JPH01313164A - Casting method for semimolten metal - Google Patents

Casting method for semimolten metal

Info

Publication number
JPH01313164A
JPH01313164A JP14481188A JP14481188A JPH01313164A JP H01313164 A JPH01313164 A JP H01313164A JP 14481188 A JP14481188 A JP 14481188A JP 14481188 A JP14481188 A JP 14481188A JP H01313164 A JPH01313164 A JP H01313164A
Authority
JP
Japan
Prior art keywords
molten metal
mold
nozzle
casting
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14481188A
Other languages
Japanese (ja)
Inventor
Hironori Yamamoto
山本 裕則
Jun Yamagami
山上 諄
Kazufumi Matsumura
松村 千史
Kimio Inagaki
稲垣 公男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14481188A priority Critical patent/JPH01313164A/en
Publication of JPH01313164A publication Critical patent/JPH01313164A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To highly precisely cast ingot of complex shape by passing it directly through a molten metal passage in a nozzle and a molten metal pouring area in a casting mold and casting the ingot while the pouring area of molten metal in the casting mold is evacuated. CONSTITUTION:The temperature of molten metal is controlled in a vessel of a manufacturing equipment 10 of semimolten metal to form semimolten metal 3b in such a stage that a solid and a liquid phase exist together. This metal is stirred and cast into a casting mold 6 through a nozzle 20. Then, a molten metal passage of the nozzle 20 is communicated ditectly with a cavity 30 in a molten metal pouring area of the casting mold 6 and the cavity 30 and branches 32 in the molten metal pouring area of the casting mold 6 are evacuated by a vacuum pump to cast the ingot. In this way, the ingot of complex shape can be cast highly precisely.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固液共存状態にある半溶融金属の鋳造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for casting semi-molten metal in a solid-liquid coexistence state.

[従来の技術] 一般に、鋳片又は鋳塊は、鋳型により周辺部から冷却さ
れるため、その中心部に粗大樹枝状晶からなる偏析を有
する。中心偏析は、機械的性質その他の特性が周辺健全
部より劣る。このため、金属溶湯を鋳造する場合には、
樹枝状晶の発達を可能な限り抑制し、鋳片全体に占める
等軸晶の割合い(以下、等軸品率という)を高める必要
がある。
[Prior Art] Generally, a slab or an ingot is cooled from the periphery by a mold, and therefore has segregation consisting of coarse dendrites in its center. The central segregation has mechanical properties and other properties inferior to those of the surrounding healthy area. Therefore, when casting molten metal,
It is necessary to suppress the development of dendrites as much as possible and increase the proportion of equiaxed crystals in the entire slab (hereinafter referred to as equiaxed product ratio).

等軸品率を高める鋳造技術として、例えば、低温鋳造法
及び電磁撹拌法等が知られている。しかしながら、これ
らの技術を利用してもなお、完全溶融状態の溶湯を鋳造
した場合に、凝固時の温度降下が大きいこと、及び冷却
速度が制限されること等の理由から、全領域にて粗大樹
枝状晶が発達することを阻止することは困難である。
For example, low-temperature casting, electromagnetic stirring, and the like are known as casting techniques for increasing the equiaxed product rate. However, even if these technologies are used, when casting completely molten metal, the temperature drop during solidification is large and the cooling rate is limited, resulting in roughness in all areas. It is difficult to prevent dendrites from developing.

近時、省エネルギ及び省資源を目的として、一つの工程
で溶融金属から一次製品をつくりだす半溶融加工プロセ
スが開発実用化されつつある。所謂、半溶融加工プロセ
スとは、微細な固相を有する半溶融状態の溶湯を用いて
製品に直接成形し、製品組織の等軸品率を高める技術を
いう。すなわち、溶湯を液相線及び固相線の間の温度域
に適宜調整し、凝固直前の固液共存状態で溶湯を鋳型に
鋳込み、直ちに凝固させる。このような半溶融加工プロ
セスを利用すれば、等軸品率が向上し、組織が均一かつ
微細化する。
Recently, with the aim of saving energy and resources, a semi-molten processing process for producing a primary product from molten metal in one process has been developed and put into practical use. The so-called semi-molten processing process refers to a technology that uses a semi-molten molten metal having a fine solid phase to directly form a product to increase the equiaxed product ratio. That is, the temperature of the molten metal is appropriately adjusted to a temperature range between the liquidus line and the solidus line, and the molten metal is poured into a mold in a solid-liquid coexistence state immediately before solidification, and immediately solidified. If such a semi-melting processing process is used, the equiaxed product rate will be improved and the structure will be uniform and fine.

