JPS63168255A - Method and apparatus for producing fine metallic wire - Google Patents
Method and apparatus for producing fine metallic wireInfo
- Publication number
- JPS63168255A JPS63168255A JP31145286A JP31145286A JPS63168255A JP S63168255 A JPS63168255 A JP S63168255A JP 31145286 A JP31145286 A JP 31145286A JP 31145286 A JP31145286 A JP 31145286A JP S63168255 A JPS63168255 A JP S63168255A
- Authority
- JP
- Japan
- Prior art keywords
- drum
- molten metal
- cooling liquid
- injection nozzle
- liquid layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 27
- 239000002184 metal Substances 0.000 claims abstract description 99
- 229910052751 metal Inorganic materials 0.000 claims abstract description 99
- 238000002347 injection Methods 0.000 claims abstract description 46
- 239000007924 injection Substances 0.000 claims abstract description 46
- 239000000110 cooling liquid Substances 0.000 claims description 51
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 229910001111 Fine metal Inorganic materials 0.000 claims description 9
- 230000002265 prevention Effects 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 abstract description 12
- 239000002826 coolant Substances 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000009987 spinning Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
- B22D11/0617—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the casting wheel having its axis vertical and a casting strip formed in a peripheral groove of the wheel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は金属細線の製造方法および装置、特に回転液中
紡糸法の改善に係るもので、ドラムを水平に回転する場
合の金属細線の製造方法および装置に関する。Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method and apparatus for producing thin metal wires, and in particular to an improvement in a spinning submerged spinning method, in which a drum is rotated horizontally. METHODS AND APPARATUS.
[従来の技術]
溶融金属から直接金属細線を得る方法は、帽り分塊、圧
延等の中間工程の省略による省エネ、あるいは急冷凝固
によって得られる新しい特性を有した金属材料の開発と
いった観点から、近年特に注目されている。急冷凝固に
よって得られる優れた特性としては、結晶粒の超微細化
、無偏析、均質化、固溶限の拡大化、アモルファス化等
による強度、耐食性、電気、磁気特性等がある1例えば
アモルファス構造の金属細線、すなわちアモルファスフ
ァイバは、従来の結晶質金属では得られない高強度、高
靭性を示すので、高強度材料としての応用が考えられて
おり、また特異な磁気的性質を備えているので、fi能
性材料としての応用が考えられる。[Prior Art] The method of obtaining fine metal wire directly from molten metal has been developed from the viewpoint of energy saving by omitting intermediate steps such as cap blooming and rolling, or the development of metal materials with new properties obtained by rapid solidification. It has received particular attention in recent years. The excellent properties obtained by rapid solidification include ultra-fine crystal grains, non-segregation, homogenization, expansion of the solid solubility limit, and strength, corrosion resistance, electrical and magnetic properties due to amorphization, etc.1 For example, amorphous structure Amorphous metal wires, or amorphous fibers, exhibit high strength and toughness that cannot be obtained with conventional crystalline metals, so they are being considered for application as high-strength materials, and they also have unique magnetic properties. , its application as a fi-capable material can be considered.
従来yfP、表されている溶融金属から直接金属細線を
得る方法は、大別すると次の4つになる。Conventional methods for obtaining thin metal wires directly from molten metal, expressed as yfP, can be roughly divided into the following four methods.
1)押出法
2)回転液中紡糸法
3)I)DME法
4) ’l’aylor法
1)の押出法は不活性ガス中で溶融した融液を溶融金属
と同程度の粘性をもつ流体中に噴射させてジェット流の
安定化をはかり、繊維形成させる方法である。1) Extrusion method 2) Rotating liquid spinning method 3) I) DME method 4) 'l'aylor method 1) The extrusion method uses a melt molten in an inert gas as a fluid with a viscosity comparable to that of molten metal. In this method, the jet stream is stabilized by injecting it into the interior of the fiber, thereby forming fibers.
2)の回転液中紡糸法は回転ドラム内に遠心力により冷
却液体層を形成し、この冷却液体中に溶融金属を噴射さ
せて、繊維形成させる方法である。The spinning method in rotating liquid (2) is a method in which a cooling liquid layer is formed in a rotating drum by centrifugal force, and molten metal is injected into this cooling liquid to form fibers.
3)のPT)ME法はPendant Drop Me
ltE xtraetion 法の略で高速回転の円
盤の側面にペンダント状の金属の小滴を付着させて引き
出して固まらせる方法である。3) PT) ME method is Pendant Drop Me
It is an abbreviation for the ltE xtraation method, which is a method in which pendant-shaped metal droplets are attached to the side of a disk rotating at high speed, and then pulled out and solidified.
