JPS61262450A - Continuous casting method for molten metal - Google Patents

Continuous casting method for molten metal

Info

Publication number
JPS61262450A
JPS61262450A JP10393785A JP10393785A JPS61262450A JP S61262450 A JPS61262450 A JP S61262450A JP 10393785 A JP10393785 A JP 10393785A JP 10393785 A JP10393785 A JP 10393785A JP S61262450 A JPS61262450 A JP S61262450A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
molten
product
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10393785A
Other languages
Japanese (ja)
Inventor
Takeshi Fukutake
福武 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10393785A priority Critical patent/JPS61262450A/en
Publication of JPS61262450A publication Critical patent/JPS61262450A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To cast continuously a clean and smooth metallic product having less oxidation on the surface by holding molten glass and molten metal in a vessel, pulling up the molten metal via the molten glass by a nozzle and cooling forcibly the same. CONSTITUTION:The molten metal and molten glass are poured into a refractory vessel 9 and are maintained at a prescribed temp. The nozzle 7 is lowered by a nozzle holder 6 into the molten glass layer in the upper part. The nozzle 7 is closed by a dummy bar 15 and after the nozzle 7 is lowered down to the prescribed position of the glass layer, the bar 15 is gradually raised. The molten metal is then pulled up by the nozzle 7 and the cooling of the nozzle 7 inside is changed from air cooling to mist cooling. The pressure in the vessel 9 is increased by a regulating valve 3 and the nozzle position is raised, then the stationary operation is started. The product is pulled upward by a take-up roll 13. The thickness and solidififed position of the product are detected and the product having the specified thickness is obtd. by adjusting the pressure and the nozzle position.

Description

【発明の詳細な説明】 (産業上の利用分野) 金属、とくに難加工性金属の製品を製造するに適用され
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applied to manufacturing products of metals, particularly difficult-to-process metals.

(従来の技術) 溶融金属を凝固させて一定の形状の鋳片を得る方法とし
ては水冷した鋳型を用いる連続鋳造方法が一般的である
(Prior Art) A continuous casting method using a water-cooled mold is generally used to solidify molten metal to obtain slabs of a certain shape.

これに対して、最近、鋳型を冷却することな(、逆に加
熱状態にしておき、その鋳型の直上あるいは金属が鋳型
を離れる直前に凝固させる方法が特開昭58−1840
43号公報に提案されている。
On the other hand, recently, a method has been proposed in JP-A-58-1840 in which the mold is not cooled (on the contrary, it is kept in a heated state, and the metal is solidified directly above the mold or just before it leaves the mold).
This is proposed in Publication No. 43.

(発明が解決しようとする問題点) 水冷鋳型を用いる前者の方法は、鋳片の表面形状が十分
に平滑でなく、酸化されてbで直接製品とはならないた
めに、更に熱間あるいは冷間で加工しなければならなか
った。
(Problem to be solved by the invention) In the former method using a water-cooled mold, the surface shape of the slab is not sufficiently smooth and is oxidized and cannot be directly used as a product. I had to process it.

また、後者の方法は、引上げ速度を凝固速度に正確に同
期させる必要があり、そして、金属表面が酸化層で覆わ
れ、特に薄板、箔帯、線材のような表面積が広い場合に
は、鋳片の表面が酸化層で覆われる比率が大きくなるこ
と、極薄の箔帯や極細の線材の鋳造が鋳片出口幅または
径の限界から困難である等の欠点がある。
The latter method also requires that the pulling rate be accurately synchronized with the solidification rate, and the metal surface is covered with an oxide layer, especially when the surface area is large, such as sheet, foil strip, or wire. There are disadvantages such as the ratio of the surface of the piece being covered with an oxidized layer increases, and the casting of ultra-thin foil strips or ultra-fine wire rods is difficult due to limitations in the outlet width or diameter of the slab.

