JPS6116219B2 - - Google Patents

Info

Publication number
JPS6116219B2
JPS6116219B2 JP17946280A JP17946280A JPS6116219B2 JP S6116219 B2 JPS6116219 B2 JP S6116219B2 JP 17946280 A JP17946280 A JP 17946280A JP 17946280 A JP17946280 A JP 17946280A JP S6116219 B2 JPS6116219 B2 JP S6116219B2
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
metal
chamber
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17946280A
Other languages
Japanese (ja)
Other versions
JPS57103762A (en
Inventor
Masayuki Wakamya
Yukio Hotsuta
Harufumi Sakino
Eiichi Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17946280A priority Critical patent/JPS57103762A/en
Publication of JPS57103762A publication Critical patent/JPS57103762A/en
Publication of JPS6116219B2 publication Critical patent/JPS6116219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は薄帯の製造方法に関するものであり、
特に幅広な薄帯を容易に製造する方法に関するも
のである。最近、金属溶湯などから直接金属など
の薄帯を連続的に製造する方法が注目されてい
る。その代表的なものの一つに超急冷法がある。
この方法は例えば金属溶湯をノズルを通して、移
動する冷却体(回転金属ローラーや移動金属ベル
ト)上に供給して105〜106℃/secで急冷する。
このような方法で作成した金属薄帯は、非晶質あ
るいは微結晶よりなり、従来の圧延法などによつ
て作成される薄帯とは全く異なる物質を有するこ
とがある。このようなことから特に磁性薄帯など
を中心に広範な研究開発が行なわれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ribbon,
In particular, it relates to a method for easily manufacturing wide ribbons. BACKGROUND ART Recently, a method of continuously manufacturing thin ribbons of metal directly from molten metal has been attracting attention. One of the representative methods is the ultra-quenching method.
In this method, for example, molten metal is supplied through a nozzle onto a moving cooling body (rotating metal roller or moving metal belt) and rapidly cooled at 10 5 to 10 6 °C/sec.
A metal ribbon produced by such a method is amorphous or microcrystalline, and may have a completely different substance from a ribbon produced by conventional rolling methods. For this reason, extensive research and development is being carried out, especially focusing on magnetic ribbons.

最近、パワートランス材料として、このような
超急冷法を用いたFe−B−Si−C系などの非晶
質材料やFe−Si系結晶質材料が、従来の圧延法
で製造された最高級硅素鋼板より、鉄損などが優
れているため、注目されている。
Recently, as power transformer materials, amorphous materials such as Fe-B-Si-C and Fe-Si crystalline materials manufactured using the ultra-quench cooling method have been used as power transformer materials, compared to the highest grade materials manufactured using conventional rolling methods. It is attracting attention because it has better iron loss than silicon steel sheets.

特に、これらの鉄心材としては、その鉄心構成
から150mm〜200mm幅の連続体が必要とされてい
る。しかしながら、従来は、ノズル上部にまず母
合金を入れ、それを加熱して溶解し、ガスで加圧
して、非常に短い短辺を有する長方形ノズルで溶
湯を帯状に成形して、これと移動する冷却体(回
転金属ローラーやスチールベルト)の冷却面上に
噴出させ、冷却面上で急冷固化させることによ
り、長方形ノズルの幅に応じた幅の薄帯を形成さ
せる方法が用いられていた。
In particular, these iron core materials require a continuous body with a width of 150 mm to 200 mm due to their core configuration. However, conventionally, the master alloy is first placed in the upper part of the nozzle, heated and melted, and then pressurized with gas, and then the molten metal is formed into a band shape through a rectangular nozzle with very short short sides, and the molten metal is moved along with this. A method was used in which a thin strip having a width corresponding to the width of a rectangular nozzle was formed by jetting it onto the cooling surface of a cooling body (rotating metal roller or steel belt) and rapidly cooling and solidifying it on the cooling surface.

そのため、次のような欠点が存在する。 Therefore, the following drawbacks exist.

(1) ノズル上部で直接金属を溶解し、加圧するた
め、バツチ式となり、連続的に薄帯を製造する
ことができない。特に幅の広い薄帯を製造する
場合、溶湯量が大量に必要であり、このような
バツチ方式では困難である。
(1) Since the metal is melted and pressurized directly at the top of the nozzle, it is a batch method and cannot continuously produce ribbons. In particular, when manufacturing a wide ribbon, a large amount of molten metal is required, which is difficult to do using such a batch method.

