series alloy fine wire

Info

Publication number
JPH02290655A
JPH02290655A JP11004689A JP11004689A JPH02290655A JP H02290655 A JPH02290655 A JP H02290655A JP 11004689 A JP11004689 A JP 11004689A JP 11004689 A JP11004689 A JP 11004689A JP H02290655 A JPH02290655 A JP H02290655A
Authority
JP
Japan
Prior art keywords
molten metal
drum
alloy
injection pressure
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004689A
Other languages
Japanese (ja)
Inventor
Giichi Amahiro
義一 天弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP11004689A priority Critical patent/JPH02290655A/en
Publication of JPH02290655A publication Critical patent/JPH02290655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To easily produce an alloy fine wire having round cross sectional face by regulating peripheral velocity of a drum and injection pressure of molten metal to satisfy the specific inequality at the time of injecting the molten Cu-Al- Ni series alloy containing the specific ratios of Al and Ni into cooling liquid layer in the rotating drum. CONSTITUTION:The Cu-Al-Ni series alloy composed of 11-15wt.% Al, 1-5% Ni and if necessary, 1-5% Mn, 0.1-5% Ti and the balance Cu is melted. This molten metal is injected into the rotating cooling layer in the rotating drum at the peripheral velocity of the drum and the injection pressure of the molten metal shown in the inequality 360P<1/2=v<=540P<1/2> [v: inner face peripheral velocity (m/s) in the drum, P: injection pressure (kg/cm<2>) of the molten metal]. Further, it is desireable that the molten metal temp. is higher than the m.p. by about 50-200 deg.C and injection nozzle diameter is about 0.05-0.20mm<2> and the injection pressure of the molten metal is >= about 1.0kgf/cm<2>. By this method, the Cu-Al-Ni series alloy fine wire having continuous round shape in the cross section is easily obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はCu−Al−Ni系合金細線の製造方法に関す
る. [従来の技術] Cu−Al−−Ni系合金は、Cu−14%A1−4%
Niなどの成分で、従来から形状記憶効果および超弾性
効果を有する合金として知られ、形状回復温度とその発
生力を利用し、センサとアクチュエー夕の機能を同時に
有するデバイスとして利用されている. しかしながら、このCu−Al−−Ni系合金は極めて
加工性の悪い合金であり、従来から冷間伸線による細線
またはフィラメントの製造は不可能であるとされていた
. また、この合金の加工性の悪さの原因の一つとして、溶
体化処理により結晶粒が粗大化することが挙げられる.
溶体化処理時の結晶粒粗大化防止するため、Tiが添加
され結晶粒の微細化が図られて、冷間加工性は多少改善
されるが、未だ充分でなく、実際上の細線の製造は困難
である.一方、銅系形状記憶合金の細粒化技術として、
急冷凝固による方法が知られており、この方法は溶融状
態の合金を水冷された回転するロールに直接吹き付けて
急冷することにより、瞬時に凝固させるものである.こ
の単ロール法による急冷凝固は、直接短時間に製品が得
られる利点があるが、得られた形状がリボン状であると
いう制約がある.[発明が解決しようとする課題コ 本発明はCu−Al−−Ni系合金から細線を加工する
ことが非常に困難であるという前記のごとき問題点に鑑
みてなされたものであって、断面形状が円形の連続した
細線を得ることのできるCuAl−Ni系合金細線の製
造方法を提供することを目的とする. [課題を解決するための手段] 本発明者等はCu−Al−−Ni系合金細線を得るに、
回転液中紡糸法を使用することを着想し、円形断面を有
する連続細線を得るための最適条件を見出だすことによ
って本発明を完成した。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for manufacturing a Cu-Al-Ni alloy thin wire. [Prior art] Cu-Al--Ni alloy is Cu-14%A1-4%
Containing components such as Ni, it has been known as an alloy that has shape memory and superelastic effects, and is used as a device that simultaneously functions as a sensor and an actuator by utilizing the shape recovery temperature and its generated force. However, this Cu-Al--Ni alloy has extremely poor workability, and it has traditionally been considered impossible to produce thin wires or filaments by cold wire drawing. Additionally, one of the reasons for the poor workability of this alloy is that the crystal grains become coarser due to solution treatment.
In order to prevent crystal grain coarsening during solution treatment, Ti is added to refine the crystal grains and improve cold workability to some extent, but this is still not sufficient and it is difficult to actually manufacture fine wires. Have difficulty. On the other hand, as a grain refinement technology for copper-based shape memory alloys,
A method using rapid solidification is known, in which the molten alloy is quenched by being quenched by directly spraying it onto a water-cooled rotating roll, thereby instantaneously solidifying it. Rapid solidification using this single roll method has the advantage of directly producing a product in a short time, but it has the limitation that the shape obtained is ribbon-like. [Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problem that it is extremely difficult to process thin wires from Cu-Al--Ni alloy, and The purpose of the present invention is to provide a method for manufacturing a CuAl-Ni alloy thin wire that can obtain a continuous thin wire with a circular shape. [Means for Solving the Problems] In order to obtain a Cu-Al--Ni based alloy thin wire, the present inventors
The present invention was completed by devising the idea of using a rotating liquid spinning method and finding optimal conditions for obtaining a continuous fine wire with a circular cross section.

