JPS60177943A - Nozzle - Google Patents

Nozzle

Info

Publication number
JPS60177943A
JPS60177943A JP3286784A JP3286784A JPS60177943A JP S60177943 A JPS60177943 A JP S60177943A JP 3286784 A JP3286784 A JP 3286784A JP 3286784 A JP3286784 A JP 3286784A JP S60177943 A JPS60177943 A JP S60177943A
Authority
JP
Japan
Prior art keywords
nozzle
metal
small hole
cooled
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3286784A
Other languages
Japanese (ja)
Inventor
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3286784A priority Critical patent/JPS60177943A/en
Publication of JPS60177943A publication Critical patent/JPS60177943A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To improve the degree of freedom of shape in the small hole part for ejecting a melt by forming fine grooves to the inside wall part of a metallic nozzle which contacts with a molten metal and can be cooled. CONSTITUTION:A metallic nozzle is inscribed with plural fine grooves 2 on the inside wall part to contact with a molten metal 3 and can be cooled with water. The molten metal 3 cannot contact with the inside of the grooves 2 on account of surface tension, thus resulting in the decreased contact area between the metal 3 and the nozzle metal 1. The possibility of solidification of the metal 3 during passage through a small hole part 4 is thus eliminated and even if the diameter is, for example, 0.5mm., the molten metal is stably ejected without solidifying in the mid-way and the degree of freedom of the shape of the small-hole part 4 is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物質を溶解し、それを高速で回転するロール
の表面に噴射することによって、前記物質を高冷却速度
で冷却凝固する液体急冷装置に用いるノズルに関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a liquid quenching method in which a substance is melted and the substance is cooled and solidified at a high cooling rate by injecting it onto the surface of a roll rotating at high speed. This relates to a nozzle used in the device.

(従来技術) 従来、液体急冷装置は、合金の急冷薄帯を得る九めに開
発されてきておシ、そのような装置によって得られる急
冷合金は、通常の凝固法によっては得られ逢いようなア
モルファス状態とか非平衡相状態とかの特異な状態を有
しており、近年多くの注目を集めるように々っている。
(Prior Art) In the past, liquid quenching equipment has been developed for obtaining quenched thin ribbons of alloys, and the quenched alloys obtained by such equipment are unlike those obtained by ordinary solidification methods. It has unique states such as an amorphous state and a non-equilibrium phase state, and has been attracting a lot of attention in recent years.

しかしながら従来の液体急冷装置は、鉄系合金等の比較
的融点の低い物質用に作られているものが多く、石英製
のノズルを抵抗加熱もしくは高周波加熱によって加熱す
るという方式のものがほとんどである。従って、最高使
用温度は石英の耐火度によって制限され、1200〜1
300℃程度が限度である。また温度が高くなると石英
と反応することによる試料の汚染も起こりうる。たとえ
ノズルの材質を石英から他のセラミックス等に変えたと
しても、耐熱性、反応性等を考えるとせいぜい2000
℃程度が限界である。
However, conventional liquid quenching equipment is often made for materials with relatively low melting points, such as iron-based alloys, and most of them use a method in which quartz nozzles are heated by resistance heating or high-frequency heating. . Therefore, the maximum operating temperature is limited by the refractory rating of quartz, and is 1200 to 1
The limit is about 300°C. In addition, when the temperature increases, sample contamination may occur due to reaction with quartz. Even if the material of the nozzle is changed from quartz to other ceramics, it will still be 2,000 yen at most when considering heat resistance, reactivity, etc.
The limit is about ℃.

本発明者らは上記の問題点を解決し、融点2000℃以
上の高融点物質であっても使用可能な液体急冷装置をす
でに提案した。それは、物質を溶解し噴射するノズル部
分が水冷され九金属製であることを特徴とする液体急冷
装置である。この装置を用いるならば、ノズルの中で融
点2000℃以上の高融点物質を溶解しても、ノズル金
属が十分に水冷されていれば、ノズル金属の温度が低す
ぎるために1ノズル金属と溶融物質との反応はほとんど
起こらない。従って、この装置によって、高融点物質の
液体急冷が基本的には可能である。
The present inventors have already proposed a liquid quenching device that solves the above problems and can be used even with high melting point substances having a melting point of 2000° C. or higher. It is a liquid quenching device characterized in that the nozzle part that melts and sprays the substance is water-cooled and made of nine metals. If this device is used, even if a high melting point substance with a melting point of 2000°C or higher is melted in the nozzle, if the nozzle metal is sufficiently water-cooled, the temperature of the nozzle metal will be too low and it will melt with the 1 nozzle metal. Almost no reaction occurs with substances. This device therefore basically allows liquid quenching of high-melting substances.

