JPS6315055B2 - - Google Patents

Info

Publication number
JPS6315055B2
JPS6315055B2 JP21753182A JP21753182A JPS6315055B2 JP S6315055 B2 JPS6315055 B2 JP S6315055B2 JP 21753182 A JP21753182 A JP 21753182A JP 21753182 A JP21753182 A JP 21753182A JP S6315055 B2 JPS6315055 B2 JP S6315055B2
Authority
JP
Japan
Prior art keywords
molten metal
chamber
metal
cooling
cooling chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21753182A
Other languages
Japanese (ja)
Other versions
JPS59107752A (en
Inventor
Hisashi Hiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21753182A priority Critical patent/JPS59107752A/en
Publication of JPS59107752A publication Critical patent/JPS59107752A/en
Publication of JPS6315055B2 publication Critical patent/JPS6315055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、金属細線製造装置、特に溶融金属か
ら直接円形断面を有する極細径金属細線を製造す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing thin metal wires, and particularly to an apparatus for manufacturing thin metal wires having a circular cross section directly from molten metal.

金属細線(繊維)は、強化型複合材料、その他
各種機能材料の構成素材として、あるいは細線を
短寸に裁断して得られる金属粉末として多方面に
利用されている。昨今、その用途の拡大・多様化
に伴い、極細径で円形断面を有する長尺の金属細
線が要求されている。
Fine metal wires (fibers) are used in many ways as constituent materials for reinforced composite materials and various other functional materials, or as metal powder obtained by cutting thin wires into short pieces. In recent years, with the expansion and diversification of applications, there has been a demand for long thin metal wires having an extremely small diameter and a circular cross section.

金属溶湯から直接金属細線を製造する方法とし
ては、第3図に示すように、容器a内の金属溶湯
Lに圧力を加え、ノズルnから噴射される溶湯ジ
エツト流を回転する急冷用ロールrに接触させて
急冷させるジエツト急冷法、第4図のように容器
aのノズルnから流出する溶湯流を回転水冷金属
ドラムdに担持させながら冷却する融液引出し法
(メルト・ドラツグ法)、あるいは第5図のよう
に、原料金属mにガラスgを付帯させて加熱コイ
ルcで加熱溶融し、溶融金属を溶融ガラスで包み
込んだ状態で引張りながら細線を形成し、ドラム
eに巻取るテイラー法などが提案されている。ま
た、別法として、金属溶湯のジエツト噴流を冷却
水の中に吹込んで急冷凝固させる水中吹込み法に
ついても種々のこころみがなされている。
As shown in Fig. 3, a method for directly producing fine metal wire from molten metal involves applying pressure to molten metal L in a container a, and passing the molten metal jet stream injected from a nozzle n to a rotating quenching roll r. There is a jet quenching method in which the molten metal is quenched by contact, a melt drag method in which the molten metal flowing out from the nozzle n of a container a is cooled while being supported on a rotating water-cooled metal drum d as shown in Fig. As shown in Figure 5, there is a Taylor method in which raw metal m is attached with glass g, heated and melted by a heating coil c, and the molten metal is wrapped in molten glass to form a fine wire while being pulled, and then wound onto a drum e. Proposed. As an alternative method, various attempts have been made regarding an underwater blowing method in which a jet stream of molten metal is blown into cooling water to rapidly solidify it.

しかしながら、上記のロールやドラムなどの固
体表面で溶融金属を冷却させる方式では、断面の
不定形なリボン状の細線を得ることはできても、
円形断面を有する細線の製造は困難である。この
ような固体表面で、溶融金属の表面張力を利用し
て円形断面を保持させながら凝固させるには、非
常に細い溶融金属を与えねばならず技術的に問題
が多い。テイラー法は、上記の難点はなく、断面
が円形で極細径の細線を得ることができるが、そ
の反面原料金属等の溶融操作が煩らわしく、しか
る細線表面を被覆るガラス層を除去するための後
処理を要するなど、工程が煩瑣で、非能率であ
る。一方、水中吹込み法では、円形・極細径の細
線を形成するに必要な臨界冷却速度以上の急冷凝
固は可能であるが、溶融金属が低粘度で、表面張
力が大きいため、冷媒によるわずかな外乱、外力
を受けて簡単に乱れを生じ、結局円形・極細径の
細線を得ることができず、また不規則に分断する
ので、長尺の細線は得られない。
However, with the above-mentioned method of cooling molten metal on a solid surface such as a roll or drum, although it is possible to obtain a thin ribbon-like wire with an irregular cross section,
The production of thin wires with a circular cross section is difficult. In order to solidify such a solid surface while maintaining a circular cross section using the surface tension of the molten metal, the molten metal must be extremely thin, which is technically problematic. The Taylor method does not have the above-mentioned drawbacks and can obtain thin wires with a circular cross section and an extremely small diameter, but on the other hand, the melting operation of the raw metal etc. is cumbersome, and the glass layer covering the surface of the thin wires must be removed. The process is cumbersome and inefficient, as it requires post-processing. On the other hand, with the underwater blowing method, it is possible to rapidly solidify at a rate higher than the critical cooling rate required to form a thin wire with a circular and ultra-fine diameter. It is easily disturbed by disturbances and external forces, and as a result, it is not possible to obtain a thin wire with a circular or extremely small diameter, and it is not possible to obtain a long thin wire because it is divided irregularly.