従来の半溶融金属の鋳造方法は、容器及び鋳型のヘッド
差を利用して、ノズルを介して溶湯を鋳型内に自然落下
させる。
A conventional method for casting semi-molten metal uses a head difference between a container and a mold to allow the molten metal to fall naturally into the mold through a nozzle.

[発明が解決しようとする課題] しかしながら、従来の半溶融金属の鋳造方法においては
、半溶融状態の溶湯は粘性が高いので、自然落下させる
だけでは所定の鋳造速度を得ることが困難になる。特に
、溶湯の固相率を高めると、その流動性が著しく低下す
るので、鋳片を連続鋳造することが困難になる。また、
鋳塊を複雑形状の鋳型を用いて鋳造する場合に、鋳型の
溶湯注入領域(キャビティ)の隅々まで溶湯が十分にい
きわたらなくなる。このため、正確な形状の鋳塊を得る
ことができない。更に、溶湯のノズル通流速度が遅いた
めに、ノズルが塞閉することがあるという不都合を生じ
る。
[Problems to be Solved by the Invention] However, in the conventional semi-molten metal casting method, since the molten metal in the semi-molten state has a high viscosity, it is difficult to obtain a predetermined casting speed just by letting it fall naturally. In particular, when the solid fraction of the molten metal is increased, its fluidity is significantly reduced, making it difficult to continuously cast slabs. Also,
When casting an ingot using a mold with a complicated shape, the molten metal does not sufficiently reach every corner of the molten metal injection region (cavity) of the mold. For this reason, it is not possible to obtain an ingot with an accurate shape. Furthermore, since the flow rate of the molten metal through the nozzle is slow, there is a problem that the nozzle may become clogged.

この発明は、かかる事情に鑑みてなされたものであって
、半溶融状態の溶湯の鋳造速度を高めることができ、鋳
塊等の形状を高精度にすることができ、ノズル詰まりを
生じることなく鋳造できる半溶融金属の鋳造方法を提供
することを目的とする。
This invention was made in view of the above circumstances, and it is possible to increase the casting speed of semi-molten molten metal, make the shape of the ingot etc. highly accurate, and prevent nozzle clogging. It is an object of the present invention to provide a method for casting semi-molten metal that can be cast.

[課題を解決するための手段] この発明に係る半溶融金属の鋳造方法は、容器内の溶湯
を温度制御して固液共存状態とし、これを撹拌しつつ容
器のノズルを介して鋳型に鋳込む半溶融金属の鋳造方法
において、前記ノズルの溶湯通流路及び鋳型の溶湯注入
領域を直通させ、鋳型の溶湯注入領域を減圧して鋳造す
ることを特徴とする。
[Means for Solving the Problems] The method for casting semi-molten metal according to the present invention involves controlling the temperature of the molten metal in a container to bring it into a solid-liquid coexistence state, and casting the molten metal into a mold through a nozzle in the container while stirring. In the method for casting semi-molten metal, the molten metal passage of the nozzle and the molten metal injection area of the mold are made to communicate directly, and the molten metal injection area of the mold is cast under reduced pressure.