(2) ノズル上部で直接金属を溶解する場合、その
部分を少くとも金属の融点以上にして溶解する
必要があり、かなり大規模な加熱装置が必要で
ある。特に幅の広い薄帯を製造する場合、その
ノズル幅が広いため、加熱装置等の規模が大き
くなり、加熱によるロスが大きくなり、特に高
融点を有する金属は容易に溶解できない。
(2) When melting metal directly at the top of the nozzle, it is necessary to heat that part to at least the melting point of the metal, which requires a fairly large-scale heating device. In particular, when manufacturing a wide ribbon, the nozzle width is wide, so the scale of the heating device etc. becomes large, and the loss due to heating becomes large, and in particular, metals with a high melting point cannot be melted easily.

(3) 特に酸化し易い金属をノズル上部で加熱溶解
する際、室温から加熱する為、ノズルから供給
される空気で母合金表面が酸化され、溶解が一
層困難となる。
(3) When metals that are particularly susceptible to oxidation are heated and melted at the top of the nozzle, the air supplied from the nozzle oxidizes the surface of the mother alloy, making melting even more difficult.

本発明は、かかる欠点を除去するものであり、
良質で幅広の薄帯を連続的に製造しうる方法を提
供するものである。
The present invention eliminates such drawbacks,
The purpose of the present invention is to provide a method that can continuously produce high-quality, wide ribbons.

以下、本発明の構成を説明する。 The configuration of the present invention will be explained below.

本願発明は、多数の貫通孔を有する部分と貫通
孔を有しない部分とを備え金属溶湯を保持する保
持部材で仕切られた第1、第2の2つの部屋を有
し、前記金属溶湯を加圧する加圧手段を備えた容
器と、前記容器の上部に溶湯供給用ノズルを介し
て接続され設けられた溶湯だめと、前記容器の下
部に設けられたスリツト形状を有するノズルと、
前記ノズルから噴出された溶湯を冷却する回転体
とを備え、金属溶湯を前記溶湯だめから前記溶湯
供給用ノズルを介して前記保持部材の貫通孔を有
しない部分に供給し前記容器の第1の部屋に保持
した後、前記加圧手段により金属溶湯を加圧して
前記第1の部屋から貫通孔を通して第2の部屋に
移動させ、更に前記ノズルから前記回転体の冷却
面にも噴出させ、前記回転体で急冷、凝固させる
薄帯の製造方法である。
The present invention has two chambers, a first and a second chamber, which are partitioned by a holding member that holds the molten metal and have a portion with a large number of through holes and a portion without through holes, and the molten metal is heated. a container equipped with a pressurizing means for applying pressure; a molten metal reservoir connected to and provided at the upper part of the container via a molten metal supply nozzle; and a slit-shaped nozzle provided at the lower part of the container;
a rotating body that cools the molten metal spouted from the nozzle, and supplies the molten metal from the molten metal reservoir to the portion of the holding member that does not have a through hole through the molten metal supply nozzle, and After holding the molten metal in the chamber, the molten metal is pressurized by the pressurizing means and moved from the first chamber to the second chamber through the through hole, and is further jetted from the nozzle onto the cooling surface of the rotating body. This is a method for manufacturing ribbons that is rapidly cooled and solidified using a rotating body.

ここで保持部材とは金属溶湯をその上に保持し
た場合、その粘性により金属溶湯を貫通孔から貫
通させることはなく溶湯をその上に保持しうるも
のであり、貫通孔としては後述のように1〜2mm
径のものが好ましい。
Here, the holding member is a member that can hold the molten metal on top of it without allowing the molten metal to penetrate through the through hole due to its viscosity. 1~2mm
diameter is preferred.

また加圧手段とは、前記保持部材上に保持され
た金属溶湯表面をアルゴンなどの気体により加圧
することにより、保持部材上に保持された金属溶
湯を貫通孔を介して流出させ、さらに下部のスリ
ツト形状を有するノズルからも噴出させるための
容器内圧力を容器外周辺圧力より高くする手段で
ある。
The pressurizing means pressurizes the surface of the molten metal held on the holding member with a gas such as argon to cause the molten metal held on the holding member to flow out through the through hole, and further to the bottom of the holding member. This is a means for making the pressure inside the container higher than the pressure around the outside of the container in order to cause the spray to be ejected from a nozzle having a slit shape.

