JPS6313784B2 - - Google Patents

Info

Publication number
JPS6313784B2
JPS6313784B2 JP56047713A JP4771381A JPS6313784B2 JP S6313784 B2 JPS6313784 B2 JP S6313784B2 JP 56047713 A JP56047713 A JP 56047713A JP 4771381 A JP4771381 A JP 4771381A JP S6313784 B2 JPS6313784 B2 JP S6313784B2
Authority
JP
Japan
Prior art keywords
speed
casting
ingot
length
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047713A
Other languages
Japanese (ja)
Other versions
JPS57160556A (en
Inventor
Tsutomu Yoshida
Kunio Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP4771381A priority Critical patent/JPS57160556A/en
Publication of JPS57160556A publication Critical patent/JPS57160556A/en
Publication of JPS6313784B2 publication Critical patent/JPS6313784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム鋳塊の連続的鋳造方法に
関するものであり、更に詳しくはアルミニウムま
たはその合金溶湯から連続的に鋳造される鋳塊品
質の安定化、鋳込作業の安全性向上などを効果的
に達成し得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for aluminum ingots, and more specifically, to stabilization of the quality of ingots continuously cast from molten aluminum or its alloys, and safety of casting operations. It relates to methods for effectively achieving sexual improvement.

従来から、アルミニウムまたはその合金からな
る丸形或は角形のアルミニウム鋳塊を連続的に得
る鋳造装置(所謂半連続鋳造装置と称されている
ものをも含む)として多数の提案が為されてお
り、その代表的な例は第1図に示すような構造を
有するものである。即ち、可動の鋳型底(底板)
8を水冷筒状鋳型1の底部に位置せしめ、該鋳型
1内にアルミニウム若しくはその合金からなる溶
湯4をノズル2、フロート3を通じて供給する一
方、漸次鋳型底8を降下させることにより、鋳型
内部の流路5を流通する冷却水による鋳型内壁の
冷却と、鋳型1下部のスリツト6より噴出せしめ
られる冷却水による直接の冷却に基づいて鋳型1
内に形成される溶湯柱を凝固せしめ、以て凝固さ
せたアルミニウム鋳塊7を鋳型下端から連続的に
取り出すようになつている。
In the past, many proposals have been made for casting equipment (including so-called semi-continuous casting equipment) for continuously producing round or square aluminum ingots made of aluminum or its alloys. A typical example thereof has a structure as shown in FIG. i.e. movable mold bottom (bottom plate)
8 is placed at the bottom of a water-cooled cylindrical mold 1, and a molten metal 4 made of aluminum or its alloy is supplied into the mold 1 through a nozzle 2 and a float 3, while gradually lowering the mold bottom 8 to cool the inside of the mold. The mold 1 is cooled based on the cooling of the inner wall of the mold by the cooling water flowing through the flow path 5 and the direct cooling by the cooling water jetted from the slit 6 at the bottom of the mold 1.
The molten metal column formed therein is solidified, and the solidified aluminum ingot 7 is continuously taken out from the lower end of the mold.

ところで、かかる鋳型1に供給された溶湯4は
鋳型内壁に接触するため、該鋳型内壁を冷却する
流路(水室)5による一次冷却によつて薄い凝固
殻Sを形成することとなるが、この凝固殻Sが形
成されると、その中のアルミニウム若しくはその
合金が凝固収縮して鋳型内壁との間に空隙を生ぜ
しめ、以て放熱を妨げるようになるので、一時的
に該凝固殻Sは局部的に再溶融して低融点金属を
浸出せしめたり、溶湯を溶出せしめたりする、所
謂発汗現象が惹起され、またコールド・シヤツト
(冷接現象)が生じる等、鋳塊の後の加工におい
て問題となる表面欠陥を発生せしめる。特に、か
かる望ましくない現象は、鋳込初期(鋳造スター
ト時)の非定常状態において惹起され易かつたの
である。
By the way, since the molten metal 4 supplied to the mold 1 comes into contact with the inner wall of the mold, it forms a thin solidified shell S through primary cooling through the channel (water chamber) 5 that cools the inner wall of the mold. When this solidified shell S is formed, the aluminum or its alloy therein solidifies and shrinks, creating a gap between it and the inner wall of the mold, which impedes heat radiation, so that the solidified shell S temporarily In the subsequent processing of the ingot, it causes the so-called sweating phenomenon, which locally remelts and causes low-melting point metals to leach out and molten metal to leach out, and cold shatter (cold welding phenomenon) to occur. This causes problematic surface defects. In particular, such undesirable phenomena are likely to occur in an unsteady state at the initial stage of casting (at the start of casting).