本発明のCu−Al−−Ni系合金細線の製造方法は、
重量比でAl;11〜15%、Ni;1〜5%、Mn・
1〜5%、T i ; 0 . 1 〜5%を含有し、
残部Cuからなる合金を溶融し、次式に示すドラム周速
で四転するドラム内に形成される回転冷却液層中に次式
で示す溶湯噴射圧で前記合金溶湯を噴射することを要旨
とする. 360.rTf≦V≦ 540f丁 ただし、  v:ドラム内面周速(m/s)p−溶湯噴
射圧力(kg/cm2) 回転液中紡糸法に使用される従来の装置を、第1図の正
面図および第2図の側断面図に示す.図において円筒状
のドラム10は、中空の円筒部12と、その一側に取り
付けられ中心部に円形の開口部14を有する冷却液保持
用側板16と、円筒部12の他側の全面を覆う閏塞板1
8とを一体に形成したもので、閉塞板18の中心にはモ
ータ20の出力軸22が固定され、ドラム10は高速で
回転する.高速で回転するドラム10の内周面には冷却
液体が供給され、冷却液体は遠心力により冷却液体層2
4を形成する.溶融金属噴射装置26は縦型の溶湯加熱
炉28と、溶湯加熱炉28の下端に下向きに収り付けら
れた溶湯噴射ノズル30と、溶湯加熱炉28の上部に取
り付けられた溶湯加圧配管32からなり、ドラム10の
開口部14から挿入され回転ドラム10の軸線方向に移
動できるようになっている. この回転液中紡糸装置を使用して金属細線を得るには、
ドラム10を回転して冷却液体を供給してドラム10の
内周面に遠心力により冷却液体層24を形成する.次い
で溶湯加熱炉28に挿入された母合金を溶融し溶融合金
34とし、溶融金属噴射装置26をドラム10の開口部
14から挿入し、溶湯噴射ノズル30を冷却液体層24
の入口端24a上に位置せしめる.次ぎに不活性ガスを
溶湯加圧配管32に送り込んで溶湯加熱炉28内の溶融
合金34の表面を加圧し溶融合金34を溶湯噴射ノズル
30より噴射させると同時に溶融金属噴射装置26は回
転冷却液体層24の入口端24aから奥の端24bに向
けてゆっくり移動する.噴射された溶融合金ジェット流
36は冷却液体層24に噴出され急冷されて金属細線3
8となる.この方法によって、金属細線38は連続的に
形成されて、ドラム10内の回転冷却液体層24の中に
蓄積される. 本発明が適用されるC u − A I− N i合金
には、さらに結晶粒を微細化するため、B.Cr,Zr
またはCeを少量添加すると良い.CuAl−Ni系合
金の溶融温度は、溶融点より50〜200゜C高い温度
とすることが好ましい.溶融温度力慢容融点より50℃
未満高い温度であると、ノズルが閉塞するおそれがあり
、細線の径が不揃いとなるからであり、溶融点より20
0゜Cを超えると、細線が不連続となり、数珠玉状とな
るからである.本発明において用いられる回転液中紡糸
装置のノズル穴径は0.05〜0.20mm2とするこ
とが好ましく、溶湯噴射圧力は1 . 0 kgf /
 cm2以上とすることが好ましい。ノズル穴径が0.
05mm2未満であると、細線の径か細すぎて切断する
ためであり、ノズル径が0.201IIM2を超えると
、冷却速度が不充分となり、細線の径が不揃いとなるか
らである。また、溶湯噴射圧が1 . 0 kFif/
 cm”未満であると、溶湯が充分に噴射されず細線が
不連続となるからである. ドラム内面の周速度Vは、溶湯噴射圧Pとの関係で、前
記式の範囲とすることが好ましい。ドラム内面周速Vが
360f下未満となると、細線の巻き取り速度が遅いの
で細線が波形となり不連続となるからであり、ドラム内
面周速Vが540F丁を超えると溶湯の噴射速度よりも
ドラムの巻き取り速度が大きくなり、細線が短繊維状と
なるからである. [作用] 本発明のCu−Al−−Ni系合金細線の製造方法は、
重量比でAl;11〜15%、Ni;1〜5%、Mn・
1〜5%、Ti;0.1〜5%を含有し、残部Cuから
なる合金を溶融し、次式に示すドラム周速で回転するド
ラム内に形成される回転冷却液層中に次式で示す溶湯噴
射圧で前記合金溶湯を噴射することにより、円形断面を
有する連続したCu−Al−−Ni系合金細線を製造す
ることができる.360,/]  ≦V≦ 540,/
7ただし、  v:ドラム内面周速(m/=)P;溶湯
噴射圧力(kg/c晴2》 [実施例] 本発明の好適な実施例について比較例とともに説明し、
本発明の効果を明らかにする.第1図および第2図に示
す回転液中紡糸装置を使用して、ドラム10を回転して
冷却液体として水を供給してドラム10の内周面に遠心
力により冷却液体J1ff24を形成した。なお、ドラ
ム10は内径は500lIImのものを用いた。次いで
、14%Al−−3%Ni−2%Mn−1%TiのCu
−Al−−Ni系合金を溶湯加熱炉28に挿入し、11
50℃にて溶融し溶融合金34とし、溶融金属噴射装置
26をドラム10の開口部14から挿入し、溶湯噴射ノ
ズル30を冷却液体層24の入口端24a上に位置せし
めた.次ぎに不活性ガスを溶湯加圧配管32に送り込ん
で溶湯加熱炉28内の溶融合金34の表面を加圧し溶湯
噴射圧力が1.5k4/cIll2になるように溶融合
金34をノズル穴径0.15納鰺の溶湯噴射ノズル30
より噴射させると同時に溶融金属噴射装置26は回転冷
却液体層24の入口端24aから奥の端24bに向けて
ゆつくり移動した.その際、ドラムの内面周速を第1表
に示すように5段階に変化させて、ドラム10の内面に
形成された金属細線38の形状を観察した.得られた結
果を第1表に併せてて示した。なお、溶湯噴射圧力が1
 . 5 k)1/ cI@2であるので、360fP
は440、5 4 0/Pは661である。
The method for manufacturing the Cu-Al--Ni alloy thin wire of the present invention includes:
Weight ratio: Al: 11-15%, Ni: 1-5%, Mn.
1-5%, Ti; 0. Contains 1 to 5%,
The gist is to melt an alloy consisting of the remainder Cu and inject the molten alloy into a rotating cooling liquid layer formed in a drum that rotates four times at a circumferential speed of the drum at a molten metal injection pressure shown by the following equation. do. 360. rTf≦V≦ 540f, where: v: drum inner circumferential speed (m/s) p-molten metal injection pressure (kg/cm2) The conventional apparatus used in the rotating liquid spinning method is shown in the front view and in Fig. 1. This is shown in the side sectional view in Figure 2. In the figure, the cylindrical drum 10 includes a hollow cylindrical part 12, a coolant holding side plate 16 attached to one side of the hollow cylindrical part 12 and having a circular opening 14 in the center, and a side plate 16 that covers the entire surface of the other side of the cylindrical part 12. Block board 1
The output shaft 22 of a motor 20 is fixed to the center of the closing plate 18, and the drum 10 rotates at high speed. Cooling liquid is supplied to the inner circumferential surface of the drum 10 rotating at high speed, and the cooling liquid forms a cooling liquid layer 2 due to centrifugal force.
Form 4. The molten metal injection device 26 includes a vertical molten metal heating furnace 28, a molten metal injection nozzle 30 installed downward at the lower end of the molten metal heating furnace 28, and a molten metal pressurizing pipe 32 attached to the upper part of the molten metal heating furnace 28. It is inserted through the opening 14 of the drum 10 and is movable in the axial direction of the rotating drum 10. To obtain thin metal wire using this rotating liquid spinning device,
The drum 10 is rotated to supply cooling liquid to form a cooling liquid layer 24 on the inner peripheral surface of the drum 10 by centrifugal force. Next, the master alloy inserted into the molten metal heating furnace 28 is melted to form a molten alloy 34 , the molten metal injection device 26 is inserted from the opening 14 of the drum 10 , and the molten metal injection nozzle 30 is inserted into the cooling liquid layer 24 .