本発明は、従来法における上記問題を解消し、
極細径で円形断面を有する長尺金属細線を安価に
かつ大量に製造することができる新たな製造装置
を提供する。
The present invention solves the above problems in the conventional method,
Provided is a new manufacturing device that can inexpensively and in large quantities manufacture long thin metal wires having an extremely small diameter and a circular cross section.

本発明の金属細線製造装置は、溶融金属加圧室
と溶融金属冷却室とが、壁体を介して互いに固定
的に接続され、該壁体には溶融金属加圧室から溶
融金属冷却室に開口する溶融金属噴射ノズル孔が
設けられているとともに、前記溶融金属加圧室内
の溶融金属を遠心力により前記ノズル孔を介して
溶融金属冷却室内の冷却液中に噴射させるための
前記溶融金属加圧室と溶融金属冷却室とを回転運
動させる回転駆動装置を備えていることを特徴と
している。
In the thin metal wire manufacturing apparatus of the present invention, a molten metal pressurizing chamber and a molten metal cooling chamber are fixedly connected to each other via a wall, and the wall includes a molten metal pressurizing chamber and a molten metal cooling chamber. The molten metal processing device is provided with an open molten metal injection nozzle hole, and for injecting the molten metal in the molten metal pressurizing chamber into the cooling liquid in the molten metal cooling chamber through the nozzle hole by centrifugal force. It is characterized by being equipped with a rotational drive device that rotates the pressure chamber and the molten metal cooling chamber.

本発明によれば、溶融金属加圧室内の溶融金属
は、回転運動に伴う遠心力による加圧作用によ
り、壁体に設けられているノズル孔を介して噴射
流となつて冷却室内の冷却液中に噴射され急冷凝
固することにより金属細線となる。
According to the present invention, the molten metal in the molten metal pressurizing chamber becomes a jet stream through the nozzle holes provided in the wall due to the pressurizing action due to the centrifugal force accompanying the rotational movement, and the cooling liquid in the cooling chamber is turned into a jet stream. It is injected into the interior and rapidly solidified to become a thin metal wire.

第1図および第2図に本発明装置の実施例を示
す。
An embodiment of the apparatus of the present invention is shown in FIGS. 1 and 2.

1は溶融金属加圧室であり、その室内に端部開
口11を介して溶融金属導入樋2にて溶融金属L
が供給される。
1 is a molten metal pressurizing chamber, into which molten metal L is introduced through an end opening 11 through a molten metal introduction gutter 2.
is supplied.

3は冷却室であり、加圧室1と壁体5を介して
固定的に接続されている。該冷却室3内には溶融
金属の噴射流を急冷凝固させるための液体冷媒R
が端部開口21から与えられる。
3 is a cooling chamber, which is fixedly connected to the pressurizing chamber 1 via a wall 5. In the cooling chamber 3, there is a liquid refrigerant R for rapidly cooling and solidifying the jet stream of molten metal.
is provided from the end opening 21.

4はノズル孔であり、加圧室1と冷却室3とを
分画する壁体5に設けられ、加圧室から溶融金属
を冷却室内に噴射する。
A nozzle hole 4 is provided in a wall 5 that separates the pressurizing chamber 1 and the cooling chamber 3, and injects molten metal from the pressurizing chamber into the cooling chamber.

6は回転駆動ローラであり、これにモータ7が
連結されている。上記加圧室1および冷却室3
は、それぞれの外周面に設けられた環条12,3
2を介して回転駆動ローラ6,6上に担持され、
ローラの駆動により、それぞれの軸心を回転軸と
して所要の回転速度で回転するようになつてい
る。
Reference numeral 6 denotes a rotary drive roller, to which a motor 7 is connected. The above pressurization chamber 1 and cooling chamber 3
are ring strips 12 and 3 provided on the respective outer peripheral surfaces.
supported on rotational drive rollers 6, 6 via 2,
By driving the rollers, the rollers are rotated at a required rotational speed about their respective axes as rotational axes.