この方法において、前記容器の上下を区切る保
持部材部およびスリツト形状ノズル部近傍を外部
から、あらかじめ加熱(溶湯の融点マイナス500
℃以上で溶湯温度以下の温度が好ましい)した場
合、さらに加圧条件をノズル外圧より0.05〜2気
圧高く加圧することにより1000℃以上の融点を有
する金属の薄帯を、困難なく作成することができ
た。さらに本発明において貫通孔を有する板部分
が、板全体面積の20%以下であると、溶湯量供給
がスムーズでない場合もあるため、20%以上が望
ましい。
In this method, the holding member section that separates the upper and lower parts of the container and the vicinity of the slit-shaped nozzle section are heated in advance from the outside (minus the melting point of the molten metal by 500°C).
℃ or higher and lower than the molten metal temperature), it is possible to create a metal ribbon with a melting point of 1000℃ or higher without difficulty by further applying pressure 0.05 to 2 atmospheres higher than the nozzle external pressure. did it. Furthermore, in the present invention, if the plate portion having through holes is 20% or less of the entire plate area, the amount of molten metal supplied may not be smooth, so it is desirable that the plate portion has a through hole of 20% or more.

このようにすることにより、特に、幅広薄帯を
製造する場合、長方形型ノズル口の長辺が長くな
り、ノズルの形状が複雑かつ大きくなる為、従来
の製造方法ではノズル上部で母合金を直接溶解す
るため、非常に大型の加熱装置が必要であつたが
本発明の製造方法では金属溶湯溜めで溶解し、瞬
時にノズルに供給するため、溶解金属単位重量よ
り溶解の際の加熱ロスを約1/2〜1/3に減少でき
た。また鉄分の多い薄板を製造する場合など、高
融点物質に対しては、非常に高温が必要となる
が、本発明の製造方法では溶湯溜めを高温に保温
すればよく、複雑な形状のノズル部の加熱は溶融
の融点以下でも充分であるため、溶解が容易で加
熱ロスが少なくてすむ。
By doing this, especially when manufacturing wide ribbons, the long sides of the rectangular nozzle mouth become long, making the nozzle shape complex and large. A very large heating device was required to melt the metal, but in the manufacturing method of the present invention, the metal is melted in the molten metal reservoir and instantly supplied to the nozzle, so the heating loss during melting is reduced by approximately the unit weight of the molten metal. It was reduced to 1/2 to 1/3. In addition, when manufacturing thin plates with a high iron content, extremely high temperatures are required for materials with high melting points, but in the manufacturing method of the present invention, the molten metal reservoir only needs to be kept at a high temperature, and the nozzle part with a complicated shape Since heating is sufficient even below the melting point, melting is easy and heating loss is small.

次に、本発明の一実施例を第1図イ〜ハを用い
て説明する。第1図イ〜ハは本発明の一実施例で
ある製造方法を説明するための工程図である。
Next, one embodiment of the present invention will be described using FIGS. 1A to 1C. FIGS. 1A to 1C are process diagrams for explaining a manufacturing method that is an embodiment of the present invention.

第1図イに示すように、ヒータ13を埋め込ん
だ溶湯溜め1内で1350℃に加熱されたFe82
B10,Si8(数字は原子%)からなる溶湯2は、溶
湯量制御装置4を備えたアルミナーカーボン製ノ
ズル3を通して予め高周波コイル5で900℃に加
熱された第1、第2の2つの部屋14,15を有
する容器12の第1の部屋14に供給される。容
器には、多数の貫通孔7を有する部分と貫通孔を
有しない部分とを備えたグラフアイトの板6によ
り第1の部屋14と第2の部屋15に分割されて
いる。グラフアイト板6の貫通孔を有しない部分
に4Kg/secで注がれる。このようにすることに
よりこの溶湯2はグラフアイト板6にほぼ平行に
流れ、瞬時に貫通孔7を有する部分を全部覆う。
As shown in FIG .
The molten metal 2 consisting of B 10 and Si 8 (numbers are atomic %) is passed through an alumina carbon nozzle 3 equipped with a molten metal amount control device 4 into first and second molten metals heated to 900°C by a high frequency coil 5 in advance. A first chamber 14 of a container 12 having two chambers 14, 15 is fed. The container is divided into a first chamber 14 and a second chamber 15 by a graphite plate 6 having a portion with a large number of through holes 7 and a portion without through holes. It is poured into the part of the graphite plate 6 that does not have through holes at a rate of 4 kg/sec. By doing this, the molten metal 2 flows almost parallel to the graphite plate 6, instantly covering the entire portion having the through holes 7.