is positioned on the inlet end 24a of the. Next, an inert gas is sent into the molten metal pressurizing pipe 32 to pressurize the surface of the molten alloy 34 in the molten metal heating furnace 28, and the molten metal 34 is injected from the molten metal injection nozzle 30. At the same time, the molten metal injection device 26 rotates the cooling liquid. It moves slowly from the entrance end 24a of the layer 24 toward the inner end 24b. The injected molten alloy jet stream 36 is injected into the cooling liquid layer 24 and rapidly cooled to form the thin metal wire 3.
It becomes 8. By this method, thin metal wires 38 are continuously formed and accumulated in the rotating cooling liquid layer 24 within the drum 10. The Cu-A-I-Ni alloy to which the present invention is applied has B.I. Cr, Zr
Alternatively, it is better to add a small amount of Ce. The melting temperature of the CuAl-Ni alloy is preferably 50 to 200°C higher than the melting point. Melting temperature: 50℃ above the melting point
If the temperature is less than 20 degrees higher than the melting point, the nozzle may become clogged and the diameter of the thin wire may become uneven.
This is because when the temperature exceeds 0°C, the thin lines become discontinuous and become bead-like. The nozzle hole diameter of the rotating liquid submerged spinning device used in the present invention is preferably 0.05 to 0.20 mm2, and the molten metal injection pressure is 1. 0 kgf/
It is preferable to set it as cm2 or more. Nozzle hole diameter is 0.
If the nozzle diameter is less than 0.201 IIM2, the diameter of the thin wire will be too small to be cut, and if the nozzle diameter exceeds 0.201 IIM2, the cooling rate will be insufficient and the diameter of the thin wire will be uneven. Also, the molten metal injection pressure is 1. 0 kFif/
cm", the molten metal will not be sufficiently injected and the thin line will become discontinuous. The circumferential velocity V of the inner surface of the drum is preferably within the range of the above formula in relation to the molten metal injection pressure P. If the drum inner circumferential speed V is less than 360F, the winding speed of the thin wire is slow and the thin wire becomes wavy and discontinuous.If the drum inner circumferential speed V exceeds 540F, the winding speed of the thin wire is slow and the thin wire becomes discontinuous. This is because the winding speed of the drum increases and the thin wire becomes short fiber-like. [Function] The method for producing the Cu-Al--Ni alloy thin wire of the present invention includes
Weight ratio: Al: 11-15%, Ni: 1-5%, Mn.
An alloy containing 1 to 5% Ti, 0.1 to 5% Ti, and the balance consisting of Cu is melted, and the following formula is applied to the rotating cooling liquid layer formed in a drum that rotates at a circumferential speed of the drum as shown in the following formula. By injecting the molten alloy at the molten metal injection pressure shown in , a continuous Cu-Al--Ni based alloy thin wire having a circular cross section can be manufactured. 360,/] ≦V≦ 540,/
7 However, v: drum inner circumferential speed (m/=) P; molten metal injection pressure (kg/c 2) [Example] Preferred embodiments of the present invention will be described together with comparative examples,
The effects of the present invention will be clarified. Using the rotating liquid spinning apparatus shown in FIGS. 1 and 2, the drum 10 was rotated to supply water as a cooling liquid to form a cooling liquid J1ff24 on the inner peripheral surface of the drum 10 by centrifugal force. The drum 10 used had an inner diameter of 500 lIIm. Then 14%Al--3%Ni-2%Mn-1%Ti of Cu
-Al--Ni alloy is inserted into the molten metal heating furnace 28,
The molten alloy 34 was melted at 50° C., and the molten metal injection device 26 was inserted through the opening 14 of the drum 10, and the molten metal injection nozzle 30 was positioned above the inlet end 24a of the cooling liquid layer 24. Next, an inert gas is sent into the molten metal pressurizing pipe 32 to pressurize the surface of the molten alloy 34 in the molten metal heating furnace 28, and the molten alloy 34 is transferred to the nozzle hole diameter 0.5 k4/cIll2 so that the molten metal injection pressure becomes 1.5 k4/cIll2. 15 Nomaji molten metal injection nozzle 30
At the same time, the molten metal injection device 26 slowly moved from the inlet end 24a of the rotating cooling liquid layer 24 toward the inner end 24b. At that time, the shape of the thin metal wire 38 formed on the inner surface of the drum 10 was observed while changing the inner peripheral speed of the drum in five stages as shown in Table 1. The obtained results are also shown in Table 1. In addition, the molten metal injection pressure is 1
.. 5 k) 1/cI@2, so 360 fP
is 440, and 5 4 0/P is 661.