上記装置において、回転駆動ローラにて加圧室
1および冷却室3に回転を与えると、遠心力の作
用で、図示のように加圧室1内にはその内周面に
沿つてリング状の溶融金属層Lが形成される。更
に回転速度を上げて溶融金属に対する遠心力を十
分に高めると、遠心力加圧によつて加圧室内の溶
融金属はノズル孔4から噴射流Jとなつて冷却室
3内に噴射し、そのまゝ冷却液R中に導入され
る。このとき冷却室3内の冷却液も回転に伴う遠
心力の作用で冷却室内周面に沿つた層を形成し加
圧室1と共に回転しているので、冷却液層Rは多
少の揺動はあるにしても、ノズル孔4に対し、ほ
ぼ静止した状態にある。従つて、冷却液層Rに突
入する際に溶融金属噴射流Jが受ける外乱・外力
はごく軽微であり、当初の噴射流の真円度を殆ん
ど失わず、かつ不規則に分断されることもなく急
冷凝固される。
In the above device, when the pressure chamber 1 and the cooling chamber 3 are rotated by the rotary drive roller, a ring-shaped ring is formed inside the pressure chamber 1 along its inner circumferential surface due to the action of centrifugal force, as shown in the figure. A molten metal layer L is formed. When the rotation speed is further increased to sufficiently increase the centrifugal force on the molten metal, the molten metal in the pressurizing chamber becomes a jet stream J from the nozzle hole 4 and is injected into the cooling chamber 3 due to the centrifugal pressurization. It is introduced into the coolant R. At this time, the coolant in the cooling chamber 3 also forms a layer along the circumferential surface of the cooling chamber due to the action of centrifugal force accompanying the rotation, and is rotating together with the pressurizing chamber 1, so the coolant layer R does not oscillate to some extent. Even if there is, it is almost stationary with respect to the nozzle hole 4. Therefore, the disturbances and external forces that the molten metal jet J receives when entering the cooling liquid layer R are extremely slight, and the original roundness of the jet is hardly lost and the jet is irregularly divided. It is rapidly cooled and solidified without any problems.

上記加圧遠心力により噴出する溶融金属噴射流
は、加圧室の回転に伴う引張力等の作用で、あた
かもアメ状に延伸するので、ノズル孔径より細い
金属細線を得ることができる。むろん、その延伸
度合いは、溶融金属の粘度や加圧室の回転速度な
どにより異なるので、これらの条件を考慮して、
ノズル孔径を適当に設定することにより所望に応
じた極細線を容易に製造することができる。
The molten metal jet stream ejected by the pressurized centrifugal force is stretched like a candy-like shape due to the action of the tensile force caused by the rotation of the pressurizing chamber, so that a fine metal wire thinner than the nozzle hole diameter can be obtained. Of course, the degree of stretching varies depending on the viscosity of the molten metal, the rotation speed of the pressurizing chamber, etc., so taking these conditions into account,
By appropriately setting the nozzle hole diameter, a desired ultrafine wire can be easily manufactured.

なお、溶融金属噴射流の冷却液層突入時の衝撃
をより少くするには、ノズル孔4と冷却液層水面
間距離を狭めるのが有利なことは言うまでもない
が、更に必要ならば、溶融金属の噴射開始後、冷
却室の端部開口21から冷却液を補充してノズル
孔4を冠水させ、ノズル孔からの噴射流をその
まゝ冷却液層内に進入させるようにするのも有効
である。
It goes without saying that it is advantageous to narrow the distance between the nozzle hole 4 and the water surface of the cooling liquid layer in order to reduce the impact when the molten metal jet enters the cooling liquid layer. After the start of injection, it is also effective to replenish the coolant from the end opening 21 of the cooling chamber to flood the nozzle hole 4, so that the jet flow from the nozzle hole directly enters the coolant layer. be.

冷却室内の冷却液は水であればよく、十分な水
量が与えられゝば、溶融金属噴射流を円形断面を
保持したまゝ凝固させるに要する臨界冷却速度以
上の急冷凝固が達成される。また、所要の冷却速
度を与え非晶質の細線を得ることも容易である。
The cooling fluid in the cooling chamber may be water, and if a sufficient amount of water is provided, rapid solidification can be achieved at a rate higher than the critical cooling rate required to solidify the molten metal jet while maintaining its circular cross section. Furthermore, it is easy to provide a required cooling rate and obtain an amorphous thin wire.