4)のTaylor法はガラス管に入れた金属を加熱熔
融し、加熱によって軟化したガラス管をその中の融液と
一緒に引き出し、ドラムの巻き取る方法である。The Taylor method (4) is a method in which metal placed in a glass tube is heated and melted, the glass tube softened by heating is pulled out together with the melt inside, and a drum is wound up.
回転液中紡糸法に使用される従来の装置を、第4図の正
面図および第5図の側断面図に示す0図においてドラム
10は、中空の円筒部12と、その−側に取り付けられ
中心部に円形の開口部14を有する冷却液流出防止板1
6と、円筒部12の他側の全面を覆う閉塞板18とを一
体に形成したもので、閉塞板18の中心にはモータ20
の出力軸22が固定され、ドラム10は高速で回転する
。A conventional apparatus used in the rotating liquid spinning method is shown in FIG. 4 as a front view and FIG. 5 as a side sectional view. In FIG. Coolant outflow prevention plate 1 having a circular opening 14 in the center
6 and a closing plate 18 that covers the entire surface of the other side of the cylindrical part 12, and a motor 20 is installed at the center of the closing plate 18.
The output shaft 22 of is fixed, and the drum 10 rotates at high speed.
高速で回転するドラム10の内周には冷却液体が供給さ
れ、冷却液体は遠心力により冷却液体層24を形成する
。溶融金属噴射装置26は縦型の溶湯加熱炉28と、溶
湯加熱炉28の下端に下向きに取り付けられた溶融金属
噴射ノズル30と、溶湯加熱炉28の上部に取り付けら
れた溶湯加圧配管32からなり、ドラム10の開口部1
4から押入されドラム10の軸線方向に移動できるよう
になっている。 この回転液中紡糸装置を使用して金属
細線を得るには、ドラム10を回転して冷却液体を供給
してドラム10の内周に回転冷却液体層24を形成する
0次いで溶湯加熱炉28に挿入された母合金を溶融し溶
融合金34とし、溶融金属噴射装置F26をドラム10
の開口部14から押入し、溶融金属噴射ノズル30を冷
却液体槽25の入口端25a上に位置せしめる0次ぎに
不活性ガスを溶湯加圧配管32に送り込んで溶融合金3
4を溶融金属噴射ノズル30より噴射させると同時に溶
融金属噴射装置26は回転冷却液体槽25の入口端25
mから奥の端25bに向けてゆっくり移動する。噴射さ
れた溶融合金ジェット流36は冷却液体層24に噴出さ
れ急冷されて金属aa38となる。この方法によって、
細[38は連続的に形成されて、ドラム10内の回転冷
却液体槽25の中に蓄積される。Cooling liquid is supplied to the inner periphery of the drum 10 rotating at high speed, and the cooling liquid forms a cooling liquid layer 24 due to centrifugal force. The molten metal injection device 26 includes a vertical molten metal heating furnace 28 , a molten metal injection nozzle 30 attached downward to the lower end of the molten metal heating furnace 28 , and a molten metal pressurizing pipe 32 attached to the upper part of the molten metal heating furnace 28 . The opening 1 of the drum 10
4 and can move in the axial direction of the drum 10. In order to obtain a thin metal wire using this rotating liquid submerged spinning device, the drum 10 is rotated and a cooling liquid is supplied to form a rotating cooling liquid layer 24 on the inner circumference of the drum 10.Then, the drum 10 is rotated and a cooling liquid is supplied to form a rotating cooling liquid layer 24 on the inner circumference of the drum 10. The inserted master alloy is melted to form a molten alloy 34, and the molten metal injection device F26 is connected to the drum 10.
The molten metal injection nozzle 30 is positioned above the inlet end 25a of the cooling liquid tank 25. Next, inert gas is fed into the molten metal pressurizing pipe 32 to cool the molten metal 3.
4 from the molten metal injection nozzle 30, and at the same time, the molten metal injection device 26
It moves slowly from m toward the far end 25b. The injected molten alloy jet stream 36 is injected into the cooling liquid layer 24 and rapidly cooled to become a metal aa 38. By this method,
The thin film 38 is continuously formed and stored in a rotating cooling liquid bath 25 within the drum 10.