しかし、水冷金属ノズルを用いる場合には、融体を噴出
する小孔部分の形状に注意しなければならない。という
のは、小孔の径が小さすぎたり、長さが長すぎたりする
と、融体が小孔部を通過する途中で凝固してしまうから
である。従って、小孔の径を1m以下にするととKは、
通常かなりの困難を伴う。このような困難は、従来の石
英製ノズル等にはほとんど見られないことである。とい
うのは、石英の熱伝導度は非常に小さいために、融体が
小孔部通過中に冷却されることはほとんどないからであ
る。しかし、水冷金属製ノズルの場合には、冷却能が非
常に大きいために1融体が小孔部を通過する途中で凝固
してしまい、融体を噴射することができないという事態
が生ずるのである。この事態を避けるためには、小孔の
径をある程度以上に大きくすればよいのであるが、そう
すると、融体が小孔から自然にたれ落ちたりして、噴出
iの制御が困難になる等の問題が生ずる。
However, when using a water-cooled metal nozzle, care must be taken regarding the shape of the small hole portion through which the molten material is ejected. This is because if the diameter of the small hole is too small or the length is too long, the molten material will solidify while passing through the small hole. Therefore, if the diameter of the small hole is set to 1 m or less, K is
Usually involves considerable difficulty. Such difficulties are almost never seen in conventional quartz nozzles. This is because the thermal conductivity of quartz is so low that the melt is hardly cooled while passing through the small hole. However, in the case of a water-cooled metal nozzle, the cooling capacity is so large that the molten material solidifies while passing through the small hole, resulting in a situation where the molten material cannot be injected. . In order to avoid this situation, the diameter of the small hole can be made larger than a certain level, but if this is done, the molten material may naturally drip down from the small hole, making it difficult to control the eruption i. A problem arises.

(発明の目的) 本発明は、上記の問題点を解決し、高融点物質を溶解・
噴射する液体急冷用ノズルにおいて、液体を噴射する小
孔部分の形状の自由度を飛曜的に高めることを目的とす
る。
(Object of the invention) The present invention solves the above problems and dissolves and melts high melting point substances.
The purpose of this invention is to significantly increase the degree of freedom in the shape of the small hole portion through which liquid is jetted in a liquid quenching nozzle.

(発明の構成) 本発明は、水冷可能な金属製のノズルであって液体が接
触する内壁部分に微細な溝を複数有することを特徴とす
るノズルである。
(Structure of the Invention) The present invention is a water-coolable metal nozzle characterized by having a plurality of fine grooves in an inner wall portion that comes into contact with liquid.

(発明の構成に関する説明) 本発明の液体急冷用ノズルは、水冷された金属製である
ために、融点2000℃以上の高融点物質を溶解しても
、溶融物質とノズルの金属とはほとんど反応しない。し
かも、液体が接触する内壁部分に微細な溝を多数有して
いるために、以下に述べるような理由によって、溶融試
料に対する冷却能は従来の水冷金属ノズルに比べてはる
かに小さく、融体が小孔部分を通過中に凝固する恐れは
#1とんどない。
(Description of the structure of the invention) Since the liquid quenching nozzle of the present invention is made of water-cooled metal, even if a high melting point substance with a melting point of 2000°C or higher is melted, the molten substance and the metal of the nozzle hardly react with each other. do not. Moreover, because the inner wall that comes into contact with the liquid has many fine grooves, the cooling capacity for the molten sample is much smaller than that of conventional water-cooled metal nozzles, and the molten material is #1: There is almost no risk of solidification while passing through the small hole.