このように、遠心加圧力によつて噴射される溶
融金属噴射流を、ほとんど外乱・外力による乱
れ・分断が生じることなく、そのまゝ臨界冷却速
度以上の冷却速度で急冷凝固させることができる
から、噴射に要する遠心加圧力を継続的に作用さ
せることにより、円形断面を有する極細線を連続
的に大量に製造することができる。
In this way, the molten metal jet flow injected by centrifugal pressure can be rapidly solidified at a cooling rate higher than the critical cooling rate without being disturbed or disrupted by external disturbances or external forces. By continuously applying the centrifugal pressure required for injection, it is possible to continuously produce a large amount of ultrafine wires having a circular cross section.

溶融金属を円形断面の噴射流として噴出させる
に要する遠心加圧力、ノズル孔径などは、むろん
溶融金属の粘性などの諸物性、目的とする金属細
線の線径、温度条件などにより一様ではないが、
遠心加圧力は、重力倍数で約50G以上、好ましく
は100G以上であり、一方ノズル孔径は所望の線
径に応じ、上記条件を考慮して適宜決めればよ
い。なお、溶融金属噴射過程における加圧室内溶
融金属の温度変化、特に降温に伴う粘性の増大な
どに対しては、必要ならば回転速度の制御により
遠心加圧力を適宜調節すればよく、あるいは温度
変化を最小限にとどめるために、加圧室1の予熱
使用、加圧室に溶融金属の加熱保温手段の付帯、
断熱性溶融フラツクスによる加圧室内溶融金属層
の被覆などの手当てを講じるのも一法である。
The centrifugal pressure, nozzle hole diameter, etc. required to jet the molten metal as a jet stream with a circular cross section are, of course, not uniform depending on various physical properties such as the viscosity of the molten metal, the diameter of the target thin metal wire, temperature conditions, etc. ,
The centrifugal pressurizing force is approximately 50 G or more, preferably 100 G or more in terms of gravity multiple, while the nozzle hole diameter may be appropriately determined depending on the desired wire diameter and taking into account the above conditions. In addition, in response to temperature changes in the molten metal in the pressurized chamber during the molten metal injection process, especially increases in viscosity due to temperature drop, the centrifugal pressurizing force may be adjusted appropriately by controlling the rotational speed if necessary, or the temperature may change. In order to minimize the
One method is to take measures such as covering the molten metal layer in the pressurized chamber with an adiabatic molten flux.

本発明装置による金属細線製造の実施例を挙げ
れば、第1図に示す装置(但し、加圧室1の内
径:160mm、冷却室3の内径:400mm)において、
溶融金属として予め高周波溶解したステンレス鋳
鋼溶湯10Kgを加圧室1内に供給し、回転駆動によ
る遠心加圧力120Gにて、孔径2mmのノズル4か
ら溶融金属を噴射させ、冷却水層中で急冷凝固さ
せることにより、線径50〜150μの円形断面を有
する金属細線約100mを得る。
To give an example of manufacturing fine metal wire using the apparatus of the present invention, in the apparatus shown in FIG. 1 (inner diameter of pressurizing chamber 1: 160 mm, inner diameter of cooling chamber 3: 400 mm),
10 kg of molten stainless steel cast metal, which has been previously high-frequency melted as molten metal, is supplied into the pressurizing chamber 1, and the molten metal is injected from a nozzle 4 with a hole diameter of 2 mm with a centrifugal pressure of 120 G by rotational drive, and is rapidly solidified in a cooling water layer. By doing so, approximately 100 m of thin metal wire having a circular cross section with a wire diameter of 50 to 150 μm is obtained.