この従来の回転液中紡糸法では、連続的に製造された金
属線&a38はドラム10から回収されることがなく、
ドラム10の冷却液体槽25にどんどん蓄積されるので
、ドラム10を止めて金属細線38を取り出す際に、遠
心力によりドラムの内側に張り付いていた金Btm線3
8が遠心力を失って落下して団子状となるので、絡み合
った金属側[38を解きほぐして回収するのに多大な困
難が伴うといった欠点があった。In this conventional rotating liquid spinning method, the continuously produced metal wire &a38 is not collected from the drum 10,
As it accumulates more and more in the cooling liquid tank 25 of the drum 10, when the drum 10 is stopped and the thin metal wire 38 is taken out, the gold Btm wire 3 stuck to the inside of the drum due to centrifugal force is removed.
8 loses centrifugal force and falls down into a ball-like shape, which has the disadvantage that it is very difficult to disentangle and recover the entangled metal side [38].
そこでドラムを水平に回転させてそれを防止する方法が
考えられる。しかし、ドラムを水平に回転させると、重
力の影響により冷却液体層の表面が傾斜するので、溶湯
噴射ノズル30をドラム回転軸線と平行に往復移動させ
たのでは、溶湯噴射ノズル30と冷却液面の距離が変化
するので、一定品質の金属細線が得られないという問題
点がある。Therefore, there is a method to prevent this by rotating the drum horizontally. However, when the drum is rotated horizontally, the surface of the cooling liquid layer is inclined due to the influence of gravity. Since the distance between the two changes, there is a problem that a fine metal wire of constant quality cannot be obtained.
[発明が解決しようとする問題点]
本発明は回転液中紡糸法においで、ドラムを水平に回転
した際の前記のごとき問題点に鑑みてなされたもので、
ドラムを水平に回転しても一定品質の金属細線が得られ
る金属細線の製造方法およびその装置を提供することを
目的とする。[Problems to be Solved by the Invention] The present invention was made in view of the above-mentioned problems when the drum is rotated horizontally in the rotating liquid spinning method.
It is an object of the present invention to provide a method for manufacturing a thin metal wire and an apparatus therefor, in which a thin metal wire of constant quality can be obtained even when a drum is rotated horizontally.
[問題点を解決するための手段]
本発明の金属mMAの製造方法は、筒状ドラムの側面に
冷却液流出防止板を形成し、前記ドラムを回転しドラム
内周面に遠心力により冷却液体層を形成し、前記冷却液
体層に溶融金属ジェットを噴射する溶融金゛属噴射装置
の噴射ノズルを前記ドラムの回転軸線方向に往復動させ
て金E4細線を製造する方法であって、前記ドラムを水
平に回転させると共に、冷却液体の重力により傾斜した
前記冷却液体層表面と前記溶融金属噴射ノズルとの距離
を一定に保持しつつ前記溶融金属噴射ノズルから溶融金
属を噴射することを要旨とする。[Means for Solving the Problems] In the method for producing metal mRNA of the present invention, a cooling liquid outflow prevention plate is formed on the side surface of a cylindrical drum, and the cooling liquid is applied to the inner peripheral surface of the drum by centrifugal force by rotating the drum. A method for manufacturing gold E4 fine wire by reciprocating the injection nozzle of a molten metal injection device in the direction of the rotational axis of the drum to form a layer and inject a molten metal jet onto the cooling liquid layer, the method comprising: The gist is to rotate the cooling liquid horizontally and to inject molten metal from the molten metal injection nozzle while maintaining a constant distance between the surface of the cooling liquid layer, which is inclined due to the gravity of the cooling liquid, and the molten metal injection nozzle. .
また、本発明の金属#I線製造装置は、円筒状ドラムの
側面に冷却液流出防止板を形成し、前記ドラムを回転し
ドラム内周面に遠心力により冷却液体層を形成し、前記
冷却液体層に溶融金属ジェットを噴射する溶融金属噴射
装置の噴射ノズルを前記ドラムの回転軸線方向に往復動
させて金属、1111を製造する装置であって、前記ド
ラムを水平回転し、前記溶融金属噴射ノズルを前記ドラ
ムの回転軸線方向に駆動する回転軸線方向駆動手段と、
前記溶融金属噴射ノズルを前記ドラム半径方向に駆動す
る半径方向駆動手段と、予め計算された前記冷却液体層
の表面形状に追従して前記軸線方向駆動手段と前記半径
方向駆動手段とを制御する制御手段とにより前記冷却液
層表面と前記溶融金属噴射ノズルの先端との距離を一定
に保持しつつ前記溶融金属噴射ノズルから溶融金属を噴
射することを要旨とする。In addition, the metal #I wire manufacturing apparatus of the present invention includes a cooling liquid outflow prevention plate formed on the side surface of the cylindrical drum, the drum being rotated to form a cooling liquid layer on the inner peripheral surface of the drum by centrifugal force, and the cooling liquid layer being formed on the inner circumferential surface of the drum. An apparatus for manufacturing metal, 1111, by reciprocating the injection nozzle of a molten metal injection device in the direction of the rotational axis of the drum, which injects a molten metal jet into a liquid layer, the drum being horizontally rotated, and the molten metal injection device rotational axis direction driving means for driving the nozzle in the rotational axis direction of the drum;
radial drive means for driving the molten metal injection nozzle in the radial direction of the drum; and control for controlling the axial drive means and the radial drive means in accordance with a pre-calculated surface shape of the cooling liquid layer. The gist is to inject molten metal from the molten metal injection nozzle while maintaining a constant distance between the surface of the cooling liquid layer and the tip of the molten metal injection nozzle.