( 以  下  余  白  》 第     1     表 第1表から明らかなように、ドラム内面周速度が360
E丁より小さかった番号1は細線の形状が波形でかつ不
連続であり、またドラム内面周速度が540FTよりも
大きかった番号5は細線形状が短繊維状となって細線が
形成されながった.これに対してドラム内面周速度が3
60,/7より大きく、かつ540,/7より小さかっ
た番号2〜4では、断面円形の連続した細線が得られ、
本発明の効果が確認された. 本発明の製造方法により製造した合金細線は、急冷凝固
され鋳込み状態ではオーステナイト組織であり、超弾性
効果を示すことが確認された.又、この合金細線を数百
度に加熱すると形状記憶効果により鋳込み形4k、すな
わち直線状になった.[発明の効果] 本発明のCuAl−Ni系合金細線の製造方法は、以上
説明したように、冷間仲線により細線を製造することが
困難である該合金に、回転液中紡糸法を採用するととも
に、回転液中紡糸法における溶湯噴射圧力と回転するド
ラムの内面周速度の間の最適条件の範囲を見出だしたも
のであって、従来困難であった、円形断面有するCu−
Al−−Ni系合金細線を容易に製造することを可能に
するものである。また、製造された合金細線は形状記憶
効果と超弾性効果を有し、センサを兼ねたアクチュエー
タとして有用なものである。
(Left below) Table 1 As is clear from Table 1, when the drum inner circumferential speed is 360
Number 1, which was smaller than E, had a wavy and discontinuous thin wire shape, and number 5, which had a drum inner peripheral speed greater than 540FT, had a short fiber shape and was unable to form a fine wire. Ta. On the other hand, the inner peripheral speed of the drum is 3
For numbers 2 to 4, which were larger than 60,/7 and smaller than 540,/7, a continuous thin wire with a circular cross section was obtained,
The effects of the present invention were confirmed. It was confirmed that the thin alloy wire manufactured by the manufacturing method of the present invention has an austenitic structure in the rapidly solidified and cast state, and exhibits a superelastic effect. Furthermore, when this thin alloy wire was heated to several hundred degrees, it became cast-in 4K, that is, straight, due to the shape memory effect. [Effects of the Invention] As explained above, the method for producing a CuAl-Ni alloy thin wire of the present invention employs a rotating liquid spinning method for this alloy in which it is difficult to produce a thin wire using a cold wire. At the same time, we have found the range of optimal conditions between the molten metal injection pressure and the inner circumferential speed of the rotating drum in the rotating liquid spinning method.
This makes it possible to easily manufacture Al--Ni alloy thin wires. In addition, the manufactured thin alloy wire has a shape memory effect and a superelastic effect, and is useful as an actuator that also serves as a sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第IUjJは本発明に使用される装置の正面図、第2図
は同じく側断面図である。 10・ ・ドラム、24・・・冷却液体層、28・・・
溶湯加熱炉、30・・・溶湯噴射ノズル、32・・・溶
湯加圧管、38・・・金属細線第 図 第2図 z4b Z4a
IUjJ is a front view of the apparatus used in the present invention, and FIG. 2 is a side sectional view. 10. Drum, 24... Cooling liquid layer, 28...
Molten metal heating furnace, 30... Molten metal injection nozzle, 32... Molten metal pressurizing pipe, 38... Metal thin wire Figure 2 Z4b Z4a