[作用] この発明に係る半溶融金属の鋳造方法においては、鋳型
の溶湯注入領域を減圧するので、ノズルの溶湯通流路に
溶湯を供給すると、溶出が鋳型の溶湯注入領域に吸引さ
れ、溶湯の鋳造速度が増加する。
[Function] In the method for casting semi-molten metal according to the present invention, the pressure is reduced in the molten metal injection area of the mold, so when molten metal is supplied to the molten metal flow path of the nozzle, the molten metal is sucked into the molten metal injection area of the mold, and the molten metal is Casting speed increases.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第2図に示すように、鋳塊用鋳型6の上方に取鍋2が配
設され、取鍋内溶鋼3aが半溶融金属製造装置10を介
して半溶融状態の溶鋼3bに調整された後に、鋳型6に
鋳造されるようになっている。すなわち、取鍋2内には
完全溶融状態の溶鋼3aが収容され、エアシールバイブ
4を介して半溶融金属製造装置10に所定の流量で供給
されるようになっている。半溶融金属製造装置の容器1
6には、蓋12が被せられ、装置内が大気から遮断され
るようになっている。蓋12には図示しないガス供給管
が設けられ、装置10内に不活性ガスが供給されるよう
になっている。ロータ26が、M12の挿通孔を介して
容器16内に挿入され、その下端部がノズル20の流出
口に到達している。ロータ26の上端部は回転装置(図
示せず)及び昇降装置(図示せず)に連結され、ロータ
26が回転すると溶湯が撹拌され、ロータ26が昇降す
るとノズル20が開閉するようになっている。
As shown in FIG. 2, a ladle 2 is disposed above the ingot mold 6, and after the molten steel 3a in the ladle is adjusted to semi-molten molten steel 3b via the semi-molten metal manufacturing device 10. , to be cast into a mold 6. That is, completely molten molten steel 3a is contained in the ladle 2, and is supplied to the semi-molten metal manufacturing apparatus 10 via the air seal vibe 4 at a predetermined flow rate. Container 1 of semi-molten metal manufacturing equipment
6 is covered with a lid 12 so that the inside of the apparatus is shut off from the atmosphere. A gas supply pipe (not shown) is provided on the lid 12 to supply inert gas into the apparatus 10. The rotor 26 is inserted into the container 16 through the M12 insertion hole, and its lower end reaches the outlet of the nozzle 20. The upper end of the rotor 26 is connected to a rotating device (not shown) and a lifting device (not shown), so that when the rotor 26 rotates, the molten metal is stirred, and when the rotor 26 moves up and down, the nozzle 20 opens and closes. .

ノズル20が容器16の底部に設けられており、ノズル
20を介して鋳型6のキャビティ30に半溶融状態の溶
湯が注入され、鋳塊が製造されるようになっている。す
なわち、ノズルの溶湯通流路及びキャビティ30は気密
に連通され、ノズル20から鋳型6に溶湯が直接鋳造さ
れるようになっている。
A nozzle 20 is provided at the bottom of the container 16, and semi-molten metal is injected into a cavity 30 of the mold 6 through the nozzle 20 to produce an ingot. That is, the molten metal passage of the nozzle and the cavity 30 are airtightly communicated, so that the molten metal is directly cast from the nozzle 20 into the mold 6.

鋳型のキャビティ30は、多数に分岐した技32を有す
る複雑形状をなし、6枝32の先端が排気通路34を介
して真空ポンプ4oの吸込み側に連通されている。この
場合に、排気通路34の径は約1.Oim以下である。
The cavity 30 of the mold has a complicated shape with many branches 32, and the tips of the six branches 32 are connected to the suction side of the vacuum pump 4o via an exhaust passage 34. In this case, the diameter of the exhaust passage 34 is about 1. It is less than or equal to Oim.

なお、容器16及びノズル2oの外周には、それぞれヒ
ータ18及び22が巻回され、その電源が制御装置(図
示せず)により調節可能に設けられ、溶湯がヒータ加熱
されるようになっている。
Incidentally, heaters 18 and 22 are wound around the outer periphery of the container 16 and the nozzle 2o, respectively, and the power supply thereof is provided so as to be adjustable by a control device (not shown), so that the molten metal is heated by the heaters. .

次に、上記のような構成の装置により鋳塊を鋳造する場
合について説明する。
Next, a case in which an ingot is cast using the apparatus configured as described above will be described.