この時同図イに示すように、溶湯は表面張力等
によつて、貫通孔7上に保持され、貫通孔を通過
しないでグラフアイトの板6上に満たされる。こ
の直後、同図ロ,ハに示すように加圧管8を通じ
0.6Kg/cm2のアルゴン加圧を行い、貫通孔7から
溶湯2を噴出させ、グラフアイト製の0.25mm×
150mmのスリツト形状を有するノズル9から、カ
ーテン状に成形された溶湯2を1200回転/分で回
転する半径25cm、幅50cmの鉄製ローラー10の回
転面上に噴出させると共にこれと同時に溶湯量制
御装置4で溶湯量を約1.5Kg/secに減じ、溶湯面
検知装置11で溶湯面を検知し、溶湯面がほぼ安
定するように溶湯流量制御を行うことにより幅広
の薄帯を製造した。これらの動作をさらに詳述し
たものを第2図イ〜ニに示す。
At this time, as shown in Figure A, the molten metal is held above the through-hole 7 by surface tension or the like, and is filled onto the graphite plate 6 without passing through the through-hole. Immediately after this, the pressurizing pipe 8 is
Argon pressurization of 0.6Kg/cm 2 was applied, and the molten metal 2 was spouted from the through hole 7, and a graphite 0.25mm×
A curtain-shaped molten metal 2 is ejected from a nozzle 9 having a 150 mm slit shape onto the rotating surface of an iron roller 10 with a radius of 25 cm and a width of 50 cm that rotates at 1200 revolutions per minute, and at the same time, a molten metal amount control device is installed. 4, the molten metal amount was reduced to about 1.5 kg/sec, the molten metal surface was detected by the molten metal surface detection device 11, and the molten metal flow rate was controlled so that the molten metal surface was almost stable, thereby manufacturing a wide ribbon. Further details of these operations are shown in FIGS. 2A to 2D.

まず、第2図イは保持部材上に金属溶湯が保持
された状態であり、加圧手段により容器内が加圧
されると第2図ロ、さらには第2図ハとなり、最
終的には第2図ニのようになり金属薄帯が作製さ
れる。
First, Figure 2A shows the state in which the molten metal is held on the holding member, and when the inside of the container is pressurized by the pressurizing means, it becomes Figure 2B, and then Figure 2C, and finally A metal ribbon is produced as shown in FIG. 2D.

つまり、加圧により第2の部屋を瞬時に満た
し、さらに瞬時にスリツト形状ノズルから噴出さ
れ金属薄帯となる。
In other words, the second chamber is instantly filled by pressurization, and the second chamber is further instantaneously ejected from the slit-shaped nozzle to form a metal ribbon.

このようにして、150mm幅、35μmの広幅アモ
ルフアスリボンを、4Km長作成することができ
た。この際、リボン表面の凹凸は±1μm以下
に、又、作成終り部分で+1μm程度と、ほとん
ど変化がみられなかつた。
In this way, a wide amorphous ribbon with a width of 150 mm and 35 μm and a length of 4 km could be produced. At this time, the unevenness on the ribbon surface was less than ±1 μm and approximately +1 μm at the end of production, with almost no change observed.

また、溶湯と溶解炉で溶かすため、ノズル内で
溶解する場合と比較すると、加熱に必要なエネル
ギーは、約1/2となり、鉄系アモルフアス製造の
際特に問題となるノズル部分での溶湯つまりとい
う問題もなくなつた。
In addition, since the molten metal is melted in a melting furnace, the energy required for heating is approximately 1/2 compared to when melting in a nozzle, which causes the problem of molten metal clogging in the nozzle, which is a particular problem when manufacturing iron-based amorphous amorphous metal. There were no problems.

なお、本実施例において用いたグラフアイト板
6の貫通孔を有する部分の面積は板全面積の50%
とした。
The area of the graphite plate 6 used in this example having through holes is 50% of the total area of the plate.
And so.