また、かかる鋳込初期においては、鋳型底8上
に形成される鋳塊7が鋳型1から出るときにスリ
ツト6から噴出する冷却水により急激に不均一に
冷却されることが避けられず、そのために該鋳塊
7の底部に熱的な残留応力が生じ、これによつて
鋳塊底部に変形、所謂「ソリ」が惹起されるので
ある。そして、この「ソリ」は丸型鋳塊よりも角
型鋳塊において、また小型よりも大型の鋳塊にお
いて、顕著となるが、そのような「ソリ」は該鋳
塊の後の圧延工程の段階で著しいスクラツプ化を
招く問題があつた。
In addition, in the initial stage of casting, it is inevitable that the ingot 7 formed on the mold bottom 8 is rapidly and unevenly cooled by the cooling water jetted from the slit 6 when it comes out of the mold 1. A thermal residual stress is generated at the bottom of the ingot 7, which causes deformation in the bottom of the ingot, so-called "warpage". This "warpage" is more noticeable in square ingots than in round ingots, and in large ingots than small ones, but such "warpage" is caused by the subsequent rolling process of the ingot. There was a problem that led to significant scrapping at this stage.

加えて、冷却水による急激な直接的な冷却は、
鋳塊1中のサンプ(未凝固溶湯)形状Pを変化せ
しめ、これが上記鋳塊7底部の「ソリ」(変形)
と呼応して湯漏れ発生の危険性を著しく高め、鋳
込作業の安全性などの点において少なからぬ問題
を内在しているのである。
In addition, rapid direct cooling by cooling water
The shape P of the sump (unsolidified molten metal) in the ingot 1 changes, and this causes "warping" (deformation) at the bottom of the ingot 7.
Correspondingly, this significantly increases the risk of metal leakage and poses considerable problems in terms of the safety of casting operations.

ここにおいて、本発明は、かかる事情を背景に
して為されたものであつて、その要旨とするとこ
ろは、アルミニウム若しくはその合金溶湯を鋳型
に供給して連続的に冷却、凝固せしめることによ
つて所定のアルミニウム鋳塊を連続的に鋳造する
にあたり、該鋳型にて形成される鋳塊の長さに応
じて順次鋳込速度を高めて最終の定常速度に到達
するように制御せしめるようにした方法にして、
設定された前記鋳込速度の定常速度値を予め複数
段階に分割して、各速での鋳塊長さを設定してお
き、その鋳込速度の最も遅い1速の速度値におい
て鋳造を開始せしめると共に、漸次形成される前
記鋳塊の長さを検出し、そしてその検出値に基づ
いて、前記設定された各速での鋳塊長さに達する
に従い、前記複数段階の各段階の鋳込速度に順次
高め、最終的に前記定常速度に到達するようにす
る一方、前記鋳型に供給され、そしてその底部よ
り形成される鋳塊に対して噴出せしめられる冷却
水量を、前記鋳塊の長さの検出値に対応して制御
せしめ、単位時間当りのその供給量を定常水量に
まで順次段階的に増大させるようにしたことにあ
り、これによつて鋳込初期における鋳型底部に形
成される鋳塊の凝固中の縦方向(鋳込方向)の温
度勾配を緩やかなものと為し、応力を小さなもの
として、鋳塊底部の変形を阻止してフラツトと為
し得たのであり、以て鋳込初期の鋳塊品質の安定
化、安全性の向上などを達成し、また自動鋳込操
作を可能にしてその省力化を達成せしめ得たので
ある。
The present invention has been made against this background, and its gist is to supply molten aluminum or its alloy to a mold and continuously cool and solidify it. A method in which a predetermined aluminum ingot is continuously cast, and the casting speed is controlled to be gradually increased according to the length of the ingot formed in the mold to reach a final steady speed. and then
The steady speed value of the set casting speed is divided into multiple stages in advance, the ingot length at each speed is set, and casting is started at the speed value of the slowest of the casting speeds. At the same time, the length of the ingot that is gradually formed is detected, and based on the detected value, as the length of the ingot at each of the set speeds is reached, the casting of each of the plurality of stages is performed. While the speed is gradually increased until it finally reaches the steady speed, the amount of cooling water supplied to the mold and jetted from the bottom of the mold to the ingot formed is controlled by increasing the length of the ingot. The water supply amount per unit time is gradually increased to a steady water amount, and this reduces the amount of water that forms at the bottom of the mold at the initial stage of pouring. By making the temperature gradient in the vertical direction (in the casting direction) gentle during the solidification of the ingot and reducing the stress, deformation of the bottom of the ingot was prevented and the ingot was made flat. This has stabilized the quality of the ingot at the initial stage of pouring, improved safety, and enabled automatic pouring operation, resulting in labor savings.