すなわち、溶融試料はその表面張力のためにノズル表面
の微細な溝の内部にまで接触することはできず、その結
果、溶融試料とノズル金属との接触面積がかなシ減少す
るからである。またその効果は、ノズル表面の微細な溝
にアルゴン等のガスを流すことによって、よシ一層高め
られる。その理由は、溝を流れるガスによって、溶融試
料とノズル金属との接触面積がより減少するばかねでな
く、ノズルの内壁全体にわたって薄い気体の層が形成さ
れ、溶融試料とノズル金属との直接的な接触がほとんど
断たれるからではないかと考えられる。このことを理解
するための原理図を第1図から第3図に示す。第1図は
すでに提案された水冷金属ノズルにおいて、金属表面と
溶融試料を示している。第2図は本発明のノズルであり
、第3図は本発明のノズルにガスを流した場合のそれぞ
れノズル表面と溶融試料を示す。図において、lは水冷
金属、3は溶融試料、5はガス層である。
That is, the molten sample cannot come into contact with the inside of the fine grooves on the nozzle surface due to its surface tension, and as a result, the contact area between the molten sample and the nozzle metal is significantly reduced. The effect can be further enhanced by flowing a gas such as argon into the fine grooves on the nozzle surface. The reason for this is that the gas flowing through the groove not only further reduces the contact area between the molten sample and the nozzle metal, but also forms a thin layer of gas over the entire inner wall of the nozzle, causing direct contact between the molten sample and the nozzle metal. This is thought to be due to the fact that most of the contact is cut off. Principle diagrams for understanding this are shown in FIGS. 1 to 3. FIG. 1 shows a metal surface and a molten sample in a previously proposed water-cooled metal nozzle. FIG. 2 shows the nozzle of the present invention, and FIG. 3 shows the nozzle surface and molten sample when gas is flowed through the nozzle of the present invention. In the figure, 1 is a water-cooled metal, 3 is a molten sample, and 5 is a gas layer.

水冷金属あ材質としては、熱伝導度の高いもの、(5) 例えば、銅、銀あるいはそれらの合金などが考えられる
。複数の溝は少なくともノズル周辺部から液体噴出孔に
向かう形状の溝を含んでいることが必要であり、直線状
、又は曲線状であってもかまわない。さらに前記溝に加
えて、これらと交差する溝を形成して本よい。以下、本
発明を実施例に従って更に詳細に説明する。
The water-cooled metal material may be a material with high thermal conductivity (5), such as copper, silver, or an alloy thereof. It is necessary that the plurality of grooves include at least grooves having a shape extending from the nozzle periphery toward the liquid ejection hole, and may be linear or curved. Furthermore, in addition to the grooves described above, grooves intersecting with these grooves may be formed. Hereinafter, the present invention will be explained in more detail according to examples.

1は水冷金属、2は水冷金属の内壁につけた溝、3は試
料、4は試料を噴射する小孔部である。重要々のは、試
料の溶解、噴射時に試料と接触する可能性のあるノズル
内壁に1微細表溝を多数形成するということである。そ
して、好ましくは、それらの溝は気体をスムーズに流す
ような形状をもついて述べる。水冷金属1としては銅を
用い、小孔4の形状は内径0.5閣、長さ2tmとした
。小孔内の溝は幅0,15閣、深さ0.2簡のものを4
本形成(6) した。試料3としては、あらかじめアーク溶解によって
作製したNb75S i2.合金のインゴットを用いた
。この合金の融点は約2130℃である。この試料をア
ルゴンプラズマトーチを用いて溶解し。
1 is a water-cooled metal, 2 is a groove formed on the inner wall of the water-cooled metal, 3 is a sample, and 4 is a small hole through which the sample is injected. What is important is that a large number of fine surface grooves are formed on the inner wall of the nozzle, which may come into contact with the sample during melting and injection of the sample. Preferably, these grooves have a shape that allows gas to flow smoothly. Copper was used as the water-cooled metal 1, and the small hole 4 had an inner diameter of 0.5 mm and a length of 2 tm. The groove inside the small hole is 0.15 mm wide and 0.2 mm deep.
This was completed (6). Sample 3 was Nb75S i2. which was prepared in advance by arc melting. An alloy ingot was used. The melting point of this alloy is approximately 2130°C. Melt this sample using an argon plasma torch.

約05気圧の圧力によってノズル小孔4から高速で回転
している銅製ロールの表面に噴射した。試料はほとんど
完全にノズル小孔から噴出して急冷薄帯となり、ノズル
内にはほとんど残っていなかった。また、試料と水冷鋼
との反応の形跡は検出されなかった。
It was sprayed from the nozzle hole 4 onto the surface of a copper roll rotating at high speed under a pressure of about 0.05 atm. Almost all of the sample was ejected from the nozzle hole and turned into a quenched ribbon, with almost no remaining inside the nozzle. Also, no evidence of reaction between the sample and the water-cooled steel was detected.