次に、本発明の他の実施例を第2図イ,ロを用
いて説明する。第3図イ,ロは本発明の他の実施
例である製造方法を示す工程図である。
Next, another embodiment of the present invention will be described using FIGS. 2A and 2B. FIGS. 3A and 3B are process diagrams showing a manufacturing method according to another embodiment of the present invention.

ヒータ5′を埋め込んだ溶湯溜め1′にて、1500
℃に加熱され、溶解されたSi6.5wt%、Fe93.5wt
%、の溶湯2′を、溶湯量制御装置4′を備えたジ
ルコン質ノズル3′を通して、予め高周波コイル
5′で1500℃に加熱したジルコン質からなる板
6′上に、4Kg/secで注入した。ジルコン質から
なる板6′は多数の貫通孔7′を有する部分と貫通
孔7′を有しない部分とからできており、また、
ジルコン質ノズル3′からは貫通孔7′を有しない
部分上へ溶湯2′を注入する。
1500 at the molten metal reservoir 1' where the heater 5' is embedded.
Heated to °C and melted Si6.5wt%, Fe93.5wt
% of the molten metal 2' is injected at 4 kg/sec through a zircon nozzle 3' equipped with a molten metal amount control device 4' onto a zircon plate 6' that has been preheated to 1500°C with a high-frequency coil 5'. did. The plate 6' made of zircon material is made up of a part having a large number of through holes 7' and a part having no through holes 7', and
The molten metal 2' is injected from the zircon nozzle 3' onto the portion that does not have the through hole 7'.

このようにすることにより、第3図イに示すよ
うにジルコン質からなる板6′の全面が溶湯2′に
より覆われるが、表面張力などにより溶湯2′は
貫通孔7′を通して下へ落下しない。
By doing this, the entire surface of the plate 6' made of zircon is covered with the molten metal 2' as shown in Figure 3A, but the molten metal 2' does not fall down through the through hole 7' due to surface tension. .

この直後、加圧管8′を通じて0.3Kg/cm2の圧力
をアルゴンを用いて加えることにより、貫通孔
7′を通して板6′上を覆つていた溶湯2′が噴出
され、さらに、この溶湯2′は0.50mm×200mmのス
リツト形状のノズル9′からカーテン状に成形さ
れて、600回転/分で互いに逆方向に回転する半
径25cm、幅50cmの鉄製ローラー10′の間隙に噴
出され、鉄製ローラー10′の回転表面上で急
冷、凝固させると同時に、溶湯量制御装置4′で
溶湯供給量を約2.2Kg/secに減じ、溶湯面検知装
置11′で溶湯面を検知し、溶湯面がほぼ安定す
るように溶湯量制御を行う。本実施例においては
ノズル部分およびその周辺の材質はすべてジルコ
ン(SiO2−Z1O2)質とした。このようにして、
200mm幅、105μmの広幅硅素鋼帯を、6Km長、
作成することができた。できた鋼帯は、すべての
部分で表面粗さが±0.5μm以下にでき、その形
状および質の変化はほとんどなかつた。このよう
に、本実施例で作成した広帯は良質であり、加熱
ロスも約1/2程度になり、鉄の溶湯に特に多
い、酸化によるノズル閉塞もなかつた。
Immediately after this, by applying a pressure of 0.3 Kg/cm 2 using argon through the pressurizing pipe 8', the molten metal 2' that had covered the plate 6' is ejected through the through hole 7', and further, the molten metal 2'' is formed into a curtain shape from a 0.50 mm x 200 mm slit-shaped nozzle 9', and is ejected into the gap between iron rollers 10' with a radius of 25 cm and a width of 50 cm, which rotate in opposite directions at 600 rotations/min. At the same time, the molten metal is rapidly cooled and solidified on the rotating surface of 10', the molten metal supply rate is reduced to about 2.2 kg/sec by the molten metal flow rate controller 4', and the molten metal surface is detected by the molten metal surface detector 11', and the molten metal surface is almost Control the amount of molten metal to stabilize it. In this example, the nozzle portion and its surroundings were all made of zircon (SiO 2 -Z 1 O 2 ). In this way,
200mm wide, 105μm wide silicon steel strip, 6km long,
I was able to create it. The resulting steel strip had a surface roughness of ±0.5 μm or less in all parts, and there was almost no change in its shape or quality. As described above, the wide band produced in this example was of good quality, the heating loss was reduced to about 1/2, and there was no nozzle clogging due to oxidation, which is particularly common in molten iron.