[作用]
本発明の金属細線の製造方法では、傾斜した冷却液体層
の表面と溶融金属噴射ノズルとの距離が一定に保たれる
ので、金属細線を得るのに最も重要なファクタの一つで
ある溶融金属が噴射ノズルから溶融金属ジェットとなっ
て噴射されてから冷却されるまでの時間が一定となって
、品質の一定した金属細線が得られる。[Function] In the method for producing a thin metal wire of the present invention, the distance between the surface of the inclined cooling liquid layer and the molten metal injection nozzle is kept constant, so this is one of the most important factors in obtaining a thin metal wire. The time from when a certain molten metal is injected as a molten metal jet from an injection nozzle until it is cooled is constant, and a fine metal wire of constant quality can be obtained.
また、本発明の金属細線の製造装置では、溶融金属噴射
ノズルは軸線方向駆動手段と半径方向駆動手段によって
駆動され、これら駆動手段は予め計算された前記冷却液
体層の表面形状に追従して制御する制御手段により制御
されるので、溶融金属噴射ノズルは冷却液体層表面と一
定の距離を保って軸線方向に往復移動する。水平回転す
るドラム内に遠心力により形成される冷却液体層の断面
形状は、y軸をドラム回転軸方向、X軸をドラム回転の
半径方向にとると、重力と遠心力のバランスより、次式
により計算される。Further, in the thin metal wire manufacturing apparatus of the present invention, the molten metal injection nozzle is driven by an axial drive means and a radial drive means, and these drive means are controlled by following the pre-calculated surface shape of the cooling liquid layer. The molten metal injection nozzle reciprocates in the axial direction while maintaining a constant distance from the surface of the cooling liquid layer. The cross-sectional shape of the cooling liquid layer formed by centrifugal force in a horizontally rotating drum is determined by the following equation from the balance between gravity and centrifugal force, where the y-axis is in the direction of the drum's rotation axis and the X-axis is in the radial direction of the drum's rotation. Calculated by
y=((rR/30)”/2g)x”+c・HHH(1
)上式において、π;円周率、R;ドラム回転速度、C
;ドラム内情容積および冷却水量等により決まる常数、
g;重力の加速度である。y=((rR/30)”/2g)x”+c・HHH(1
) In the above formula, π: Pi, R: Drum rotation speed, C
;Constant determined by the internal volume of the drum, amount of cooling water, etc.;
g: acceleration of gravity.
[実施態様の利点]
本発明装置の第1の実施態様によると、ドラムの内壁を
冷却液体層の表面形状に合わせて傾斜した金属細線の製
造装置が提供され、本実施態様によるときは冷却液体層
の深さを一定にできるので、さらに品質の優良な金属細
線を得ることができるという利点がある。[Advantages of Embodiments] According to the first embodiment of the apparatus of the present invention, there is provided an apparatus for manufacturing thin metal wires in which the inner wall of the drum is inclined to match the surface shape of the cooling liquid layer. Since the depth of the layer can be made constant, there is an advantage that fine metal wires of even better quality can be obtained.
また、本発明装置の第2の実施態様によれば、前記冷却
液体層の表面形状に合わせて傾斜した側壁を有する環状
部材を前記ドラムの内壁に着脱自在とした金属細線の製
造装置が提供され、本実施態様によるときは、ドラムの
回転数に応じてその際の冷却液面と平行になる環状部材
を嵌着すればよいので、ドラムの回転数が変更される都
度ドラムを作り変える必要がなく経済的であるという利
点がある。Further, according to a second embodiment of the apparatus of the present invention, there is provided an apparatus for manufacturing fine metal wire, in which an annular member having a side wall inclined in accordance with the surface shape of the cooling liquid layer is detachably attached to the inner wall of the drum. According to this embodiment, it is only necessary to fit an annular member that is parallel to the coolant surface at that time depending on the rotational speed of the drum, so there is no need to rebuild the drum each time the rotational speed of the drum is changed. It has the advantage of being economical.