所定成分及び所定温度に調整された溶鋼3aを取鍋2に
収容し、鋳造設備に搬入する。エアシールバイブ4を装
置10に挿入し、ガス供給管を介して所定圧のアルゴン
ガスを供給し、装置内を不活性ガス雰囲気とする。次い
で、取鍋2のノズルを開け、完全溶融状態の溶鋼3aを
エアシールバイブ4を介して容器16に供給する。この
とき、ロータ26を予め下降させておき、溶湯通流路2
3を塞いでおく。溶湯は、容器16を介して放熱し、温
度低下する。これをヒータ18により加熱し、その温度
を固相線及び液相線の間の適正温度域に調節する。これ
により、液相中に所定の割合いで固相を晶出させ、半溶
融状態の溶鋼3bとする。この場合に、固相率を0.2
〜0.8の間に制御することが好ましく、鋼の場合は0
.5〜0.6の固相率とすることがより好ましい。溶湯
保持時間が長くなると、固相、特に樹枝状晶が成長・粗
大化する。このとき、ロータ26を所定の回転数Nで回
転させ、溶鋼3bを撹拌する。撹拌により樹枝状晶が分
断され、微細な結晶粒となる。一方、真空ポンプ40に
よりキャビティ30のガスを排気して1 torr、〜
数torr、に減圧する。次いで、ヒータ22のスイッ
チをONにしてノズル20を加熱する一方、ロータ26
を回転させつつ上方へ持上げ、ノズルの通流路23を開
にする。キャビティ30を減圧しているので、溶鋼が通
流路23を介してキャビティ30に勢いよく吸込まれ、
枝32の先端領域に至るまで溶鋼がいきわたる。このと
き、排気通路34が細径であるので、吸引力よりも表面
張力のほうが上回り、溶鋼が通路34内に侵入しない。
Molten steel 3a adjusted to a predetermined composition and a predetermined temperature is placed in a ladle 2 and transported to a casting facility. The air seal vibe 4 is inserted into the device 10, and argon gas at a predetermined pressure is supplied through the gas supply pipe to create an inert gas atmosphere inside the device. Next, the nozzle of the ladle 2 is opened and the completely molten steel 3a is supplied to the container 16 via the air seal vibe 4. At this time, the rotor 26 is lowered in advance, and the molten metal passage 2
Block 3. The molten metal radiates heat through the container 16 and its temperature decreases. This is heated by the heater 18 and its temperature is adjusted to an appropriate temperature range between the solidus line and the liquidus line. As a result, the solid phase is crystallized in the liquid phase at a predetermined ratio to form molten steel 3b in a semi-molten state. In this case, the solid phase ratio is 0.2
It is preferable to control between ~0.8, and in the case of steel, it is 0.
.. It is more preferable to set the solid phase ratio to 5 to 0.6. When the molten metal is held for a long time, the solid phase, especially the dendrites, grows and becomes coarser. At this time, the rotor 26 is rotated at a predetermined rotation speed N to stir the molten steel 3b. Stirring breaks up the dendrites and forms fine crystal grains. Meanwhile, the gas in the cavity 30 is evacuated by the vacuum pump 40 to a pressure of 1 torr.
Reduce the pressure to several torr. Next, the switch of the heater 22 is turned on to heat the nozzle 20, while the rotor 26
Rotate and lift upward to open the flow passage 23 of the nozzle. Since the pressure in the cavity 30 is reduced, molten steel is forcefully sucked into the cavity 30 through the flow path 23,
The molten steel spreads all the way to the tip region of the branch 32. At this time, since the exhaust passage 34 has a small diameter, the surface tension exceeds the suction force, and molten steel does not enter the passage 34.

溶鋼が鋳型に接触すると、凝固直前の半溶融状態にある
ので、樹枝状晶が粗大化する余裕を与えることなく、そ
の内部に至るまで直ちに凝固する。
When the molten steel comes into contact with the mold, it is in a semi-molten state just before solidification, so it immediately solidifies all the way to the inside of the mold, without giving any room for the dendrites to become coarse.

上記第1の実施例によれば、複雑な形状の鋳塊を高精度
に鋳造することができる。
According to the first embodiment, an ingot having a complicated shape can be cast with high precision.

第3図を参照しつつ第2の実施例について説明する。A second embodiment will be described with reference to FIG.

この第2の実施例が上記第1の実施例と相互に共通する
部分については、説明を省略する。半溶融金属製造装置
のノズル20の溶湯注入口が、連続鋳造用鋳型50のキ
ャビティ52に挿入されている。鋳型50の上部側壁に
は排気通路54が形成されている。この排気通路54は
、場面より上方に位置するように設けられている。排気
通路54は真空ポンプ56の吸引側に連通している。
Descriptions of parts that this second embodiment has in common with the first embodiment will be omitted. A molten metal inlet of a nozzle 20 of a semi-molten metal manufacturing apparatus is inserted into a cavity 52 of a continuous casting mold 50. An exhaust passage 54 is formed in the upper side wall of the mold 50. This exhaust passage 54 is provided so as to be located above the scene. The exhaust passage 54 communicates with the suction side of the vacuum pump 56.

ダミーバー(図示せず)が鋳型50の下方に挿入されて
いる。
A dummy bar (not shown) is inserted below the mold 50.

次に、第2の実施例の動作について説明する。Next, the operation of the second embodiment will be explained.

