JPH0399752A - Mold for continuous casting high melting point and active metal - Google Patents

Mold for continuous casting high melting point and active metal

Info

Publication number
JPH0399752A
JPH0399752A JP23669389A JP23669389A JPH0399752A JP H0399752 A JPH0399752 A JP H0399752A JP 23669389 A JP23669389 A JP 23669389A JP 23669389 A JP23669389 A JP 23669389A JP H0399752 A JPH0399752 A JP H0399752A
Authority
JP
Japan
Prior art keywords
mold part
cooled copper
mold
solidified shell
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23669389A
Other languages
Japanese (ja)
Inventor
Atsushi Takemura
武村 厚
Yoshio Ashida
芦田 喜郎
Atsuyuki Miyamoto
宮本 淳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23669389A priority Critical patent/JPH0399752A/en
Publication of JPH0399752A publication Critical patent/JPH0399752A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously cast a high m.p. and active metal without contaminating molten metal with a mold and eroding the mold by arranging a water cooled copper mold part and an outlet mold part under the water cooled copper mold part to the mold for continuous casting. CONSTITUTION:While supplying raw material for molten metal on a bottom metal 13 set at inner bottom in the water cooled copper mold part 2 by working a ray material to be molten supplying device 11, the raw material is melted with a plasma torch 9 by working a plasma heating device. In the molten metal, initial stage solidified shell is formed on upper surface of the bottom metal 13 and outlet mold part 3 with cooling from the upper surface of bottom metal 13 and inner wall face of the water cooled copper mold part 2, and also by melting after that, low temp. solidified shell 16 is formed along inner wall face of the water cooled copper mold part 2, and at the same time, the molten metal pool 17 is formed in inner circumference of the solidified shell 16. When the low temp. solidified shell 16 having the prescribed thickness and the prescribed quantity of molten metal pool 17 are formed, and at the time high temp. solidified shell at lower part of the mold part 2 is formed, the solidified shell 16 is caused to remain in the water cooled copper mold part 2, the solidified shell is made to casting billet 18 and drawn downward with a cast billet drawing device 15 to execute the continuous casting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高融点且つ活性な金属の連続鋳造用鋳型に関
し、詳しくはチタン、ジルコニウム、タンタル、モリブ
デン等およびこれらの金属間化1合物等の高融点且つ活
性な金属の連続鋳造用鋳型に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold for continuous casting of high-melting-point and active metals, specifically titanium, zirconium, tantalum, molybdenum, etc., and intermetallic compounds thereof. The present invention relates to molds for continuous casting of high melting point and active metals such as metals.

〔従来の技術〕[Conventional technology]

この種の高融点且つ活性な金属の場合も、一部でばある
が鋼と同様に水冷銅鋳型を使用して連続鋳造が行われて
いる。しかし、この連続鋳造は、金属が鋼と違い、高融
点で且つ活性であることから、真空または不活性ガス雰
囲気の下で行われ、また鋼の連続鋳造のようにフラック
ス等の潤滑材を使用すると、溶湯がフラックスと反応す
るので使用せずに、且つ溶湯が水冷銅鋳型の内壁面とも
反応することがあるので、水冷銅鋳型の冷却能を亮めて
行われている。
In the case of this kind of high-melting-point, active metal, continuous casting is carried out in some cases using water-cooled copper molds, just as in the case of steel. However, unlike steel, this continuous casting is performed under a vacuum or inert gas atmosphere because the metal has a high melting point and is active, and unlike continuous steel casting, lubricants such as flux are used. Then, since the molten metal reacts with the flux, it is not used, and since the molten metal may also react with the inner wall surface of the water-cooled copper mold, the cooling capacity of the water-cooled copper mold is increased.

第2図は、高融点且つ活性な金属の連続鋳造装置であっ
て、冷却水の通水路を有する水冷銅鋳型21と、この水
冷胴鋳型21の上に気密的に設けられた上チヤンバ−2
2と、上チヤンバ−22を貫通し、且つその先端が水冷
銅鋳型21内に指向するように設けられた溶解および保
熱用のプラズマI・−チ23と、上チヤンバ−22の開
口部24に気密的に接続された溶解原料供給装置25と
、開口部24から供給されてくる溶解原料を水冷銅鋳型
21内に案内するシュータ26と、水冷銅鋳型21の下
に気密的に設けられた下チヤンバ−27と、下チヤンバ
−27内に設りられた鋳塊引抜き装置28とを具備して
構成されている。
FIG. 2 shows a continuous casting apparatus for high melting point and active metals, which includes a water-cooled copper mold 21 having a cooling water passage, and an upper chamber 2 airtightly provided above the water-cooled body mold 21.
2, a plasma I-chi 23 for melting and heat retention, which penetrates the upper chamber 22 and is provided with its tip directed into the water-cooled copper mold 21; and an opening 24 in the upper chamber 22. A molten raw material supply device 25 airtightly connected to the molten raw material supply device 25, a chute 26 that guides the molten raw material supplied from the opening 24 into the water-cooled copper mold 21, and a chute 26 that is air-tightly connected to the water-cooled copper mold 21. It is configured to include a lower chamber 27 and an ingot drawing device 28 installed in the lower chamber 27.