さらに、本発明装置の第3の実施9.様によれば、環状
部材の傾斜側面に可視性の線材からなる多数の細線保持
量を植設した金属細線の製造装置が提供され、本実施態
様によるときは、鋳込まれた金属細線は細線保持量によ
って把持されるので、ドラムの回転を止めても金属細線
がドラムの内壁から離脱することなく、金属細線の鋳込
み最終端から極めてスムーズに金属細線を回収すること
ができるという利点がある。Furthermore, the third embodiment of the device of the present invention 9. According to the above, there is provided an apparatus for manufacturing a thin metal wire in which a large number of fine wires made of visible wire rods are implanted on the inclined side surface of an annular member, and according to this embodiment, the cast thin metal wire is a fine wire. Since the thin metal wire is gripped by the holding amount, the thin metal wire does not separate from the inner wall of the drum even when the rotation of the drum is stopped, and there is an advantage that the thin metal wire can be collected extremely smoothly from the final end of casting of the thin metal wire.
[実施例] 本発明の実施例について図面に従って説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例の断面図である。ドラム1
0はステンレス(SUS304)製で、ドラム内径60
cm、ドラム内のり幅20co+、冷却液体流出防止板
16の内径56cmである。このドラム10の回転速度
を300 rpmとし、冷却水は少しオーバフローする
程度に入れた。従って、冷却水面の上部は冷却液体流出
防止板16の内径と回転中心からの距離が一致している
。ドラム10の回転軸をy軸とし、x軸をドラム10の
半径方向にとり、原点をy軸とドラムの底面が交わる点
とし、(1)式を用いて水面の断面曲線を求めると、y
=<<xR/30)”/2g)(x2−23”)+20
・・・・・(2)
で表される。FIG. 1 is a sectional view of one embodiment of the present invention. drum 1
0 is made of stainless steel (SUS304) and has a drum inner diameter of 60 mm.
cm, the inner width of the drum is 20 cm+, and the inner diameter of the cooling liquid outflow prevention plate 16 is 56 cm. The rotational speed of this drum 10 was set to 300 rpm, and cooling water was added to the extent that it slightly overflowed. Therefore, the distance from the center of rotation of the upper part of the cooling water surface is the same as the inner diameter of the cooling liquid outflow prevention plate 16. The axis of rotation of the drum 10 is the y-axis, the x-axis is the radial direction of the drum 10, the origin is the point where the y-axis and the bottom of the drum intersect, and the cross-sectional curve of the water surface is determined using equation (1), y
=<<xR/30)”/2g)(x2-23”)+20
...(2) It is expressed as follows.
次に(2)式によって決定された冷却液面断面曲線に基
づき、溶融金属噴射ノズル30が液面と一定間隔を保っ
て往復運動する機構について説明する。第1図において
、軸線方向サーボモータ40は軸線方向スライド機構4
2に取り付けられ、半径方向スライド81楕44をlI
&線方向に駆動する。Next, a mechanism in which the molten metal injection nozzle 30 reciprocates while maintaining a constant distance from the liquid surface based on the coolant surface cross-sectional curve determined by equation (2) will be described. In FIG. 1, the axial servo motor 40 is connected to the axial slide mechanism 4.
2, the radial slide 81 ellipse 44 lI
& Drive in the linear direction.
半径方向サーボモータ46は半径方向スライド機f11
44に取り付けられ、加熱コイル48および溶融金属噴
射ノズル30からなる溶融金属噴射装置26を半径方向
に駆動する0回転軸線方向サーボモータ110および半
径方向サーボモータ46はコントローラ52に接続され
、プログラム式数値制御が可能となっている。The radial servo motor 46 is a radial slide machine f11
A zero rotation axial servo motor 110 and a radial servo motor 46 are connected to a controller 52 and are connected to a controller 52 to radially drive a molten metal injector 26 consisting of a heating coil 48 and a molten metal injection nozzle 30. control is possible.