かくの如く、本発明に従えば、鋳型において冷
却されて形成せしめられる鋳塊の長さ、換言すれ
ば鋳込長さ;l(第1図参照)に応じて鋳込速度
が順次上昇せしめられることとなるため、鋳込ス
タート時において鋳型底部の鋳型内に収容された
鋳型底上に形成される溶湯柱は鋳型内壁面を通じ
ての冷却水による一次冷却によつて漸次凝固せし
められ、そして充分な冷却作用を受けた凝固鋳塊
が鋳型底の下降につれて順次冷却水の噴出による
直接冷却作用を受けるようになるのであり、これ
によつて鋳塊底部の変形(「ソリ」)、コールドシ
ヤツト、局部的な割れ、更には低融点成分の再溶
解などを効果的に抑制せしめ、以て鋳塊品質の安
定化を達成せしめ得たのである。加えて、鋳塊底
部のソリ、サンプ形状の変化、再溶解などに起因
する湯漏れの危険性も著しく低下せしめられ、以
て鋳込作業の安全性も極めて向上され得たのであ
る。
As described above, according to the present invention, the casting speed is gradually increased according to the length of the ingot formed by cooling in the mold, in other words, the casting length; l (see Fig. 1). Therefore, at the start of pouring, the molten metal column formed on the bottom of the mold accommodated in the mold is gradually solidified by primary cooling by cooling water through the inner wall surface of the mold, and As the solidified ingot has been cooled, as the bottom of the mold descends, the ingot is directly cooled by jets of cooling water, which causes deformation (warpage) of the bottom of the ingot, cold shatter, and This effectively suppressed localized cracking and remelting of low-melting components, thereby stabilizing the quality of the ingot. In addition, the risk of leakage caused by warping of the bottom of the ingot, changes in the shape of the sump, remelting, etc. has been significantly reduced, and the safety of the casting operation has been greatly improved.

ところで、かくの如き本発明における鋳込長さ
(l)に対する鋳込速度(鋳型底の下降速度)の
変化の具体的な一例が、第2図に示されている。
そこでは、鋳込スタートから順次鋳込速度を高め
て、連続的な鋳込作業となる定常速度に至るま
で、階段状に鋳込速度を変化せしめているのであ
る。即ち、より具体的には、50mm/分の定常鋳込
速度を5段階に分け(1速〜5速;5速が定常速
度)、そして鋳込長さ(l)が50mmとなる間に1
速→2速→3速→4速→5速と順次鋳込速度を高
め、最終の定常速度(5速)に到達せしめている
のである。
By the way, a specific example of the change in casting speed (lowering speed of the mold bottom) with respect to the casting length (l) in the present invention is shown in FIG.
In this process, the casting speed is gradually increased from the start of casting, and the casting speed is changed in steps until it reaches a steady speed, which is a continuous casting operation. That is, more specifically, the steady casting speed of 50 mm/min is divided into 5 stages (1st speed to 5th speed; 5th speed is the steady speed), and while the casting length (l) reaches 50 mm,
The casting speed is increased in sequence from speed to second speed to third speed to fourth speed to fifth speed to reach the final steady speed (fifth speed).

なお、鋳込速度が定常速度に到達したときの鋳
塊の長さ(鋳込長さ;l)は一般に10〜500mm、
好ましくは30〜300mm程度であり、このような鋳
込長さとなる間に定常速度まで順次上昇せしめら
れることとなるのである。鋳込長さが余りにも短
い間に定常速度に到達せしめられると、従来と同
様に鋳塊底部の「ソリ」や局部的割れ、コールド
シヤツト、再溶解などの問題を生じて望ましくな
く、一方定常速度に達するに要する鋳込長さが余
りにも長いと、その間の鋳込速度の制御の問題や
生産性、鋳込作業などに問題を生じることとなつ
て、望ましくない。
In addition, the length of the ingot (casting length; l) when the casting speed reaches a steady speed is generally 10 to 500 mm,
The casting length is preferably about 30 to 300 mm, and the casting speed is gradually increased to a steady state while reaching such a casting length. If the casting length is allowed to reach a steady state speed while the casting length is too short, problems such as "warping" at the bottom of the ingot, local cracking, cold shatter, and remelting will occur, which is undesirable. If the casting length required to reach a steady speed is too long, it is undesirable because it will cause problems in controlling the casting speed during that time, as well as problems in productivity and casting operations.