この連続鋳造装置による鋳造は、先ず、上下チャンバー
22.27内を真空雰囲気または不活性ガス雰囲気にす
ると共に、鋳塊引抜き装置28を作動させて鋳塊引抜き
装置28の伸縮アーム29の先端に設けた底金30を水
冷銅鋳型2■の内底にセットする。
Casting by this continuous casting device is performed by first creating a vacuum atmosphere or an inert gas atmosphere in the upper and lower chambers 22 and 27, and activating the ingot pulling device 28 to install a device at the tip of the telescopic arm 29 of the ingot pulling device 28. The bottom metal 30 is set on the inner bottom of the water-cooled copper mold 2.

次いで、溶解原料供給装置25を作動させて、水冷銅鋳
型21の内底にセットした底金30上に溶解原料を供給
しながら、プラズマ加熱装置を作動させてプラズマトー
チ23により熔解する。この後、底金30上表面と水冷
銅鋳型21内壁面31からの冷却により、底金30上に
初期凝固殻が形成され、溶湯プール32が形成されたら
、底金30上の凝固した部分から順次、鋳塊33として
鋳塊引抜き装置28により下方へ引抜いて連続鋳造され
る。そして、連続鋳造中は、水冷銅鋳型21に形成され
た溶湯プール32の上端外周部34を水冷銅鋳型21の
内壁面31に接触するかしないうちに凝固せしめ、溶湯
プール32の上端外周部34または溶湯プール32の溶
湯と内壁面31との反応および焼着が生じないようにし
て鋳造が行われる。
Next, the molten raw material supply device 25 is operated to supply the molten raw material onto the bottom metal 30 set in the inner bottom of the water-cooled copper mold 21, while the plasma heating device is operated and the plasma torch 23 melts the raw material. After that, an initial solidified shell is formed on the bottom metal 30 by cooling from the upper surface of the bottom metal 30 and the inner wall surface 31 of the water-cooled copper mold 21, and when a molten metal pool 32 is formed, the solidified portion on the bottom metal 30 is The ingots 33 are successively drawn downward by the ingot drawing device 28 and continuously cast. During continuous casting, the upper end outer peripheral part 34 of the molten metal pool 32 formed in the water-cooled copper mold 21 is solidified before it comes into contact with the inner wall surface 31 of the water-cooled copper mold 21, and the upper end outer peripheral part 34 of the molten metal pool 32 is solidified before it contacts the inner wall surface 31 of the water-cooled copper mold 21. Alternatively, casting is performed in such a way that reaction and burning between the molten metal in the molten metal pool 32 and the inner wall surface 31 do not occur.

尚、連続鋳造された鋳塊33は、水冷銅鋳型21から下
チヤンバ−27を分離して下チヤンバ−27内から取出
される。
The continuously cast ingot 33 is removed from the lower chamber 27 by separating the lower chamber 27 from the water-cooled copper mold 21.

〔発明が解決しようとする課題] ところで、上述の如く水冷銅鋳型21を使用し、溶湯プ
ール32の)一端外周部34または溶湯プール32の溶
湯と内壁面3]との反応および焼着が生じないようにし
て鋳造が行われるものの、その調整は極めて難しく、例
えば、溶湯プール32の溶湯面は、溶解および保熱のた
めのプラズマト−チ23の影響により常に乱されており
、このため、溶湯プール32の上端外周部34と水冷銅
鋳型21の内壁面31との接触状態が安定せず、鋳造さ
れた鋳塊33の鋳肌は、しわ、二重肌等が生じ、極めて
凹凸やボイドの多い不健全なものとなっている。また溶
湯プール32の溶湯が溶湯プール32から溢流し、水冷
銅鋳型21の内壁面31に長時間直接接触すると、水冷
銅鋳型21の内壁面31が溶湯と反応して溶湯を汚染し
たり、または水冷銅鋳型21の内壁面31が溶損して水
冷銅鋳型21の寿命が短くなる等の問題が起こる。
[Problems to be Solved by the Invention] By the way, when the water-cooled copper mold 21 is used as described above, reaction and burning occur between the outer peripheral portion 34 of one end of the molten metal pool 32 or the molten metal of the molten metal pool 32 and the inner wall surface 3. Although casting is carried out in such a way as to prevent the melt from melting, the adjustment is extremely difficult. For example, the surface of the molten metal in the molten metal pool 32 is constantly disturbed by the influence of the plasma torch 23 for melting and heat retention. The contact state between the upper end outer circumferential portion 34 of the molten metal pool 32 and the inner wall surface 31 of the water-cooled copper mold 21 is not stable, and the surface of the cast ingot 33 has wrinkles, double skin, etc., and is extremely uneven and voided. It has become unhealthy with many. Furthermore, if the molten metal in the molten metal pool 32 overflows from the molten metal pool 32 and comes into direct contact with the inner wall surface 31 of the water-cooled copper mold 21 for a long time, the inner wall surface 31 of the water-cooled copper mold 21 may react with the molten metal and contaminate the molten metal, or Problems arise such as the inner wall surface 31 of the water-cooled copper mold 21 being damaged by melting and the life of the water-cooled copper mold 21 being shortened.