そこで、溶融金属噴射ノズル30と冷却液面24aの距
離をドラムの半径方向で0.3et*に保つようにする
には、下記(3)式に合うようにプログラムを入れてや
れば良い。Therefore, in order to maintain the distance between the molten metal injection nozzle 30 and the cooling liquid surface 24a at 0.3et* in the radial direction of the drum, a program may be written to match the following equation (3).
y= ((πR/ 30 )2/ 2 g)((x+
0.3 )”−23”D 20 ・・・・(3)
また、(2)式より得られる冷却液面断面曲線より計算
して、水面から冷却液体Nl24の底までの深さを1.
5amとするため、着脱可能な環状部材54をドラム1
0の内面に設置した。環状部材54の表面形状は、ドラ
ム10内周面に設置した状態で(4)式で示されるもの
である。なお、ドラム10の内面形状は第2図に示すよ
うにドラム10771 山1vIWi E n6
言す店(A s=←1.− 、;、 −!t J−1ス
m1Flit Jld ! +、−加工してもよい。y= ((πR/ 30 )2/ 2 g)((x+
0.3 )"-23"D 20 (3) Also, calculated from the coolant surface cross-sectional curve obtained from equation (2), the depth from the water surface to the bottom of the coolant liquid Nl24 is 1.
5 am, the removable annular member 54 is attached to the drum 1.
It was installed on the inner surface of 0. The surface shape of the annular member 54 is shown by equation (4) when installed on the inner peripheral surface of the drum 10. The inner surface shape of the drum 10 is as shown in FIG.
It may be processed at a shop that says (A s=←1.- , ;, -!t J-1 S m1Flit Jld ! +, -.
y= ((r R/ 30 )”/ 2 g)((x
−1,5)”−23”)+20 ・・・・(4)
以上のような構成からなる本実施例の装置を用いて、F
eyis LoB Iiを下記の条件で溶解し、金属
細線を鋳込んだ。y= ((r R/ 30 )”/ 2 g) ((x
-1,5)"-23")+20...(4) Using the device of this embodiment having the above configuration, F
eyis LoB Ii was melted under the following conditions and a thin metal wire was cast.
ドラム回転速度;300rpm
噴射圧力;4.5kgf/am”
ノズルと冷却液面との距II;0.3cm溶融金属温度
:1250℃
ノズル径;0.15m−φ
この結果、鋳込み後ドラムの回転速度を減速停止しても
線は団子状になることなくドラム底面に堆積し、約10
00mの金R細線が得られた。Drum rotation speed: 300 rpm Injection pressure: 4.5 kgf/am” Distance II between nozzle and cooling liquid level: 0.3 cm Molten metal temperature: 1250°C Nozzle diameter: 0.15 m-φ As a result, the rotation speed of the drum after casting Even when the drum is decelerated and stopped, the wires do not form into lumps and are deposited on the bottom of the drum.
A gold R thin wire of 00 m was obtained.
なお、第3図に示すように、環状部材54の表面に0.
11径、長さ5msのステンレス製の線材を細線保持量
56として多数植設し、同じ条件でF e、sS i+
oB +sを鋳込んだところ、金属細線はすべて細線保
持量によって把持され、ドラムの回転を止めても金ms
線は環状部材54の表面から離説しなかった。ドラムの
回転を停止した後、金属細線の最終鋳込み端から金属細
線を回収しなところ、もつれることなく極めてスムーズ
に回収できた。Note that, as shown in FIG. 3, the surface of the annular member 54 is coated with 0.
A large number of stainless steel wire rods with a diameter of 11 and a length of 5 ms were planted with a fine wire retention amount of 56, and under the same conditions Fe, sS i+
When oB +s was cast, all the fine metal wires were held by the amount of fine wire held, and even if the drum stopped rotating, the metal wires remained
The wire did not separate from the surface of the annular member 54. After stopping the rotation of the drum, the thin metal wire was collected from the final casting end of the thin metal wire, and it was collected very smoothly without any tangles.