実施例では、鉄系アモルフアスおよび硅素薄帯
の広幅鋼帯について述べたが、本発明はすべての
金属薄帯の製造に適用できる。またノズル材質と
しては、実施例の他、SiO2などの熱シヨツクに
強い耐熱材料であればその材質を問わない。ロー
ラー材質も鉄の他、銅などでも良い。また超急冷
の域に入らないような、低速ローラー上での直接
圧延などにも適用できる。又、ノズル内の貫通孔
は、その形状を問わず、円形でも長方形でも良
い。特に短径が1〜2mmのものが良い。
In the examples, wide steel strips of iron-based amorphous and silicon ribbons have been described, but the present invention can be applied to the production of all metal ribbons. Further, as for the material of the nozzle, other than those in the embodiments, any heat-resistant material such as SiO 2 that is resistant to heat shock may be used. The roller material may also be copper or the like in addition to iron. It can also be applied to direct rolling on low-speed rollers, which does not fall into the range of ultra-quenching. Further, the through hole in the nozzle may have a circular or rectangular shape regardless of its shape. Particularly good is one with a short diameter of 1 to 2 mm.

以上、本発明によれば、従来幅60〜70mmくらい
の薄帯しか得られなかつたものが、容易に、1000
mm以上の幅広薄帯を10Km以上も連続的に生産す
ることが可能となる。
As described above, according to the present invention, a ribbon that could only be obtained in the past with a width of about 60 to 70 mm can be easily made into a ribbon with a width of 1000 mm.
It becomes possible to continuously produce wide ribbons of mm or more over a distance of more than 10 km.

また、本発明によれば、ノズル上部への溶湯供
給から、加圧過程寸前までノズル口に溶湯は接触
せず、また、ノズル口を瞬時に溶湯が通過するた
めノズル口での溶湯固化や酸化がなく、酸化性の
強い材料の場合でも、酸化によるトラブルを生じ
させることなく容易に幅広薄帯を製造することが
できる。
Furthermore, according to the present invention, the molten metal does not come into contact with the nozzle port from the time when the molten metal is supplied to the upper part of the nozzle until just before the pressurization process, and since the molten metal passes through the nozzle port instantly, the molten metal does not solidify or oxidize at the nozzle port. Even in the case of highly oxidizing materials, wide ribbons can be easily manufactured without causing troubles due to oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜ハは本発明の一実施例である薄帯の
製造方法の工程図、第2図イ,ロ,ハ,ニはその
工程における動作説明図、第3図イ,ロは本発明
の他の実施例である薄帯の製造方法の工程図であ
る。 1,1′……溶湯溜め、2,2′……溶湯、5,
5′……高周波コイル、6,6′……貫通孔を有す
る板、7,7′……貫通孔、8,8′……加圧管、
9,9′……スリツト形状を有するノズル、1
0,10′……鉄製ローラー。
Figures 1A to 1C are process diagrams of a method for manufacturing a thin strip according to an embodiment of the present invention, Figures 2A, 2B, 3D, and 2 are explanatory diagrams of the operations in the process, and Figures 3A and 3 are diagrams of the present invention. It is a process diagram of the manufacturing method of the thin strip which is another Example of this invention. 1, 1'... Molten metal reservoir, 2, 2'... Molten metal, 5,
5'... High frequency coil, 6, 6'... Plate with through holes, 7, 7'... Through holes, 8, 8'... Pressure tube,
9, 9'...Nozzle having a slit shape, 1
0,10'...Iron roller.

Claims (1)