本発明は、鋳片の表面形状が十分に平滑で、その表面が
酸化される慮れがなく、極薄の箔帯や極細の線材でも鋳
造できる方法を提供することにある゛。
The object of the present invention is to provide a method in which the surface of the slab is sufficiently smooth, there is no possibility that the surface will be oxidized, and even an extremely thin foil strip or an extremely fine wire can be cast.

(問題点を解決するための手段) 本発明は、第1a図に図示するように溶融金属と溶融ガ
ラスを同一の容器に層状に保持すると共に、溶融金属と
ガラスの界面より上の溶融ガラス内にノズル開口部を置
き、ノズルの外から吸引するか或いは容器内を加圧する
ことにり、溶融ガラスと溶融金属を同時に、しかも外側
のガラスで内側の溶融金属を被包するようにノズルから
排出させ、ノズルを出た直後の位置で溶融金属を凝固さ
せることにある。
(Means for Solving the Problems) The present invention, as shown in FIG. By placing the nozzle opening in the nozzle and applying suction from the outside of the nozzle or pressurizing the inside of the container, molten glass and molten metal are simultaneously discharged from the nozzle in such a way that the outer glass covers the inner molten metal. The purpose is to solidify the molten metal immediately after it exits the nozzle.

(作 用) 本発明は、第3a図のように密閉容器内に密度の大きい
水銀と粘度の高いグリセリンを入れ、ノズル4の先端を
グリセリン中に浸した後、圧縮空気により装置内を加圧
して、加圧圧力、ノズル先端の位置を調整することによ
り、第3b図に示すように水銀がグリセリンと共に該容
器外に排出される知見に基づき発明されたものである。
(Function) In the present invention, as shown in Fig. 3a, high-density mercury and high-viscosity glycerin are placed in a closed container, the tip of the nozzle 4 is immersed in the glycerin, and then the inside of the device is pressurized with compressed air. This invention was based on the knowledge that by adjusting the pressurizing pressure and the position of the nozzle tip, mercury can be discharged out of the container together with glycerin, as shown in FIG. 3b.

この知見をもとに、グリセリンをガラスに、水銀を溶融
金属に置き代えることにより、溶融状態で連続的に金属
がガラスにより被包された状態を実現できた。
Based on this knowledge, by replacing glycerin with glass and mercury with molten metal, we were able to achieve a state in which the metal was continuously encapsulated in glass in a molten state.

そして、ノズルの形状もスリット状、円形等任意の形状
を採用できる。
Further, the shape of the nozzle can be any shape such as a slit shape or a circle.

また、金属の厚さく線材の場合は太さ)は、ノズル内の
ガラスと溶融金属の存在割合により決定されるので、金
属の形状を一定にするためには、両者の比を一定にする
必要がある。溶融金属の押出し圧力を上昇させることで
排出速度が増し、溶融金属の割合が増える。一方、ノズ
ルの位置を溶融金属面より離すとガラスの割合が増える
のに対し溶融金属の割合が減るために製品の厚みまたは
直径を小さくできる。従って、押出し圧力とノズル位置
を適正に制御することにより、安定して一定の製品を得
ることができる。
In addition, the thickness of the metal (thickness in the case of wire) is determined by the proportion of glass and molten metal in the nozzle, so in order to keep the shape of the metal constant, it is necessary to keep the ratio of the two constant. There is. Increasing the extrusion pressure of the molten metal increases the discharge rate and increases the proportion of molten metal. On the other hand, if the nozzle is moved away from the molten metal surface, the proportion of glass increases but the proportion of molten metal decreases, making it possible to reduce the thickness or diameter of the product. Therefore, by appropriately controlling the extrusion pressure and nozzle position, a constant product can be stably obtained.

また、種々実験した結果、ノズル形状も製品形状の安定
性に大きな影響を与えることが判った。
Furthermore, as a result of various experiments, it was found that the nozzle shape also has a large effect on the stability of the product shape.