真空ポンプ56によりキャビティ52のガスを排気し、
所定圧力に至るまで鋳型内を減圧する。
The gas in the cavity 52 is evacuated by the vacuum pump 56,
The pressure inside the mold is reduced until a predetermined pressure is reached.

次いで、ロータ(図示せず)を持上げてノズル20を開
にし、溶鋼を半溶融金属製造装置10から鋳型50に注
入する。このとき、鋳型内を減圧しているので、溶鋼が
鋳型側へ吸引され、ノズル20を介してキャビティ52
に勢いよく流入する。
Next, the rotor (not shown) is lifted to open the nozzle 20, and molten steel is injected from the semi-molten metal manufacturing apparatus 10 into the mold 50. At this time, since the pressure inside the mold is reduced, the molten steel is sucked into the mold and flows through the nozzle 20 into the cavity 52.
There is a strong flow into.

溶鋼が鋳型に接触すると、内部に至るまで速やかに凝固
する。ダミーバーを所定速度で引抜きつつ、溶鋼を所定
の流量で連続注入し、所定断面形状の鋳片58を形成す
る。
When molten steel comes into contact with the mold, it quickly solidifies all the way to the inside. While pulling out the dummy bar at a predetermined speed, molten steel is continuously injected at a predetermined flow rate to form a slab 58 with a predetermined cross-sectional shape.

上記実施例によれば、鋳型内の減圧の程度を変化させる
ことにより、鋳造状況に応じて場面高さを適宜調整する
ことができる。また、溶鋼の酸化を有効に防止しつつ、
等軸晶率の高い健全な組織を有する鋳片を製造すること
ができる。更に、ノズル詰まりを起こすことなく連続鋳
造することができる。
According to the embodiment described above, by changing the degree of pressure reduction within the mold, the scene height can be adjusted as appropriate depending on the casting situation. In addition, while effectively preventing oxidation of molten steel,
A slab having a healthy structure with high equiaxed crystallinity can be produced. Furthermore, continuous casting can be performed without causing nozzle clogging.

なお、上記第1及び第2の実施例では、溶鋼を鋳造する
場合について説明したが、これに限られることなく、他
の合金類を鋳造することも可能である。
In the first and second embodiments, the case where molten steel is cast has been described, but the present invention is not limited to this, and it is also possible to cast other alloys.

[発明の効果] この発明によれば、半溶融状態の溶湯の鋳造速度を高め
ることができるので、ノズル詰まりを生じることなく、
半溶融金属溶湯を連続鋳造することが可能となる。また
、鋳型の内圧を調節することも可能であり、これにより
湯面レベルを制御することもできる。更に、また、鋳型
内に溶湯を吸引するので、複雑な形状の鋳塊を高粘度に
鋳造することができる。また、溶湯の酸化及び温度低下
を有効に防止することができる。
[Effects of the Invention] According to the present invention, the casting speed of semi-molten metal can be increased, so nozzle clogging can occur, and the casting speed can be increased.
It becomes possible to continuously cast semi-molten metal. It is also possible to adjust the internal pressure of the mold, thereby controlling the molten metal level. Furthermore, since the molten metal is sucked into the mold, an ingot with a complex shape can be cast with high viscosity. Further, oxidation of the molten metal and temperature drop can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例に係る半溶融金属の鋳
造方法に使用された鋳型を示す模式図、第2図は半溶融
金属製造装置を示す模式図、第3図はこの発明の第2の
実施例に係る半溶融金属の鋳造方法に使用された鋳型を
示す模式図である。 3a;溶融溶湯、3b;半溶融溶湯、6,50゜鋳型、
10;半溶融金属製造装置、16;容器、18.22;
ヒータ、20;ノズル、34,54;排気通路、40,
56;真空ポンプ。 出願人代理人 弁理士 鈴江武彦
Fig. 1 is a schematic diagram showing a mold used in the method for casting semi-molten metal according to the first embodiment of the present invention, Fig. 2 is a schematic diagram showing a semi-molten metal manufacturing apparatus, and Fig. 3 is a schematic diagram showing the semi-molten metal manufacturing apparatus. FIG. 3 is a schematic diagram showing a mold used in the method for casting semi-molten metal according to the second example of FIG. 3a; Molten metal, 3b; Semi-molten metal, 6,50° mold,
10; Semi-molten metal manufacturing equipment, 16; Container, 18.22;
Heater, 20; Nozzle, 34, 54; Exhaust passage, 40,
56; Vacuum pump. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  容器内の溶湯を温度制御して固液共存状態とし、これ
を撹拌しつつ容器のノズルを介して鋳型に鋳込む半溶融
金属の鋳造方法において、前記ノズルの溶湯通流路及び
鋳型の溶湯注入領域を直通させ、鋳型の溶湯注入領域を
減圧して鋳造することを特徴とする半溶融金属の鋳造方
法。
A semi-molten metal casting method in which the temperature of the molten metal in a container is controlled to bring it into a solid-liquid coexistence state, and the molten metal is poured into a mold through a nozzle in the container while being stirred. 1. A method for casting semi-molten metal, which is characterized in that casting is carried out by passing the molten metal directly through the molten metal injection region and reducing the pressure in the molten metal injection region of the mold.
JP14481188A 1988-06-14 1988-06-14 Casting method for semimolten metal Pending JPH01313164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14481188A JPH01313164A (en) 1988-06-14 1988-06-14 Casting method for semimolten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14481188A JPH01313164A (en) 1988-06-14 1988-06-14 Casting method for semimolten metal