【特許請求の範囲】[Claims] 1 多数の貫通孔を有する部分と貫通孔を有しな
い部分とを備え金属溶湯を保持する保持部材で仕
切られた第1、第2の2つの部屋を有し、前記金
属溶湯を加圧する加圧手段を備えた容器と、前記
容器の上部に溶湯供給用ノズルを介して接続され
設けられた溶湯だめと、前記容器の下部に設けら
れたスリツト形状を有するノズルと、前記ノズル
から噴出された溶湯を冷却する回転体とを備え、
金属溶湯を前記容湯だめから前記溶湯供給用ノズ
ルを介して前記保持部材の貫通孔を有しない部分
に供給し前記容器の第1の部屋に保持した後、前
記加圧手段により金属溶湯を加圧して前記第1の
部屋から貫通孔を通して第2の部屋に移動させ、
更に前記ノズルから前記回転体の冷却面にも噴出
させ、前記回転体で急冷、凝固させることを特徴
とする金属薄帯の製造方法。
1. A pressurizing device that pressurizes the molten metal, having two chambers, a first and a second chamber, which are partitioned by a holding member that holds the molten metal, including a portion with a large number of through holes and a portion without through holes, and which is partitioned by a holding member that holds the molten metal. a molten metal reservoir connected to and provided at the upper part of the container via a molten metal supply nozzle; a slit-shaped nozzle provided at the lower part of the container; and molten metal spouted from the nozzle. Equipped with a rotating body that cools the
After supplying the molten metal from the sump through the molten metal supply nozzle to a portion of the holding member that does not have a through hole and holding it in the first chamber of the container, the molten metal is pressurized by the pressurizing means. pressure to move it from the first chamber to the second chamber through the through hole,
A method for manufacturing a metal ribbon, further comprising ejecting the jet from the nozzle onto a cooling surface of the rotating body, and rapidly cooling and solidifying the metal ribbon on the rotating body.
JP17946280A 1980-12-17 1980-12-17 Production of strip Granted JPS57103762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17946280A JPS57103762A (en) 1980-12-17 1980-12-17 Production of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17946280A JPS57103762A (en) 1980-12-17 1980-12-17 Production of strip

Publications (2)

Publication Number Publication Date
JPS57103762A JPS57103762A (en) 1982-06-28
JPS6116219B2 true JPS6116219B2 (en) 1986-04-28

Family

ID=16066267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17946280A Granted JPS57103762A (en) 1980-12-17 1980-12-17 Production of strip

Country Status (1)

Country Link
JP (1) JPS57103762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167618A (en) * 1988-12-15 1990-06-28 Kaneshika Kote Kogyo Kk Manufacture of saw blade

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE455675B (en) * 1985-02-21 1988-08-01 Asea Ab MEASUREMENT FOR HEATING INTERMEDIATES FOR CONTINUOUS CASTING
CA1296505C (en) * 1987-05-06 1992-03-03 R. Guthrie Research Associates Inc. Continuous casting of thin metal strip
US5178205A (en) * 1990-07-13 1993-01-12 Ishikawajima-Harima Heavy Industries Co. Limited Strip casting method and apparatus
FR2741555B1 (en) * 1995-11-23 1997-12-26 Usinor Sacilor NOZZLE FOR THE INTRODUCTION OF A LIQUID METAL INTO A CONTINUOUS CASTING LINGOT OF METAL PRODUCTS, AND CONTINUOUS CASTING INSTALLATION OF METAL PRODUCTS EQUIPPED WITH SUCH A NOZZLE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167618A (en) * 1988-12-15 1990-06-28 Kaneshika Kote Kogyo Kk Manufacture of saw blade

Also Published As

Publication number Publication date
JPS57103762A (en) 1982-06-28

Similar Documents

Publication Publication Date Title
US4789022A (en) Process for continuous casting of metal ribbon
JPS6038226B2 (en) Metal ribbon manufacturing equipment
JP4494604B2 (en) Metal strip manufacturing apparatus and manufacturing method
JPS6116219B2 (en)
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JPH0462825B2 (en)
JPS62166061A (en) Production of rapid cooling solidified active foil metal
JPH08309493A (en) Strip manufacturing machine
JPH0218665B2 (en)
JPH0377025B2 (en)
JP2002283008A (en) Method for casting rapidly cooled and solidified strip
JPH07132351A (en) Molten metal jetting nozzle, metal thin strip producing device provided with the nozzle and its method
JPS6352752A (en) Rapidly cooling apparatus for liquid
JPH01143745A (en) Method and apparatus for producing metal fine wire
JPH0420694B2 (en)
JPS59107752A (en) Device for producing fine metallic wire
JPS6159822B2 (en)
JPH08238541A (en) Method of making supplying quantity definite of molten metal and alloy to cooling base board
JPS58122157A (en) Production of thin strip of amorphous metal
JPS6159813B2 (en)
JPS60108143A (en) Production of quenched thin metallic strip by single roll method
JPS61262450A (en) Continuous casting method for molten metal
JPS6016864B2 (en) Manufacturing method and device for thin ribbon
JPS6352751A (en) Rapidly cooling apparatus for liquid
JPS62130751A (en) Molten metal injection method