第2図における円型ノズル7の開口部厚みDとノズル長
さHの比を変えてみたところ、D/H≦0.25ではガ
ラスの膜厚が周方向に偏りやすく金属を安定に引上げる
ことが困難であった。D/H≧0.5であれば操作可能
であるが、好ましくはD/H≧1とするのがよい。この
関係は、板状のスリットの場合もほぼ同様であった。ま
た、鋳造する対象物が円柱の場合、ガラス被膜の周方向
、また鋳造する対象物が板の場合には、長手方向及び幅
方向の偏差に対しノズル開口部と静止時の溶融金属表面
の相対位置を適切にとることが重要であり、ノズル開口
平面と溶融金属表面が平行となるように調整する必要が
ある。
When we tried changing the ratio between the opening thickness D of the circular nozzle 7 and the nozzle length H in Fig. 2, we found that when D/H≦0.25, the glass film thickness tends to be biased in the circumferential direction and the metal cannot be pulled up stably. It was difficult. Although it is possible to operate if D/H≧0.5, it is preferable to set D/H≧1. This relationship was almost the same in the case of plate-shaped slits. In addition, if the object to be cast is a cylinder, the relative deviation of the nozzle opening and the molten metal surface at rest should be considered for deviations in the circumferential direction of the glass coating, and for deviations in the longitudinal and width directions if the object to be cast is a plate. It is important to take the proper position, and it is necessary to adjust the nozzle opening plane so that it is parallel to the molten metal surface.

また、溶融金属の保持温度は、その融点よりも5℃以上
とするのが望ましい。5℃以下であるとノズルづまりや
製品形状を正しく制御できなくなる。
Further, it is desirable that the holding temperature of the molten metal be 5° C. or higher than its melting point. If the temperature is below 5°C, nozzle clogging and product shape cannot be controlled correctly.

また、本発明に用いるガラスの物理的性質については、
金属の凝固温度近傍で適当な変形抵抗を有することが必
要であり、粘度で103〜106ポアズの範囲を目標と
して選択する。
Regarding the physical properties of the glass used in the present invention,
It is necessary to have appropriate deformation resistance near the solidification temperature of the metal, and a viscosity in the range of 10 3 to 10 6 poise is selected as a target.

また、本発明の方法は、更にノズル出口に於いてガラス
成型装置を置くことにより、細線あるいは箔帯の製造も
できる。また、溶融ガラスと溶融金属の供給を連続して
行うことにより、より長期間連続して運転が可能である
Furthermore, the method of the present invention can also be used to produce thin wires or foil strips by placing a glass molding device at the nozzle outlet. Further, by continuously supplying molten glass and molten metal, continuous operation for a longer period of time is possible.

上述の説明は、溶融金属の比重が溶融スラグのそれより
大きい場合について示したが、この関係が逆になる場合
には、容器内の上方に金属が下方に溶融ガラスが溜まる
。この場合、ノズルの開口部を溶融ガラスの上方に向け
る様ノズルを設置しこのノズルから下方に溶融物を排出
することにより本性が適用できる。
The above description has been made regarding the case where the specific gravity of the molten metal is greater than that of the molten slag, but if this relationship is reversed, the metal will accumulate at the top and the molten glass at the bottom in the container. In this case, the present invention can be applied by installing a nozzle so that the opening of the nozzle faces above the molten glass and discharging the molten material downward from this nozzle.

(実施例) 本発明の実施例を第1a図〜ld図に基づき説明する。(Example) Embodiments of the present invention will be described based on FIGS. 1a to 1d.

