JPS62161443A - Casting method for fine metallic wire - Google Patents

Casting method for fine metallic wire

Info

Publication number
JPS62161443A
JPS62161443A JP273986A JP273986A JPS62161443A JP S62161443 A JPS62161443 A JP S62161443A JP 273986 A JP273986 A JP 273986A JP 273986 A JP273986 A JP 273986A JP S62161443 A JPS62161443 A JP S62161443A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
casting
metal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP273986A
Other languages
Japanese (ja)
Other versions
JPH0462825B2 (en
Inventor
Shun Sato
駿 佐藤
Tsutomu Ozawa
小澤 勉
Toshiji Kikuchi
菊池 利治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP273986A priority Critical patent/JPS62161443A/en
Publication of JPS62161443A publication Critical patent/JPS62161443A/en
Publication of JPH0462825B2 publication Critical patent/JPH0462825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles

Abstract

PURPOSE:To prevent nozzle clogging and to obtain a large quantity of fine metallic fibers by feeding a heated gas to nozzle apertures to which a molten metal is supplied thereby heating the nozzle apertures. CONSTITUTION:A metal to be melted is housed into a melting crucible 2 and after the metal is melted by heating, the molten metal is ejected from the nozzle apertures 71-7n onto the surface of a cooling roll 1 under rotation so that the molten metal is quickly cooled to solidify. The gas heated by a heater 3 is injected from a heated gas injection nozzle 4 toward the nozzle apertures 71-7n to heat the nozzle apertures 71-7n. The nozzle clogging is thereby prevented and a large quantity of the metallic fibers finer than heretofore are obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は移動する冷却基板の表面あるいは溶体中に溶融
金属(合金を含む、以下単に溶融金属という)を直径の
小さなノズル孔を通して噴出衝突させ、急冷凝固するこ
とによって金属の細線を直接製造する方法に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method of jetting and colliding molten metal (including alloys, hereinafter simply referred to as molten metal) into the surface of a moving cooling substrate or into a solution through a nozzle hole with a small diameter. , relates to a method for directly producing thin metal wires by rapid solidification.

(従来の技術) 溶融金属を急冷して直接金属の細線をつくる方法として
基本的なものに次のようなものがある。
(Prior Art) The following are basic methods for directly producing thin metal wires by rapidly cooling molten metal.

すなわち第一のカテゴリーは遠心急冷法、単ロール法、
で代表されるもので、固体の冷却体たとえば金属製の回
転する円形ドラムまたはロールの内周または外周面に細
いノズル孔を通して溶融金属を噴出衝突させ、急冷凝固
するものである。この場合つくられる線の形状は断面が
扁平になる。また〇−ルの外周面に沿って半円状の溝を
設け、ロールの移動方向に複数個の開口部を配列したノ
ズルを通して上記溝の中に溶融金属を噴出し、重ね合わ
せると断面が楕円ないし円に近込線が得られる(特開昭
60−121049号公報参照)。
In other words, the first category is centrifugal quenching method, single roll method,
The molten metal is jetted and impinged on the inner or outer circumferential surface of a solid cooling body, such as a rotating metal circular drum or roll, through narrow nozzle holes, and is rapidly cooled and solidified. In this case, the shape of the line created is flat in cross section. In addition, a semicircular groove is provided along the outer circumferential surface of the roll, and molten metal is spouted into the groove through a nozzle with multiple openings arranged in the direction of roll movement, and when overlapped, the cross section becomes elliptical. A line approaching the circle is obtained (see Japanese Patent Application Laid-open No. 121049/1983).

第2のカテゴリーは回転液中紡糸法と呼ばれる方法で、
特開昭57−52550号公報に述べられるように遠心
力でドラムの内側に張り付いた流体の中に溶融金属を注
湯し急冷凝固するものである。
The second category is a method called rotating liquid spinning method.
As described in Japanese Unexamined Patent Publication No. 57-52550, molten metal is poured into a fluid stuck to the inside of a drum by centrifugal force and rapidly solidified.

この方法によれば真円に近い線が得られる。According to this method, a line that is close to a perfect circle can be obtained.

いずれのカテゴリーの方法とも、冷却速度が極めて早い
ので、合金組成を適当に選ぶならば非晶質の金属線が得
られる。
In both categories, the cooling rate is extremely fast, so if the alloy composition is appropriately selected, an amorphous metal wire can be obtained.