Claims (2)

【特許請求の範囲】[Claims] (1)重量比でAl:11〜15%、Ni:1〜5%を
含有し、残部Cuからなる合金を溶融し、次式に示すド
ラム周速で回転するドラム内に形成される回転冷却液層
中に次式で示す溶湯噴射圧で前記合金溶湯を噴射するこ
とを特徴とするCu−Al−Ni系合金細線の製造方法
。 360√P≦v≦540√P ただし、v:ドラム内面周速(m/s) P:溶湯噴射圧力(kg/cm^2)
(1) An alloy containing 11 to 15% of Al and 1 to 5% of Ni by weight, with the balance being Cu is melted and is formed in a rotary cooling drum that rotates at the circumferential speed of the drum as shown in the following formula. A method for producing a fine Cu-Al-Ni alloy wire, comprising injecting the molten alloy into a liquid layer at a molten metal injection pressure expressed by the following formula. 360√P≦v≦540√P where v: drum inner circumferential speed (m/s) P: molten metal injection pressure (kg/cm^2)
(2)重量比でAl:11〜15%、Ni:1〜5%、
Mn:1〜5%、Ti:0.1〜5%を含有し、残部C
uからなる合金を溶融し、次式に示すドラム周速で回転
するドラム内に形成される回転冷却液層中に次式で示す
溶湯噴射圧で前記合金溶湯を噴射することを特徴とする
Cu−Al−Ni系合金細線の製造方法。 360√P≦v≦540√P ただし、v:ドラム内面周速(m/s) P:溶湯噴射圧力(kg/cm^2)
(2) Al: 11-15%, Ni: 1-5% by weight,
Contains Mn: 1 to 5%, Ti: 0.1 to 5%, and the balance is C.
A molten alloy consisting of u is melted and the molten alloy is injected into a rotating cooling liquid layer formed in a drum rotating at a circumferential speed of the drum at a molten metal injection pressure shown by the following equation. - A method for producing an Al-Ni alloy thin wire. 360√P≦v≦540√P where v: drum inner circumferential speed (m/s) P: molten metal injection pressure (kg/cm^2)
JP11004689A 1989-04-29 1989-04-29 Manufacture of cu-al-ni series alloy fine wire Pending JPH02290655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004689A JPH02290655A (en) 1989-04-29 1989-04-29 Manufacture of cu-al-ni series alloy fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004689A JPH02290655A (en) 1989-04-29 1989-04-29 Manufacture of cu-al-ni series alloy fine wire