以上のように、本発明装置は、円形断面を有す
る極細金属細線の製造に適しており、しかも小
型・軽量で簡素な構造を有し、設備コストが安価
で操作も容易である。本発明によれば、各種用途
の金属繊維、例えば磁気テープ、電子材料等のア
モルフアス金属繊維、その他種々の機能材料、あ
るいは複合材料構成材として好適な金属細線を大
量かつ安価に製造することができる。また、その
金属細線を裁断し金属粉末として多方面の用途に
供することができる。
As described above, the apparatus of the present invention is suitable for manufacturing ultrafine metal wires having a circular cross section, and has a small, lightweight, and simple structure, low equipment cost, and easy operation. According to the present invention, metal fibers for various uses, such as amorphous metal fibers for magnetic tapes, electronic materials, etc., various other functional materials, or fine metal wires suitable as composite materials can be produced in large quantities and at low cost. . Moreover, the thin metal wire can be cut into metal powder and used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図
はA−A断面図、第3図〜第5図は従来例を示す
断面図である。 1:溶融金属加圧室、3:冷却室、4:ノズル
孔、6:回転駆動ローラ、7:モータ、L:溶融
金属、J:溶融金属噴射流、R:冷却液。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A, and FIGS. 3 to 5 are sectional views showing a conventional example. 1: Molten metal pressurizing chamber, 3: Cooling chamber, 4: Nozzle hole, 6: Rotating drive roller, 7: Motor, L: Molten metal, J: Molten metal jet stream, R: Coolant.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属加圧室と溶融金属冷却室とが、壁体
を介して互いに固定的に接続され、該壁体には溶
融金属加圧室から溶融金属冷却室に開口する溶融
金属噴射ノズル孔が設けられているとともに、前
記溶融金属加圧室内の溶融金属を遠心力により前
記ノズル孔を介して溶融金属冷却室内の冷却液中
に噴射させるための前記溶融金属加圧室と溶融金
属冷却室とを回転運動させる回転駆動装置を備え
ていることを特徴とする金属細線製造装置。
1 A molten metal pressurizing chamber and a molten metal cooling chamber are fixedly connected to each other via a wall, and the wall has a molten metal injection nozzle hole that opens from the molten metal pressurizing chamber to the molten metal cooling chamber. the molten metal pressurizing chamber and the molten metal cooling chamber for injecting the molten metal in the molten metal pressurizing chamber into the cooling liquid in the molten metal cooling chamber through the nozzle holes by centrifugal force; A thin metal wire manufacturing device characterized by being equipped with a rotary drive device that rotates the metal wire.
JP21753182A 1982-12-10 1982-12-10 Device for producing fine metallic wire Granted JPS59107752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21753182A JPS59107752A (en) 1982-12-10 1982-12-10 Device for producing fine metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21753182A JPS59107752A (en) 1982-12-10 1982-12-10 Device for producing fine metallic wire

Publications (2)

Publication Number Publication Date
JPS59107752A JPS59107752A (en) 1984-06-22
JPS6315055B2 true JPS6315055B2 (en) 1988-04-02

Family

ID=16705703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21753182A Granted JPS59107752A (en) 1982-12-10 1982-12-10 Device for producing fine metallic wire

Country Status (1)

Country Link
JP (1) JPS59107752A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK444985A (en) * 1984-10-08 1986-04-09 Johnson Matthey Plc METHOD OF MANUFACTURING METAL MATERIALS
KR20010008882A (en) * 1999-07-05 2001-02-05 백태일 An apparatus for producing metal wire
KR100428874B1 (en) * 2001-09-18 2004-04-29 이상민 Device for producing metalfiber

Also Published As

Publication number Publication date
JPS59107752A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
US3881540A (en) Method of forming metallic filament cast on interior surface of inclined annular quench roll
JPS6016482B2 (en) Method and apparatus for producing flake particles from molten material
JPS6046846A (en) Manufacture of continuous strip of crystalline metal
JPS6038228B2 (en) Manufacturing method of thin metal wire
JPS6315055B2 (en)
JPS60247445A (en) Method and device for continuous production of metallic fine wire
JP2551483B2 (en) Super quenching material winding device
JPS61253147A (en) Method and apparatus for continuous production of fine metallic wire
JPS61119354A (en) Method and device for production of fine metallic wire
JPS63165050A (en) Method and apparatus for producing metallic fine wire
JPS6372450A (en) Device for continous production of thin metallic wire
JPH03243246A (en) Method and apparatus for producing metal fiber
JPH01143745A (en) Method and apparatus for producing metal fine wire
JPH0713245B2 (en) Method and apparatus for producing acicular amorphous metal powder
JPS582733B2 (en) Youyuutaikiyusokyousochi
JP2001172704A (en) Method of manufacturing metallic flake
JPH06179070A (en) Method and device for jet molding of metal
JPH0651220B2 (en) Spinning wire winding method
JPH02290655A (en) Manufacture of cu-al-ni series alloy fine wire
JPH03248751A (en) Injection nozzle and production of metal or alloy fine wire using this
JPS63168255A (en) Method and apparatus for producing fine metallic wire
JPS63188457A (en) Method and device for manufacturing fine metallic wire
JPH02153007A (en) Method and apparatus for manufacturing metal short fiber
JPH05185190A (en) Production of metal fine wire
JPS61264109A (en) Production of solidified matter