比較例 はないということだけである。水冷金属1の材質として
は銅を用い、小孔4の形状は内径0.5鰭、長さ2期と
した。実施例と同様に、Nb、、 S i 、、合金イ
ンゴットを溶解し、0.5気圧の圧力をかけて噴射しよ
うとしたところ、溶融試料は小孔4の出口付近まで進ん
だものの、その地点で凝固してしま(7) い噴射することはでもなかった。
It's just that there are no comparative examples. Copper was used as the material for the water-cooled metal 1, and the small hole 4 had an inner diameter of 0.5 fin and a length of 2. Similarly to the example, when an Nb, S i , alloy ingot was melted and an attempt was made to inject it by applying a pressure of 0.5 atm, the molten sample advanced to the vicinity of the exit of the small hole 4, but did not reach that point. It solidified (7) and there was no problem in spraying it.

以上の実施例と比較例から本わかるように1本発明によ
る液体急冷用ノズルは、液体を噴射する小孔部分の形状
が直径0.5 mというよう外小さなものKなっても、
途中で凝固するとと々〈安定な噴射を行なうことが可能
である。
As can be seen from the above Examples and Comparative Examples, the liquid quenching nozzle according to the present invention can be used even if the shape of the small hole portion through which liquid is injected is as small as 0.5 m in diameter.
Once it solidifies midway through, stable injection is possible.

以上詳細に説明したように、本発明による液体急冷用ノ
ズルは、液体を噴射する小孔部分の形状の自由度がきわ
めて大きく、その効果は大である。
As described above in detail, the liquid quenching nozzle according to the present invention has an extremely large degree of freedom in the shape of the small hole portion through which liquid is injected, and is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は、本発明を理解するためのは本発明
の一実施例であシ、第5図は従来技術の比較例である。 図において
1 to 3 are an embodiment of the present invention for understanding the present invention, and FIG. 5 is a comparative example of the prior art. In the figure

Claims (1)

【特許請求の範囲】[Claims] 冷却可能な金属製のノズルであって液体が接触する内壁
部分に微細な溝を複数布することを特徴とするノズル。
A coolable metal nozzle characterized by having a plurality of fine grooves on the inner wall portion that comes into contact with liquid.
JP3286784A 1984-02-23 1984-02-23 Nozzle Pending JPS60177943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3286784A JPS60177943A (en) 1984-02-23 1984-02-23 Nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3286784A JPS60177943A (en) 1984-02-23 1984-02-23 Nozzle

Publications (1)

Publication Number Publication Date
JPS60177943A true JPS60177943A (en) 1985-09-11

Family

ID=12370803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3286784A Pending JPS60177943A (en) 1984-02-23 1984-02-23 Nozzle

Country Status (1)

Country Link
JP (1) JPS60177943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513536U (en) * 1991-05-07 1993-02-23 株式会社コーセー Dropper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513536U (en) * 1991-05-07 1993-02-23 株式会社コーセー Dropper

Similar Documents

Publication Publication Date Title
US3896203A (en) Centrifugal method of forming filaments from an unconfined source of molten material
US3881542A (en) Method of continuous casting metal filament on interior groove of chill roll
JPH0372375B2 (en)
US4471831A (en) Apparatus for rapid solidification casting of high temperature and reactive metallic alloys
EP0055827A1 (en) Heat extracting crucible for rapid solidification casting of molten alloys
CA1149577A (en) Method and device for manufacture of amorphous metal tapes
JPS60177943A (en) Nozzle
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JP3122352B2 (en) Mold for continuous casting equipment
JPS60177937A (en) Nozzle
JPH0462825B2 (en)
JPS6133737A (en) Nozzle
JPS6352751A (en) Rapidly cooling apparatus for liquid
JPS6133738A (en) Quick cooling device for liquid
JPS6352752A (en) Rapidly cooling apparatus for liquid
JPS6130266A (en) Nozzle for quick cooling device for liquid
JPS6130261A (en) Quick cooling device for liquid
JPS6130263A (en) Quick cooling device for liquid
JPH0452170B2 (en)
JPH02145710A (en) Manufacture of metal fine powder
JPS62166061A (en) Production of rapid cooling solidified active foil metal
EP0183220A2 (en) Method of forming disordered filamentary materials
JPH03130311A (en) Nozzle for pouring mish metal alloy
JPH08309493A (en) Strip manufacturing machine
JPS62220252A (en) Liquid rapid cooling device