鋳造される線の幅または径は一般にノズルの幅または径
によって調節される。細い線をつくる場合、細い開口部
を有するノズルが使用される。しかし任意に細い線径の
金属線を上記液体急冷法でつくることができるわけでは
ない。ノズル開口部の径を小さくしすぎると、ノズル閉
塞が起シやすくなり、長時間の連続鋳造が困難になる。
The width or diameter of the cast wire is generally controlled by the width or diameter of the nozzle. When creating thin lines, a nozzle with a narrow opening is used. However, it is not possible to produce a metal wire with an arbitrarily small diameter using the liquid quenching method described above. If the diameter of the nozzle opening is made too small, nozzle clogging is likely to occur, making continuous casting for a long time difficult.

例えばFe7bCr8B、204合金を融点’rrn 
(1110℃)よ9150℃過熱したとき、ノズル閉塞
を起さずに30秒以上、室温の大気中で連続鋳造が可能
な開口部の直径の下限は約0.4mmφであった。すな
わち開口部が0.3咽φ、 0.2咽φと細くなるに従
い、ノズル閉塞に至る時間は短くなった。この場合ノズ
ルの閉塞は冷却基板によシ生じる冷い気流によるノズル
温度の低下による溶湯の凝固、溶湯とノズル材料との反
応生成物の形成あるいは酸化などが原因として考えられ
る。いずれにしても細い金属繊維を大量生産する上で、
ノズル閉塞は解決すべき大きな課題であった。
For example, Fe7bCr8B, 204 alloy has a melting point of 'rrn
(1110°C) to 9150°C, the lower limit of the diameter of the opening that allows continuous casting in the atmosphere at room temperature for 30 seconds or more without clogging the nozzle was about 0.4 mmφ. That is, as the opening became narrower to 0.3 φ and 0.2 φ, the time until nozzle blockage became shorter. In this case, the nozzle blockage is thought to be caused by solidification of the molten metal due to a drop in nozzle temperature due to the cold airflow generated by the cooling substrate, formation of reaction products between the molten metal and the nozzle material, or oxidation. In any case, when mass producing thin metal fibers,
Nozzle blockage was a major issue that needed to be solved.

(発明が解決しようとする問題点) 本発明は上記のような問題点を解決し、幅ま九は直径の
小さい金属細線(繊維を含む、以下単に金属細線という
。)を長時間連続的に鋳造する方法を提供しようとする
ものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems by continuously manufacturing thin metal wires (including fibers, hereinafter simply referred to as thin metal wires) with a small diameter. The purpose is to provide a method for casting.

(問題点を解決するための手段) 本発明は細いノズル開口部を通して金属(合金)溶湯を
冷却基板または溶体中に送り、急冷凝固させ、金属細線
を鋳造する方法において、長時間の鋳造を可能とするた
め、鋳造中のノズル開口部だ外部から加熱された気体を
送りノズルの閉基を防止しようとするものである。
(Means for Solving the Problems) The present invention is a method for casting molten metal (alloy) into a cooling substrate or solution through a narrow nozzle opening, rapidly solidifying it, and casting fine metal wire, which enables long-time casting. In order to prevent this, heated gas is sent from outside the nozzle opening during casting to prevent the nozzle from closing.

以下図面により本発明について説明する。第1図におり
て1は回転する冷却a−ル、2は先端の冷却ロール1と
対向する面に第2図および第3図に示すようにノズル開
口部7.・・・7.1を一列乃至は複数列設けた溶解る
つぼ、4はノズル開口部7゜・・・7 に加熱気体を送
シ、開口部の閉塞を防止するための加熱気体噴射ノズル
でその外面に加熱装置3を設けである。5は該ノズル4
と連絡する気体源、6は鋳造された金属細線(繊維)で
ある。
The present invention will be explained below with reference to the drawings. In FIG. 1, 1 is a rotating cooling roll, and 2 is a nozzle opening 7 on the surface facing the cooling roll 1 at the tip, as shown in FIGS. 2 and 3. 7. A melting crucible with one or more rows of 1, 4 is a nozzle opening 7°... 7 is a heated gas injection nozzle to send heated gas to the nozzle opening 7° and prevent the opening from clogging. A heating device 3 is provided on the outer surface. 5 is the nozzle 4
6 is a cast metal thin wire (fiber).