Publications (1)

Publication Number Publication Date
JPH02290655A true JPH02290655A (en) 1990-11-30

Family

ID=14525736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004689A Pending JPH02290655A (en) 1989-04-29 1989-04-29 Manufacture of cu-al-ni series alloy fine wire

Country Status (1)

Country Link
JP (1) JPH02290655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027522A (en) * 2001-09-29 2003-04-07 장우양 Cu-Al-Ni based superelastic alloys wire with unidrectional structure and it's manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027522A (en) * 2001-09-29 2003-04-07 장우양 Cu-Al-Ni based superelastic alloys wire with unidrectional structure and it's manufacturing method

Similar Documents

Publication Publication Date Title
US3845805A (en) Liquid quenching of free jet spun metal filaments
JPS649908B2 (en)
CN1818108A (en) High-strength and conductive thin band of copper alloy and production thereof
JPS63199050A (en) Drawing-up continuous casting method without using mold and its apparatus
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JPH02290655A (en) Manufacture of cu-al-ni series alloy fine wire
JPS594948A (en) Production of ni-ti alloy wire
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
JP4010114B2 (en) Centrifugal casting method
JPS62275561A (en) Production of complex material having excellent high temperature oxidizing resistance and hot workability
US4411713A (en) Shell for a composite roll
JP2916924B2 (en) TiNiCu-based shape memory alloy fine wire and method for producing the same
JPS6315055B2 (en)
SU644599A1 (en) Method of granulating metal melts
JP4038784B2 (en) Non-metallic inclusion refinement method
JPH0371956A (en) Manufacture of alloy fine wire
JP2001107164A (en) Ni-Ti SERIES SHAPE MEMORY ALLOY WIRE ROD AND ITS PRODUCING METHOD
JP2806539B2 (en) Manufacturing method of fine metal wire
JP2001172704A (en) Method of manufacturing metallic flake
JPH04210854A (en) Production of fine alloy wire
JPS6366323A (en) Copper alloy filament and production thereof
JPH0736942B2 (en) Highly tough and highly flexible metal fibers with unidirectional dendritic structure
JPH0366459A (en) Method for continuously casting cast strip
JPS62187546A (en) Production of fine amorphous metallic wire
JPH06104597B2 (en) Metal filament having a bamboo structure and method for producing the same