第1a図は、溶融ガラスと溶融金属を収容する鉄皮8で
覆われた耐火物からなる容器と、該容器の上面側には溶
融ガラスと溶融金属を投入する蓋11の付いた注入口1
0と圧力調整弁3を備えた圧縮ガス導入管とノズル7を
保持するノズル保持具とを備えており、ノズルの直上に
は溶融ガラスと溶融金属とを冷却する冷却用ミストスプ
レィと凝固したガラスと金属を上方に引上げるテークア
ツプロールを備えている装置である。ガラスと金属(5
,5%珪素鋼)は別の溶解炉で溶解後、該装置の蓋11
をあけ注入口から容器内に注入し、図示てぃない加熱装
置により一定温度に保持される。この後にノズルをノズ
ル保持具とともに図示していない昇降装置により、ガラ
ス層内に下降させる。
FIG. 1a shows a container made of a refractory covered with a steel shell 8 for storing molten glass and molten metal, and an injection port 1 with a lid 11 on the top side of the container for introducing the molten glass and molten metal.
0 and a pressure regulating valve 3, and a nozzle holder for holding a nozzle 7, and directly above the nozzle are a cooling mist spray for cooling molten glass and molten metal, and a cooling mist spray for cooling molten glass and solidified glass. This device is equipped with a take-up roll that pulls the metal upward. glass and metal (5
, 5% silicon steel) is melted in a separate melting furnace, and then the lid 11 of the device is melted.
The solution is poured into the container through the injection port, and the temperature is maintained at a constant temperature by a heating device (not shown). Thereafter, the nozzle and the nozzle holder are lowered into the glass layer by a lifting device (not shown).

このときのノズル開口部は第1b図に図示したようにダ
ミーパー15で閉じられている。ガラス層の所定位置ま
でノズルを下降させたのち(第1C図)、ダミーパー1
5を徐々に上昇させる(第1d図)。この過程でのノズ
ル位置は第3a図に示す定常運転時より溶融金属面に近
くに置き、溶融金属の引上げ速度は遅い。引上げを開始
し金属が上方に引上げられるとともに、ノズル内の強制
冷却をそれまでの空冷からミスト冷却に変え、炉内圧を
圧力調整弁3により上昇させるとともにノズル位置を上
昇させて定常運転に移行する。製品はテークアツプロー
ル13により上方に引上げられる。運転中は製品の厚さ
と凝固位置を検出しながら、炉内圧力とノズル位置を調
整することにより一定の厚さの製品を得る。
At this time, the nozzle opening is closed with a dummy par 15 as shown in FIG. 1b. After lowering the nozzle to the specified position on the glass layer (Fig. 1C), dummy par 1
5 (Figure 1d). During this process, the nozzle is positioned closer to the molten metal surface than during the steady operation shown in FIG. 3a, and the molten metal is pulled up at a slower rate. As pulling begins and the metal is pulled upwards, the forced cooling inside the nozzle is changed from air cooling to mist cooling, the pressure inside the furnace is increased by pressure regulating valve 3, and the nozzle position is raised to shift to steady operation. . The product is pulled upward by a take-up roll 13. During operation, the product thickness and solidification position are detected, and the furnace pressure and nozzle position are adjusted to obtain a product with a constant thickness.