[発明の効果]
本発明は以上説明したように、ドラムを水平に回転する
回転液中紡糸法において、冷却液体層の表面が重力との
バランスの関係で、液面が斜めになることに鑑みて、傾
斜した冷却液体刑表面と溶融今風噴射ノズルとの距離を
一定に保持しつつ溶融金爲噴射ノズルをドラムの幅方向
に往復運動させる金m細線の製造方法および装置であっ
て、溶融金属噴射ノズルと冷却液面とが接触することな
くスムーズに金属細線を鋳込むことができる。また、溶
湯金属噴射ノズルの先端から冷却液体層の表面との距離
が常に一定に保たれるので、溶融金属は溶融金属噴射ノ
ズルが噴射されてから一定時間後に冷却凝固するので、
形状および品質の一定した金属細線を得ることができる
。[Effects of the Invention] As explained above, the present invention has been made in view of the fact that in the rotating liquid spinning method in which a drum is rotated horizontally, the surface of the cooling liquid layer is slanted due to the balance with gravity. A method and apparatus for producing thin gold wire in which a molten metal injection nozzle is reciprocated in the width direction of a drum while maintaining a constant distance between an inclined cooling liquid injection surface and a molten metal injection nozzle. Fine metal wire can be smoothly cast without contact between the injection nozzle and the coolant surface. In addition, since the distance from the tip of the molten metal injection nozzle to the surface of the cooling liquid layer is always kept constant, the molten metal will cool and solidify after a certain period of time after the molten metal injection nozzle is injected.
A thin metal wire with a constant shape and quality can be obtained.
第1図は環状部材をドラムの内面に嵌着した本発明の一
実施例の断面図、第2図および第3図は本発明の他の実
施例のドラムの断面図、第4図は従来の全屈細線製造装
置の正面図、第5図は第4図の側断面図である。
10・・・ドラム、16・・・冷却液流出防止板、24
・・・冷却液体層、2411・・・冷却液面、26・・
・溶融余尺噴射装置、30・・・溶融全翼噴射ノズル、
36・・・溶融金属ジェット、38・・・金属細線、4
0・・・軸線方向サーボモータ、42・・・軸線方向ス
ライド機材、44・・・半径方向サーボモータ、46・
・・半径方向スライド機構、48・・・加熱コイル、5
0・・・ドラム内面、52・・・コントローラ、54・
・・環状部材、56・・・細線保持毛第1 図
第2図
第3図
第4図
第5図FIG. 1 is a cross-sectional view of an embodiment of the present invention in which an annular member is fitted onto the inner surface of the drum, FIGS. 2 and 3 are cross-sectional views of a drum according to other embodiments of the present invention, and FIG. 4 is a conventional drum. FIG. 5 is a front view of the fully bent wire manufacturing apparatus, and FIG. 5 is a side sectional view of FIG. 4. 10... Drum, 16... Coolant outflow prevention plate, 24
...Cooling liquid layer, 2411...Cooling liquid level, 26...
・Melting extra length injection device, 30...melting flying wing injection nozzle,
36... Molten metal jet, 38... Metal thin wire, 4
0... Axial direction servo motor, 42... Axial direction sliding equipment, 44... Radial direction servo motor, 46.
... Radial slide mechanism, 48 ... Heating coil, 5
0...Drum inner surface, 52...Controller, 54.
...Annular member, 56...Thin wire holding bristles 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5
Claims (5)
前記ドラムを回転しドラム内周面に遠心力により冷却液
体層を形成し、前記冷却液体層に溶融金属ジェットを噴
射する溶融金属噴射装置の噴射ノズルを前記ドラムの回
転軸線方向に往復動させて金属細線を製造する方法であ
って、前記ドラムを水平に回転させると共に、冷却液体
の重力により傾斜した前記冷却液体層表面と前記溶融金
属噴射ノズルとの距離を一定に保持しつつ前記溶融金属
噴射ノズルから溶融金属を噴射することを特徴とする金
属細線の製造方法。(1) Forming a cooling liquid outflow prevention plate on the side of the cylindrical drum,
Rotating the drum to form a cooling liquid layer on the inner peripheral surface of the drum by centrifugal force, and reciprocating an injection nozzle of a molten metal injection device that injects a molten metal jet onto the cooling liquid layer in the direction of the rotational axis of the drum. A method for producing a thin metal wire, the drum being rotated horizontally and the molten metal being jetted while maintaining a constant distance between the surface of the cooling liquid layer, which is inclined due to the gravity of the cooling liquid, and the molten metal jetting nozzle. A method for producing thin metal wire, which comprises injecting molten metal from a nozzle.