Publications (1)

Publication Number Publication Date
JPH01313164A true JPH01313164A (en) 1989-12-18

Family

ID=15371012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14481188A Pending JPH01313164A (en) 1988-06-14 1988-06-14 Casting method for semimolten metal

Country Status (1)

Country Link
JP (1) JPH01313164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007780A1 (en) * 1993-09-16 1995-03-23 Rheo-Technology Ltd. Method of manufacturing thin cast piece through continuous casting
EP0733421A1 (en) * 1995-03-22 1996-09-25 Hitachi Metals, Ltd. Die casting method
WO1998016334A2 (en) * 1996-10-04 1998-04-23 Semi-Solid Technologies, Inc. Apparatus and method for integrated semi-solid material production and casting
US5887640A (en) * 1996-10-04 1999-03-30 Semi-Solid Technologies Inc. Apparatus and method for semi-solid material production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007780A1 (en) * 1993-09-16 1995-03-23 Rheo-Technology Ltd. Method of manufacturing thin cast piece through continuous casting
EP0733421A1 (en) * 1995-03-22 1996-09-25 Hitachi Metals, Ltd. Die casting method
WO1998016334A2 (en) * 1996-10-04 1998-04-23 Semi-Solid Technologies, Inc. Apparatus and method for integrated semi-solid material production and casting
WO1998016334A3 (en) * 1996-10-04 1998-08-06 Semi Solid Technologies Inc Apparatus and method for integrated semi-solid material production and casting
US5881796A (en) * 1996-10-04 1999-03-16 Semi-Solid Technologies Inc. Apparatus and method for integrated semi-solid material production and casting
US5887640A (en) * 1996-10-04 1999-03-30 Semi-Solid Technologies Inc. Apparatus and method for semi-solid material production
US6308768B1 (en) 1996-10-04 2001-10-30 Semi-Solid Technologies, Inc. Apparatus and method for semi-solid material production

Similar Documents

Publication Publication Date Title
US5168918A (en) Casting of dental metals
EP1531020B1 (en) Method for casting a directionally solidified article
JPH01313164A (en) Casting method for semimolten metal
JP2891270B2 (en) Spontaneous opening method of water pool in tundish
US2257713A (en) Metal treating
JPS6333153A (en) Cast starting method for multi-connecting electromagnetic casting
JPH0824996A (en) Vertical type continuous casting method for metal billet and apparatus thereof
JPH0262105B2 (en)
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPH01313163A (en) Casting method for semimolten metal
JPH0531568A (en) Plasma melting/casting method
JPS6313784B2 (en)
JPS63268553A (en) Apparatus for casting metal or alloy having fine crystalline grain
JPH01313141A (en) Method for casting semi-molten metal
JPH0130579B2 (en)
JPH05169193A (en) Method for casting semi-solidified metal
JP2934220B2 (en) Semi-solid and semi-solid casting
JPH01118343A (en) Method for controlling molten metal flow in strip casting
JPS6349351A (en) Continuous casting installation
JPH06595A (en) Continuous casting equipment
JPH03151144A (en) Method for refining molten steel in tundish for continuous casting
JPS61262450A (en) Continuous casting method for molten metal
JPH0813405B2 (en) Method and apparatus for pouring molten steel into mold
JPH01313161A (en) Pouring method for semimolten metal
JPH0655255A (en) Manufacture of steel casting with sand mold and apparatus therefore