(発明の効果) 以上説明したように、本発明によれば、ガラス成形体中
で金属を凝固させるので表面の酸化が少なく清浄で平滑
な製品を得ることができ、また極・薄、極細の製品を鋳
造できる。そして、ノズルの形状を変えるだけで容易に
製品形状を変えることができる。
(Effects of the Invention) As explained above, according to the present invention, since the metal is solidified in the glass molded body, it is possible to obtain a clean and smooth product with less oxidation on the surface, and it is also possible to obtain an ultra-thin and ultra-fine product. Products can be cast. The shape of the product can be easily changed by simply changing the shape of the nozzle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す図である。 第2図は、本発明に用いられるノズルの説明図である。 第3図は、比重の大きい水銀と粘度の高いグリセリンの
入った容器からの排出挙動を説明する図である。 1・・・容器       2・・・容器の蓋3・・・
圧力調整弁    4・・・排出ノズル5・・・導圧管
      6・・・ノズル保持具7・・・ノズル  
    8・・・鉄皮9・・・耐火物      10
・・・注入口11・・・fi   12・・・エクスパ
ンシロンジョイント13・・・テークアツプロール 14・・・冷却用ミストスプレィ15・・・ダミーバー
第1図 (b)    (c)    (d) 第2図 第3図
FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 2 is an explanatory diagram of a nozzle used in the present invention. FIG. 3 is a diagram illustrating discharge behavior from a container containing mercury, which has a high specific gravity, and glycerin, which has a high viscosity. 1... Container 2... Container lid 3...
Pressure adjustment valve 4... Discharge nozzle 5... Impulse pipe 6... Nozzle holder 7... Nozzle
8... Iron skin 9... Refractory 10
... Inlet 11 ... fi 12 ... Expansillon joint 13 ... Take-up roll 14 ... Cooling mist spray 15 ... Dummy bar Fig. 1 (b) (c) (d) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、溶湯容器内に、溶融ガラスと溶融金属とを保持し、
溶融ガラス層内に上記溶融金属を容器外に導くノズルの
開口先端部を浸漬させ、溶融金属を溶融ガラスで被包し
た状態で容器外に排出しつつ、該ノズルの出側直近で強
制冷却して凝固させることを特徴とする溶融金属の連続
鋳造方法。
1. Holding molten glass and molten metal in a molten metal container,
The opening tip of a nozzle that guides the molten metal out of the container is immersed in the molten glass layer, and while the molten metal is discharged outside the container while being covered with molten glass, it is forcibly cooled immediately near the exit side of the nozzle. A method for continuous casting of molten metal, characterized by solidifying the molten metal.
JP10393785A 1985-05-17 1985-05-17 Continuous casting method for molten metal Pending JPS61262450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10393785A JPS61262450A (en) 1985-05-17 1985-05-17 Continuous casting method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10393785A JPS61262450A (en) 1985-05-17 1985-05-17 Continuous casting method for molten metal

Publications (1)

Publication Number Publication Date
JPS61262450A true JPS61262450A (en) 1986-11-20

Family

ID=14367350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10393785A Pending JPS61262450A (en) 1985-05-17 1985-05-17 Continuous casting method for molten metal

Country Status (1)

Country Link
JP (1) JPS61262450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102152A (en) * 2013-04-10 2015-11-25 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
EP3603850A4 (en) * 2017-03-31 2020-11-04 NGK Insulators, Ltd. Nozzle, casting device, and method for manufacturing cast material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102152A (en) * 2013-04-10 2015-11-25 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
EP3603850A4 (en) * 2017-03-31 2020-11-04 NGK Insulators, Ltd. Nozzle, casting device, and method for manufacturing cast material
US11351600B2 (en) 2017-03-31 2022-06-07 Ngk Insulators, Ltd. Nozzle, casting apparatus, and cast product manufacturing method

Similar Documents

Publication Publication Date Title
US3605863A (en) Apparatus for manufacturing wire and the like
JP2003290876A (en) Method of making amorphous metallic sheet
JP3308103B2 (en) Metal strip casting method and apparatus
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
JP4494604B2 (en) Metal strip manufacturing apparatus and manufacturing method
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPS61262450A (en) Continuous casting method for molten metal
JPS61235047A (en) Casting method for metal having fine crystal grain
JP2001108376A (en) Bottom casting type float melting apparatus
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
EP0387271B1 (en) A method and apparatus for the direct casting of metals to form elongated bodies
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JPH09262644A (en) Method for controlling supply of a little quantity of molten metal and alloy and apparatus therefor
US4617981A (en) Method and apparatus for strip casting
JPS5942161A (en) Production of amorphous alloy light-gauge strip
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP3387706B2 (en) Method and apparatus for controlling small amount supply of molten metal and alloy
JPH01313164A (en) Casting method for semimolten metal
US3422881A (en) Device for feeding molten metal into the peripheral groove of a continuous casting wheel for the production of metal bars or ingots
JP2938215B2 (en) Continuous dissolution and outflow of materials
JPS62166061A (en) Production of rapid cooling solidified active foil metal
JPS59150646A (en) Method and device for continuous casting of metallic plate