また、かくの如き段階的な鋳込速度の上昇は、
好適には第3図の如くして行なわれることとな
る。即ち、鋳型1に対する下降部材(鋳型底その
もの若しくは鋳型底が取り付けられたもの)10
の下降速度(鋳込速度)の鋳込定常状態での値
が、材質、サイズなどから決定されると、その値
(定常速度)は鋳込速度設定器11にて設定され
る。そして、この定常速度の設定によつて、パー
セント設定装置12では1速〜5速までの各速の
速度が定常速度に対するパーセントにて設定され
ることとなる。また、1速から5速までの各速に
て到達される鋳込長さ(l)が鋳込長さ設定装置
13にそれぞれ設定される。
In addition, the gradual increase in casting speed as described above
This is preferably carried out as shown in FIG. That is, a descending member (the mold bottom itself or a mold bottom attached) 10 for the mold 1
When the value of the descending speed (casting speed) in the steady casting state is determined from the material, size, etc., that value (steady speed) is set by the casting speed setting device 11. By setting this steady speed, the percentage setting device 12 sets the speed of each speed from 1st speed to 5th speed as a percentage of the steady speed. Further, the casting length (l) reached at each speed from the first speed to the fifth speed is set in the casting length setting device 13, respectively.

そして、鋳込スタートに際しては、パーセント
設定装置12で設定された1速の設定値に従うよ
うに、鋳造機制御装置14によつて、直流モータ
15及びドラム16からなる下降部材移動機構に
よる下降部材10の下降が制御される。また、こ
の下降部材10の下降によつて生じる鋳塊の長さ
(l)は直流モータ15の回転数を回転計17に
て検出することによつて間接的に測定されるので
ある。更に、この回転計17にて検出された鋳込
長さ(l)の間接的な情報は鋳込長さ設定装置1
3に入力される。鋳込長さ設定装置13では、入
力される鋳込長さ(l)情報に基づき、それが1
速で設定された値に達すると、パーセント設定装
置12における1速の鋳込速度設定値から2速の
それに切り換えるよう、出力が出され、そしてか
かるパーセント設定装置12の2速の設定値に従
つて、鋳造機制御装置14により直流モータ15
が制御されて、下降部材10が2速の鋳込速度に
て下降せしめられるのである。
When starting casting, the casting machine control device 14 controls the descending member 10 by the descending member moving mechanism consisting of the DC motor 15 and the drum 16 so as to follow the first speed set value set by the percentage setting device 12. The descent of is controlled. Further, the length (l) of the ingot produced by the descent of the descending member 10 is indirectly measured by detecting the rotational speed of the DC motor 15 with the tachometer 17. Furthermore, the indirect information of the casting length (l) detected by the tachometer 17 is sent to the casting length setting device 1.
3 is input. In the casting length setting device 13, based on the input casting length (l) information, it is set to 1.
When the speed reaches the set value, an output is provided to switch from the first casting speed setting in the percent setting device 12 to the second speed setting, and according to the second speed setting of the percent setting device 12. Then, the DC motor 15 is controlled by the casting machine control device 14.
is controlled, and the lowering member 10 is lowered at the second casting speed.

このようにして、パーセント設定装置12、鋳
造機制御装置14、直流モータ15、回転計17
および鋳込長さ設定装置13にて構成される制御
回路により、下降部材10の下降速度(鋳込速
度)は、予め設定された各速での鋳込長さ(l)
に従つて1速から5速まで順次高められ、以て階
段状に定常速度に至ることとなり、そしてその後
は定常速度に維持して鋳造作業が続行されるので
ある。
In this way, the percentage setting device 12, the casting machine control device 14, the DC motor 15, the tachometer 17
The descending speed (casting speed) of the descending member 10 is determined by the control circuit configured with the casting length setting device 13 and the casting length (l) at each preset speed.
Accordingly, the speed is increased sequentially from 1st speed to 5th speed, and then a steady speed is reached in a stepwise manner.Thereafter, the casting operation is continued while maintaining the steady speed.