、前記ドラムを回転しドラム内周面に遠心力により冷却
液体層を形成し、前記冷却液体層に溶融金属ジェットを
噴射する溶融金属噴射装置の噴射ノズルを前記ドラムの
回転軸線方向に往復動させて金属細線を製造する装置で
あって、前記ドラムを水平回転し、前記溶融金属噴射ノ
ズルを前記ドラムの回転軸線方向に駆動する回転軸線方
向駆動手段と、前記溶融金属噴射ノズルを前記ドラム半
径方向に駆動する半径方向駆動手段と、予め計算された
前記冷却液体層の表面形状に追従して前記軸線方向駆動
手段と前記半径方向駆動手段とを制御する制御手段とに
より前記冷却液層表面と前記溶融金属噴射ノズルの先端
との距離を一定に保持しつつ前記溶融金属噴射ノズルか
ら溶融金属を噴射することを特徴とする金属細線の製造
装置。(2) A cooling liquid outflow prevention plate is formed on the side surface of a cylindrical drum, the drum is rotated to form a cooling liquid layer on the inner peripheral surface of the drum by centrifugal force, and a molten metal jet is injected into the cooling liquid layer. A device for producing fine metal wire by reciprocating the injection nozzle of the metal injection device in the direction of the rotational axis of the drum, the drum being horizontally rotated and the molten metal injection nozzle being driven in the direction of the rotational axis of the drum. a rotating axial drive means; a radial drive means for driving the molten metal injection nozzle in the radial direction of the drum; A thin metal wire characterized in that the molten metal is injected from the molten metal injection nozzle while maintaining a constant distance between the surface of the cooling liquid layer and the tip of the molten metal injection nozzle by a control means for controlling the driving means and the molten metal injection nozzle. manufacturing equipment.
せて傾斜した特許請求の範囲第2項に記載の金属細線の
製造装置。(3) The thin metal wire manufacturing apparatus according to claim 2, wherein the inner wall of the drum is inclined to match the surface shape of the cooling liquid layer.
壁を有する環状部材を前記ドラムの内壁に着脱自在とし
た特許請求の範囲第2項または第3項に記載の金属細線
の製造装置。(4) The apparatus for manufacturing fine metal wire according to claim 2 or 3, wherein an annular member having a side wall inclined in accordance with the surface shape of the cooling liquid layer is detachably attached to the inner wall of the drum.
の細線保持毛を植設した特許請求の範囲第4項に記載の
金属細線の製造装置。(5) The apparatus for manufacturing a thin metal wire according to claim 4, wherein a large number of thin wire holding bristles made of flexible wire are implanted on the side wall of the annular member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31145286A JPS63168255A (en) | 1986-12-30 | 1986-12-30 | Method and apparatus for producing fine metallic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31145286A JPS63168255A (en) | 1986-12-30 | 1986-12-30 | Method and apparatus for producing fine metallic wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63168255A true JPS63168255A (en) | 1988-07-12 |
Family
ID=18017388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31145286A Pending JPS63168255A (en) | 1986-12-30 | 1986-12-30 | Method and apparatus for producing fine metallic wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63168255A (en) |
-
1986
- 1986-12-30 JP JP31145286A patent/JPS63168255A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63168255A (en) | Method and apparatus for producing fine metallic wire | |
US4617983A (en) | Method and apparatus for continuously manufacturing metal filaments | |
JPS6315055B2 (en) | ||
JPS63188457A (en) | Method and device for manufacturing fine metallic wire | |
JPH05154619A (en) | Molten metal injecting nozzle and production of pipe using it | |
JPS63165050A (en) | Method and apparatus for producing metallic fine wire | |
JPS6372450A (en) | Device for continous production of thin metallic wire | |
JPS63137550A (en) | Production apparatus for fine metallic wire | |
JPH05185190A (en) | Production of metal fine wire | |
JPS62161443A (en) | Casting method for fine metallic wire | |
JPS60154853A (en) | Production of fine metallic wire | |
JPH0323046A (en) | Centrifugal casting method and centrifugal casting apparatus used thereto | |
JPH01143745A (en) | Method and apparatus for producing metal fine wire | |
JPS6336953A (en) | Winding method for fine wire | |
JPH0413451A (en) | Injection nozzle for molten metal and manufacture of fine metal wire using this | |
JPH0413450A (en) | Manufacture of fine alloy wire | |
JPH0757412B2 (en) | Method for manufacturing thin metal wires | |
JPH05237605A (en) | Molten metal jet nozzle and production for metal tube using the nozzle | |
JPH0651220B2 (en) | Spinning wire winding method | |
JPH04182044A (en) | Nozzle for injecting molten metal and manufacture of alloy fine wire using the same | |
JPH03248751A (en) | Injection nozzle and production of metal or alloy fine wire using this | |
JPS6076255A (en) | Apparatus for producing continuously fine metallic wire | |
SU944789A1 (en) | Apparatus for producing liquid state quenched metals | |
JPH0375255B2 (en) | ||
JPH06179070A (en) | Method and device for jet molding of metal |