本発明方法により金属細線を鋳造するには溶解るつぼ2
内に溶解しようとする金属(合金)を収容し加熱溶解し
た後、回転している冷却ロール10表面にノズル開口部
7.・・・7n、から溶湯を噴出させ急冷凝固させる。
Melting crucible 2 for casting fine metal wire by the method of the present invention
After the metal (alloy) to be melted is accommodated and heated and melted, a nozzle opening 7 is formed on the surface of the rotating cooling roll 10. ... 7n, the molten metal is jetted out and rapidly solidified.

このとき本発明においてはノズル開口部に向けて加熱気
体噴射ノズル4から加熱装置3により加熱された気体を
噴射して該開口部を加熱し閉塞を防止する。供給する気
体の温度は金属溶湯の融点をTm■とするとき、Tm−
500(ト)よりも高いことが必要である。好ましくは
Tm−300(6)よシも高いことが望ましい。気体の
温度の上限は特に指定しないが、高すぎるとノズル部が
損傷したり、溶湯あるいはノズル材料の酸化、溶湯とノ
ズルとの反応などを促進するので好ましくない。
At this time, in the present invention, gas heated by the heating device 3 is injected from the heated gas injection nozzle 4 toward the nozzle opening to heat the opening and prevent clogging. The temperature of the supplied gas is Tm-, where the melting point of the molten metal is Tm-
It is necessary that the value be higher than 500 (g). Preferably, it is higher than Tm-300 (6). There is no particular upper limit to the temperature of the gas, but if it is too high, the nozzle part may be damaged, oxidation of the molten metal or nozzle material, and reaction between the molten metal and the nozzle may be promoted, so it is not preferable.

一般には、溶湯の温度以下にとどめておくことを推奨す
る。
Generally, it is recommended to keep the temperature below the temperature of the molten metal.

ノズル開口部に吹きつける気体の種類は空気のほか、不
活性ガス(Ar + He t N2など)が用いられ
る。酸化をとくに嫌う場合は不活性ガスを用いるのがよ
い。
The type of gas blown into the nozzle opening may be air or an inert gas (Ar + He t N2, etc.). If oxidation is particularly disliked, it is preferable to use an inert gas.

ガスを加熱する方法として、本発明では発熱体をらせん
状に巻き込んだ耐熱性金属・母イブにガスを送る方式に
よったが、温度の条件が満たされるものであれば他の方
法でもよい。
As a method of heating the gas, in the present invention, a method is used in which the gas is sent to a heat-resistant metal mother plate in which a heating element is spirally wound, but other methods may be used as long as the temperature conditions are satisfied.

加熱された気体を供給する位桁は、第1図のように、冷
却体の移功方向に対してノズルの上流側とするのが効果
的であった。また加熱気体を供給する噴射ノズルの先端
と、溶湯を噴出するノズルの間の距離は、溶湯供給ノズ
ルの構造に依存するが、通常10〜100mmの範囲で
行なう。
It has been effective to place the positioner for supplying the heated gas on the upstream side of the nozzle with respect to the direction in which the cooling body moves, as shown in FIG. The distance between the tip of the injection nozzle for supplying heated gas and the nozzle for ejecting molten metal depends on the structure of the molten metal supply nozzle, but is usually in the range of 10 to 100 mm.

溶湯を供給するノズルは、単孔、多孔いずれも使用可能
である。開口部の形状は円、楕円、矩形、hずれでもよ
いが、加工の便利さから通常は円が用いられる。直径は
最小0.1 rran程度の孔開は加工が可能になって
いる。
The nozzle for supplying the molten metal can be either single-hole or multi-hole. Although the shape of the opening may be a circle, an ellipse, a rectangle, or an h-shift, a circle is usually used for ease of processing. It is possible to drill holes with a minimum diameter of about 0.1 rran.

単孔ノズルあるいは多孔ノズルを冷却体の移動方向に対
して第2図のように配置すると、扁平断面の繊維が得ら
れる。特開昭59−147753号公報に記載の方法に
従b、移動方向に直角にV字型溝を有する冷却ロールを
用いると、扁平な短繊維が得られる。また周方向に半円
の溝を有する冷却ロールを用い、多孔ノズルを冷却体移
動方向に対して第3図のように配列し、溝の中に溶融金
属を噴出し、重ね合わせると断面が楕円ないし円に近い
線が得られる。
When a single-hole nozzle or a multi-hole nozzle is arranged as shown in FIG. 2 with respect to the moving direction of the cooling body, fibers with a flat cross section can be obtained. According to the method described in JP-A-59-147753, flat short fibers are obtained by using a cooling roll having V-shaped grooves perpendicular to the direction of movement. In addition, a cooling roll having semicircular grooves in the circumferential direction is used, and porous nozzles are arranged in the direction of movement of the cooling body as shown in Figure 3, and molten metal is spouted into the grooves. Or a line close to a circle can be obtained.