特に、このような制御方式を採用することによ
り、鋳造速度の自動制御が可能となり、以て鋳込
初期における作業負荷が減少され得て、省力化が
可能となつたのである。
In particular, by adopting such a control system, automatic control of the casting speed becomes possible, which reduces the work load at the initial stage of casting, making it possible to save labor.

また、本発明にあつては、かくの如く鋳込長さ
に対する鋳込速度の制御によつて鋳塊底部の凝固
中の縦方向の温度勾配を緩やかなものと為すもの
であるが、これに加えて、鋳型1に供給され、そ
してその底部から鋳塊に向つて噴出せしめられる
冷却水量を該鋳塊の長さの検出値に対応して制御
せしめて、かかる冷却水量をその定常水量(定常
鋳込速度における冷却水量)にまで段階的に増大
せしめ、底部で生成中のサブモールドの熱伝達を
小さくするようにすれば、その効果を更に増大せ
しめることが可能である。
Furthermore, in the present invention, by controlling the casting speed with respect to the casting length, the temperature gradient in the vertical direction during solidification at the bottom of the ingot is made gentle. In addition, the amount of cooling water supplied to the mold 1 and jetted from the bottom of the mold 1 toward the ingot is controlled in accordance with the detected length of the ingot, so that the amount of cooling water is adjusted to the steady water amount (steady water amount). The effect can be further increased by increasing the amount of cooling water stepwise to the amount of cooling water at the casting speed to reduce the heat transfer to the sub-mold being formed at the bottom.

要するに、鋳込初期は非定常状態であつて、そ
こで鋳込速度と共に冷却水量をコントロールする
ことは、極めて重要なことなのである。即ち、基
本的に、定常時の冷却は、鋳型周囲からのみであ
るのに対して、非定常時の冷却は、底部(底板)
方向からの冷却も加わるからであり、且つ鋳型そ
のものも常温のままであり、また定常時において
は、凝固収縮により鋳型と鋳塊との間には隙間が
生じているのに対して、非定常時には、溶湯のた
めに、そのような隙間が存在してはいないのであ
る。これらの事情の故に、鋳込速度と冷却水量を
合せて制御することは、品質面(割れ、鋳肌荒
れ、コールドシヤツト等)や安全面(溶湯漏れ)、
更には省力化(自動化)の面から、その顕著な改
善を達成するものである。
In short, the early stage of casting is an unsteady state, and it is extremely important to control the casting speed and the amount of cooling water. In other words, cooling in steady state is only from around the mold, while cooling in unsteady state is from the bottom (bottom plate).
This is because cooling is applied from both directions, and the mold itself remains at room temperature.In a steady state, there is a gap between the mold and the ingot due to solidification shrinkage, but in an unsteady state Sometimes, due to the molten metal, no such gap exists. Because of these circumstances, controlling the casting speed and cooling water amount together is important in terms of quality (cracking, rough casting surface, cold shunt, etc.), safety (molten metal leakage),
Furthermore, it achieves a remarkable improvement in terms of labor saving (automation).

この冷却水量の制御には、具体的には、例えば
第4図a,bに示される如く階段状に冷却水供給
量を高めて、最終的に定常状態における予め設定
された供給量に到達せしめる手法の他、第4図c
の如く冷却水の周期的な供給停止によつて行なう
と共に、その停止時間を漸次短縮せしめ、最終的
に零と為して、定常状態に移行せしめるようにす
る手法が好適に採用されることとなる。なお、第
4図cにおいては、A区間において通水時間xと
停水時間yが一定割合とされ、B区間において停
水時間yが漸次短縮され、最終的に定常状態に移
行されるようになつている。
Specifically, to control the amount of cooling water, for example, the amount of cooling water supplied is increased in a stepwise manner as shown in FIGS. In addition to the method, Figure 4c
It is preferable to adopt a method in which this is done by periodically stopping the supply of cooling water, and the stopping time is gradually shortened, eventually reaching zero and transitioning to a steady state. Become. In addition, in Fig. 4c, the water flow time x and water stop time y are set at a constant ratio in section A, and the water stop time y is gradually shortened in section B, and the water stop time y is gradually reduced to a steady state. It's summery.