(実施例) 実施例1 第1図に示す装置を用い、化学組成Fe76Cr8B、
2C4(at ’Ir )の合金1.5 kllを13
00℃に溶解し、底面に直径が0.3 Mの開口部を2
0個有するノズルを通して、直径600間の銅製冷却ロ
ール上に該溶融金属を噴出し、20本の金属繊維を製造
した。
(Example) Example 1 Using the apparatus shown in FIG. 1, chemical compositions Fe76Cr8B,
2C4(at'Ir) alloy 1.5 kll 13
Melt at 00°C and make 2 openings with a diameter of 0.3 M on the bottom.
The molten metal was spouted through a nozzle having a diameter of 600 mm onto a copper cooling roll to produce 20 metal fibers.

ここで開口部は溶湯が互いに重なり合わないように配設
した。ロール周速は27 m /s1!e 、噴出圧は
0.4kl?/crrI2であった。鋳造中Arガスを
毎分151の流量で送り、らせん状に発熱体を巻込た加
熱装置により800℃に加熱されたガスを噴射ノズル4
を通してるつぼ底部のノズル開口部に向けて噴射した。
Here, the openings were arranged so that the molten metals did not overlap each other. The peripheral speed of the roll is 27 m/s1! e. Is the ejection pressure 0.4kl? /crrI2. During casting, Ar gas is sent at a flow rate of 151 per minute, and the gas heated to 800°C by a heating device containing a heating element in a spiral is sent to the injection nozzle 4.
It was sprayed through the nozzle opening at the bottom of the crucible.

ガス噴射ノズル先端の位置はノズル開口部の上流側30
 rm (溶湯噴出ノズル位置からの位置>VCL、、
た。この方法によって溶解した全量がほぼ0.3 rr
m幅のアモルファス繊維として得られた。
The position of the gas injection nozzle tip is 30 on the upstream side of the nozzle opening.
rm (Position from molten metal spouting nozzle position>VCL,,
Ta. The total amount dissolved by this method was approximately 0.3 rr.
It was obtained as an amorphous fiber with a width of m.

加熱ガスの吹付けを行なわすに、他は同一条件で鋳造し
た比較例では、鋳造開始後約20秒後にノズルは完全に
閉塞し、得られた繊維は1ooyと約7%の収率であっ
た。このように本発明の方法を採用することによシ繊維
製造の製品収率が著しく向上することが明らかである。
In a comparative example, which was cast under the same conditions except for spraying heated gas, the nozzle was completely clogged about 20 seconds after the start of casting, and the obtained fiber was 1 oooy, a yield of about 7%. Ta. Thus, it is clear that by employing the method of the present invention, the product yield in fiber production is significantly improved.

実施例2 冷却ロールに溝付きロール(調合金製、直径600m、
溝方向は移動方向に直角、溝間隔10I、溝幅、深さ、
それぞれ0.3瓢、0.5国)を用い、ノズル開口部の
直径が0.2 rtsrで、25個(7)開口部を有す
るノズルを通して実施例1と同一組成、同一重量の母合
金を溶解後噴出、急冷した。鋪造中実施例1で用いた加
熱装置3でHeガスを約900℃に加熱しく溶湯噴出ノ
ズルから上流側20調に配置した)ノズル4を通して毎
分151で噴出した。この方法によって溶解した合金の
全量(1,5ゆ)がほぼ0.21幅、10瓢長さのアモ
ルファス短繊維として得られた。
Example 2 Cooling roll with grooves (made of prepared alloy, diameter 600 m,
Groove direction is perpendicular to the movement direction, groove spacing 10I, groove width, depth,
A master alloy having the same composition and weight as in Example 1 was passed through a nozzle having 25 (7) openings with a nozzle opening diameter of 0.2 rtsr. After dissolving, it spouted out and was rapidly cooled. During pavement construction, He gas was heated to about 900° C. using the heating device 3 used in Example 1, and was ejected at 151°C per minute through a nozzle 4 (located 20 degrees upstream from the molten metal injection nozzle). By this method, the total amount of melted alloy (1.5 mm) was obtained as amorphous short fibers approximately 0.21 mm wide and 10 mm long.