そして、この冷却水量の制御は、例えば第3図
に併わせ示されている如く、回転計17からの鋳
込長さ情報に基づく鋳込長さ設定装置13からの
出力が、ON/OFFタイム制御装置18に入力さ
れ、そしてこのON/OFFタイム制御装置18に
よる制御によつてバルブ(三方)19を開閉せし
めることにより、行なわれることとなる。なお、
流路21を流れる冷却水の流量は流量調節弁20
にて制御され、バルブ19は単にON、OFFにて
冷却水の通過、遮断を行なうのみである。
This control of the amount of cooling water is performed by controlling the ON/OFF time by the output from the casting length setting device 13 based on the casting length information from the tachometer 17, as shown in FIG. 3, for example. This is performed by inputting the information to the control device 18 and opening and closing the valve (three-way) 19 under the control of the ON/OFF time control device 18. In addition,
The flow rate of the cooling water flowing through the flow path 21 is controlled by the flow rate control valve 20.
The valve 19 is simply turned ON and OFF to allow or shut off the cooling water.

以上、本発明の具体例について述べて来たが、
本発明は例示のもののみに限定されるものでは決
してなく、本発明の趣旨を逸脱しない限りにおい
て当業者の知識に基づいて種々なる修正、変更等
を加え得るものである。
Although specific examples of the present invention have been described above,
The present invention is by no means limited to the illustrative examples, and various modifications and changes can be made based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造装置の代表的な一例を示す縦
断面図、第2図は鋳込長さに対する鋳込速度の変
化の一例を示すグラフ、第3図は鋳込速度の制御
方式の一例を示す系統図、第4図a,b,cはそ
れぞれ冷却水量の変化方式の例を示すグラフであ
る。 1:鋳型、4:溶湯、7:鋳塊、8:鋳型底、
l:鋳込長さ、10:下降部材、11:鋳込速度
設定器、12:パーセント設定器、14:鋳造機
制御装置、13:鋳込長さ設定装置、15:直流
モータ、16:ドラム、17:回転計、18:
ON/OFFタイム制御装置、19:バルブ、2
0:流量調節弁。
Fig. 1 is a vertical cross-sectional view showing a typical example of a continuous casting device, Fig. 2 is a graph showing an example of changes in casting speed with respect to casting length, and Fig. 3 is an example of a control method for casting speed. FIGS. 4a, 4b, and 4c are graphs each showing an example of a method of changing the amount of cooling water. 1: Mold, 4: Molten metal, 7: Ingot, 8: Mold bottom,
l: Casting length, 10: Lowering member, 11: Casting speed setting device, 12: Percentage setting device, 14: Casting machine control device, 13: Casting length setting device, 15: DC motor, 16: Drum , 17: Tachometer, 18:
ON/OFF time control device, 19: Valve, 2
0: Flow control valve.

Claims (1)