加熱ガスの吹付けを行なわずに他は同一条件で鋳造した
比較例では鋳造開始後約15秒後にノズルは完全に閉塞
し、得られた繊維は301!と約2チの収率であった。
In a comparative example, which was cast under the same conditions without spraying heated gas, the nozzle was completely clogged approximately 15 seconds after the start of casting, and the fibers obtained were 301! The yield was approximately 2 cm.

このように本発明の方法を採用することにより短繊維製
造の収率が著るしく向上することが明らかである。
Thus, it is clear that by employing the method of the present invention, the yield of short fiber production is significantly improved.

(発明の効果) 以上説明したように、開口径の小さなノズルを用いて金
属繊維を鋳造する際に、本発明の方法を採用することに
よシノズル詰りを防止することができその結果従来より
も細い金属繊維を多桁に作ることが可能となった。
(Effects of the Invention) As explained above, by adopting the method of the present invention when casting metal fibers using a nozzle with a small opening diameter, nozzle clogging can be prevented, and as a result, it is possible to prevent the nozzle from clogging more than before. It has become possible to make multi-digit thin metal fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例を示す説明図
、第2図は本発明に用いられるるつぼの底面に設けた多
孔ノズルの一例を示す底面図で矢印は冷却ロールの移動
方向を示す。第3図は断面が円乃至楕円状の繊維を作る
ためのノズルの一例を示す底面図である。 1:冷却a−ル、2:溶解るつぼ、3:加熱装置、4:
加熱気体噴射ノズル、5:気体源、6:金属細線(繊維
)、7.・・・7n:ノズル開口部第1図
Fig. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and Fig. 2 is a bottom view showing an example of a multi-hole nozzle provided on the bottom of a crucible used in the present invention, with arrows indicating the moving direction of the cooling roll. show. FIG. 3 is a bottom view showing an example of a nozzle for producing fibers having a circular or elliptical cross section. 1: Cooling jar, 2: Melting crucible, 3: Heating device, 4:
Heated gas injection nozzle, 5: gas source, 6: thin metal wire (fiber), 7. ...7n: Nozzle opening diagram 1

Claims (1)

【特許請求の範囲】 (1)金属(合金)の溶湯を、ノズルを通して移動する
冷却基板の表面あるいは溶体中に噴出し急冷凝固させる
ことにより金属(合金)の細線を鋳造するに際し、鋳造
中、溶湯を供給するノズル開口部に加熱された気体を送
り、ノズル開口部を加熱することを特徴とする金属細線
の鋳造方法(2)ノズル開口部に送られる気体の温度T
(℃)が鋳造する金属(合金)溶湯の融点Tm(℃)に
対してT≧Tm−500(℃)なる条件を満たすことを
特徴とする特許請求の範囲第1項記載の金属細線の鋳造
方法(3)ノズル開口部に送られる気体の温度T(℃)
が鋳造する金属(合金)溶湯の融点Tm(℃)に対して
T≧Tm−300(℃)なる条件を満たすことを特徴と
する特許請求の範囲第1項記載の金属細線の鋳造方法 (4)ノズル開口部に送られる気体が、空気または不活
性ガスであることを特徴とする特許請求の範囲第1項記
載の金属細線の鋳造方法
[Claims] (1) When casting a thin metal (alloy) wire by ejecting the molten metal (alloy) into the surface of a cooling substrate or into the solution moving through a nozzle and rapidly solidifying the metal (alloy), during casting, A method for casting thin metal wire characterized by sending heated gas to a nozzle opening for supplying molten metal to heat the nozzle opening (2) Temperature T of gas sent to the nozzle opening
Casting of thin metal wire according to claim 1, characterized in that (°C) satisfies the condition T≧Tm-500 (°C) with respect to the melting point Tm (°C) of the molten metal (alloy) to be cast. Method (3) Temperature T (℃) of gas sent to the nozzle opening
The method for casting thin metal wire according to claim 1, characterized in that the method satisfies the condition T≧Tm-300 (°C) with respect to the melting point Tm (°C) of the molten metal (alloy) to be cast (4). ) The method for casting a fine metal wire according to claim 1, wherein the gas sent to the nozzle opening is air or an inert gas.
JP273986A 1986-01-09 1986-01-09 Casting method for fine metallic wire Granted JPS62161443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP273986A JPS62161443A (en) 1986-01-09 1986-01-09 Casting method for fine metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP273986A JPS62161443A (en) 1986-01-09 1986-01-09 Casting method for fine metallic wire

Publications (2)

Publication Number Publication Date
JPS62161443A true JPS62161443A (en) 1987-07-17
JPH0462825B2 JPH0462825B2 (en) 1992-10-07

Family

ID=11537709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP273986A Granted JPS62161443A (en) 1986-01-09 1986-01-09 Casting method for fine metallic wire

Country Status (1)

Country Link
JP (1) JPS62161443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149125A3 (en) * 2009-06-26 2011-03-24 Salzgitter Flachstahl Gmbh Method and device for producing steel strips by means of belt casting
CN105149535A (en) * 2015-09-30 2015-12-16 中镁镁业有限公司 Heating protection device for continuous casting-rolling nozzles of magnesium and magnesium alloy
CN107690361A (en) * 2015-09-11 2018-02-13 马克思-普朗克科学促进协会 There are the metal of thickness or the apparatus and method of inorfil in micrometer range by melt spinning manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524776B2 (en) * 2004-04-14 2010-08-18 晶彦 千葉 Method for producing porous body for living body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528330A (en) * 1978-08-18 1980-02-28 Hitachi Ltd Manufacture of amorphous metal
JPS59209457A (en) * 1983-04-11 1984-11-28 アライド・コ−ポレ−シヨン Metallic strip casting device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528330A (en) * 1978-08-18 1980-02-28 Hitachi Ltd Manufacture of amorphous metal
JPS59209457A (en) * 1983-04-11 1984-11-28 アライド・コ−ポレ−シヨン Metallic strip casting device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149125A3 (en) * 2009-06-26 2011-03-24 Salzgitter Flachstahl Gmbh Method and device for producing steel strips by means of belt casting
CN107690361A (en) * 2015-09-11 2018-02-13 马克思-普朗克科学促进协会 There are the metal of thickness or the apparatus and method of inorfil in micrometer range by melt spinning manufacture
JP2018516177A (en) * 2015-09-11 2018-06-21 マックス−プランク−ゲゼルシャフト ツール フェルデルンク デル ヴィッセンシャフテン エー.ファウ. Apparatus and method for producing metal or inorganic fibers having a thickness in the micron range by melt spinning
CN107690361B (en) * 2015-09-11 2019-11-08 马克思-普朗克科学促进协会 There are the metal of thickness or the device and method of inorfil in micron range by melt spinning manufacture
CN105149535A (en) * 2015-09-30 2015-12-16 中镁镁业有限公司 Heating protection device for continuous casting-rolling nozzles of magnesium and magnesium alloy
CN105149535B (en) * 2015-09-30 2017-12-12 中镁镁业有限公司 A kind of magnesium and magnesium alloy continuous casting and rolling lip heating protecting device

Also Published As

Publication number Publication date
JPH0462825B2 (en) 1992-10-07

Similar Documents

Publication Publication Date Title
JPH039818B2 (en)
JPS62161443A (en) Casting method for fine metallic wire
CA1149577A (en) Method and device for manufacture of amorphous metal tapes
JP5893796B2 (en) Metal continuous casting process
JPS6116219B2 (en)
US4225297A (en) Nozzle pre-heating device in a prilling apparatus
JPS60177943A (en) Nozzle
JPH03248751A (en) Injection nozzle and production of metal or alloy fine wire using this
JPH0757412B2 (en) Method for manufacturing thin metal wires
JP2531752B2 (en) Quenched metal ribbon manufacturing equipment
JPH08309493A (en) Strip manufacturing machine
JP3047109B2 (en) Method and apparatus for manufacturing thin metal wires
JPS62166061A (en) Production of rapid cooling solidified active foil metal
JPH01143745A (en) Method and apparatus for producing metal fine wire
JPH01306054A (en) Apparatus for manufacturing metal fine wire
JPH04127939A (en) Method and apparatus for producing rapidly cooled metal strip
JPS6224842A (en) Apparatus for producing fine metallic wire
JPS6352751A (en) Rapidly cooling apparatus for liquid
JPS5929348B2 (en) Quenched metal ribbon manufacturing equipment
JPS6159822B2 (en)
JPS6352752A (en) Rapidly cooling apparatus for liquid
JPH0199757A (en) Nozzle for manufacturing rapidly cooled metal strip
JPS6133737A (en) Nozzle
JPH0620612B2 (en) Quenched metal manufacturing method
JPH0515950A (en) Method for continuously melting and discharging material