【特許請求の範囲】 1 アルミニウム若しくはその合金溶湯を鋳型に
供給して連続的に冷却、凝固せしめることによつ
て所定のアルミニウム鋳塊を連続的に鋳造するに
あたり、該鋳型にて形成される鋳塊の長さに応じ
て順次鋳込速度を高めて最終の定常速度に到達す
るように制御せしめると共に、該鋳型にて形成さ
れる鋳塊の長さに応じて順次冷却水量を高めて最
終の定常水量に到達するように制御せしめるよう
にした方法にして、 設定された前記鋳込速度の定常速度値を予め複
数段階に分割して、各速での鋳塊長さを設定して
おき、その鋳込速度の最も遅い1速の速度値にお
いて鋳造を開始せしめると共に、漸次形成される
前記鋳塊の長さを検出し、そしてその検出値に基
づいて、前記設定された各速での鋳塊長さに達す
るに従い、前記複数段階の各段階の鋳込速度に順
次高め、最終的に前記定常速度に到達するように
する一方、前記鋳型に供給され、そしてその底部
より形成される鋳塊に対して噴出せしめられる冷
却水量を、前記鋳塊の長さの検出値に対応して制
御せしめ、単位時間当りのその供給量を定常水量
にまで順次段階的に増大させるようにしたことを
特徴とするアルミニウム鋳塊の連続的鋳造方法。 2 前記鋳塊の長さが10〜500mmとなる間に、鋳
込速度が前記定常速度に到達せしめられる特許請
求の範囲第1項記載の方法。 3 前記冷却水量の制御が、冷却水の供給の周期
的な停止によつて行なわれると共に、その停止時
間が漸次短縮されて、零とされる特許請求の範囲
第1項記載の方法。
[Scope of Claims] 1. When a predetermined aluminum ingot is continuously cast by supplying molten aluminum or its alloy to a mold and continuously cooling and solidifying it, the cast formed in the mold is The casting speed is gradually increased according to the length of the ingot to reach the final steady speed, and the amount of cooling water is gradually increased according to the length of the ingot formed in the mold to reach the final steady speed. By using a method that controls the amount of water so as to reach a steady water volume, the steady speed value of the set casting speed is divided in advance into a plurality of stages, and the length of the ingot at each speed is set. The casting is started at the speed value of the slowest one of the casting speeds, and the length of the ingot that is gradually formed is detected, and based on the detected value, the casting is started at the speed value of the first speed that is the slowest. As the ingot length is reached, the casting speed of each of the plurality of stages is sequentially increased to finally reach the steady speed, while the ingot is supplied to the mold and formed from the bottom thereof. The amount of cooling water spouted to the ingot is controlled in accordance with the detected value of the length of the ingot, and the amount of cooling water supplied per unit time is gradually increased to a steady water amount. Continuous casting method for aluminum ingots. 2. The method according to claim 1, wherein the casting speed is made to reach the steady speed while the length of the ingot becomes 10 to 500 mm. 3. The method according to claim 1, wherein the amount of cooling water is controlled by periodically stopping the supply of cooling water, and the stopping time is gradually shortened to zero.
JP4771381A 1981-03-31 1981-03-31 Continuous casting method for molten metal Granted JPS57160556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4771381A JPS57160556A (en) 1981-03-31 1981-03-31 Continuous casting method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4771381A JPS57160556A (en) 1981-03-31 1981-03-31 Continuous casting method for molten metal

Publications (2)

Publication Number Publication Date
JPS57160556A JPS57160556A (en) 1982-10-02
JPS6313784B2 true JPS6313784B2 (en) 1988-03-28

Family

ID=12782942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4771381A Granted JPS57160556A (en) 1981-03-31 1981-03-31 Continuous casting method for molten metal

Country Status (1)

Country Link
JP (1) JPS57160556A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788548B2 (en) * 2017-05-17 2020-11-25 Jfe条鋼株式会社 Continuous casting method of square billet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102833A (en) * 1977-02-22 1978-09-07 Nippon Kokan Kk Secondary cooling water control method and apparatus in continuous casting installation
JPS5416332A (en) * 1977-07-07 1979-02-06 Nippon Kokan Kk Method of controlling casting rate in first stage of casting of continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102833A (en) * 1977-02-22 1978-09-07 Nippon Kokan Kk Secondary cooling water control method and apparatus in continuous casting installation
JPS5416332A (en) * 1977-07-07 1979-02-06 Nippon Kokan Kk Method of controlling casting rate in first stage of casting of continuous casting

Also Published As

Publication number Publication date
JPS57160556A (en) 1982-10-02

Similar Documents

Publication Publication Date Title
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
US11292051B2 (en) Dynamically positioned diffuser for metal distribution during a casting operation
JPS6313784B2 (en)
JPH11170014A (en) Horizontal continuous casting machine
JPS6333153A (en) Cast starting method for multi-connecting electromagnetic casting
JPH01313164A (en) Casting method for semimolten metal
JPH0399752A (en) Mold for continuous casting high melting point and active metal
US4355680A (en) Method and apparatus for continuous casting of hollow articles
KR102312118B1 (en) Apparatus for continuous casting process of steel material by controlling width-directional soft reduction and method of continuous casting using the same
JPS62187556A (en) Continuous casting method
JPS6153143B2 (en)
JPH079091A (en) Method and apparatus for continuously casting hollow billet
JPH08132183A (en) Apparatus for casting al alloy and method thereof
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPH0130579B2 (en)
JPS62227551A (en) Method and apparatus for continuous casting
JPS60191642A (en) Horizontal and continuous casting method of metal
JPS62107844A (en) Mold for continuous casting billet
JPH0218180B2 (en)
JPS6087956A (en) Continuous casting method of metal
JPH0847759A (en) Method for continuously casting wide and thin cast slab
JPH0929409A (en) Method for controlling molten metal surface level in electromagnetic casting
JPH01313163A (en) Casting method for semimolten metal
JPS6349588B2 (en)
JPS60115351A (en) Continuous casting method