そごで、本発明者等は、上記の事情に鑑み、先に、平滑
な表面鋳肌を有し、且つ溶湯の汚染の心配が無い高融点
且つ活性な金属の連続鋳造方法として、鋳型の内壁面に
、鋳造される高融点且つ活性な金属と同じ金属層または
低温凝固殻を設り、金属層または低温凝固殻を鋳型にと
どめながら連続鋳造する高融点且つ活性な金属の連続鋳
造方法を開発し、特願平1−185635号として出願
した。
Therefore, in view of the above circumstances, the present inventors first developed a method for continuous casting of a high melting point and active metal that has a smooth casting surface and is free from contamination of the molten metal. A continuous casting method for high melting point and active metals, in which a metal layer or low temperature solidification shell that is the same as the high melting point and active metal to be cast is provided on the inner wall surface, and the metal layer or low temperature solidification shell is continuously cast while remaining in the mold. It was developed and filed as Japanese Patent Application No. 1-185635.

そして、その後の研究において、上記連続鋳造方法に使
用して好適な高融点且つ活性な金属の連続鋳造用鋳型を
開発するに至ったものである。
Subsequent research led to the development of a continuous casting mold made of a high melting point and active metal suitable for use in the above continuous casting method.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、上記の事情に鑑みてなされたものであって、
その要旨は、筒状の水冷銅鋳型部と、この水冷銅鋳型部
の下に設りられ、且つ上面が逆錐状に形成されると共に
、その内径が水冷銅鋳型部の内径より小さく形成された
出口鋳型部と、この出口鋳型部を囲繞して設けられた加
熱装置とを具備してなる高融点且つ活性な金属の連続鋳
造用鋳型である。
The present invention has been made in view of the above circumstances, and includes:
Its gist is that it has a cylindrical water-cooled copper mold part, is installed under this water-cooled copper mold part, has an inverted conical top surface, and has an inner diameter smaller than the inner diameter of the water-cooled copper mold part. This mold for continuous casting of a high melting point and active metal is provided with an exit mold section and a heating device surrounding the exit mold section.

[作  用] 本発明の高融点且つ活性な金属の連続鋳造用鋳型におい
ては、水冷銅鋳型部が設けられているので、この水冷銅
鋳型部による冷却により、その内壁面に設けられた、鋳
造される高融点且つ活性な金属と同じ金属層または低温
凝固殻の厚さが維持でき、特にその上端部の層の厚さが
維持され、金171i層または低温凝・固殻内の溶湯プ
ールからの溶湯の溢流が防止でき、従って、しわ、二重
肌等の無い、平滑な表面鋳肌の鋳塊が得られる伯、溶湯
が水冷銅鋳型の内壁面と接触することが無いので、溶湯
が水冷銅鋳型の内壁面により汚染されたり、水冷銅鋳型
の内壁面を溶損することが無くなる。
[Function] Since the mold for continuous casting of a high-melting point and active metal of the present invention is provided with a water-cooled copper mold section, cooling by the water-cooled copper mold section allows the casting mold provided on the inner wall surface of the mold to be The same metal layer or cold solidified shell thickness as the high melting point and active metal to be used can be maintained, especially the thickness of the layer at its upper end, and from the gold 171i layer or the molten metal pool within the cold solidified solid shell. This prevents the molten metal from overflowing, resulting in an ingot with a smooth surface without wrinkles or double skin. This prevents contamination by the inner wall surface of the water-cooled copper mold and corrosion damage to the inner wall surface of the water-cooled copper mold.

また、水冷銅鋳型部の下には、上面が逆錐状に形成され
ると共に、その内径が水冷銅鋳型部の内径より小さく形
成された出口鋳型部が設けられているので、−上記金属
層または低温凝固殻が鋳型から抜は出ることなく鋳型内
にとどめることができ、またこの出口鋳型部の逆錐状に
形成された上面の厚さの変化と出口鋳型部を囲繞して設
けた力11熱装置とにより、上記金属層または低温凝固
殻の水冷銅鋳型部から出口鋳型部に至る間の高2!1凝
固殻の温度制御が精度よく行うことができる。そして、
このような温度制御をより精度よく行うためには、出口
鋳型部を形成する材料として、耐熱性、断熱性を有する
黒鉛、セラミックス、超合金等が好適に使用される。
Further, an exit mold part is provided below the water-cooled copper mold part, and the upper surface thereof is formed in an inverted conical shape and whose inner diameter is smaller than the inner diameter of the water-cooled copper mold part. Alternatively, the low-temperature solidified shell can remain in the mold without being pulled out from the mold, and the change in thickness of the upper surface of the inverted conical shape of the exit mold part and the force provided surrounding the exit mold part 11 heat device, it is possible to precisely control the temperature of the high 2!1 solidified shell between the water-cooled copper mold part of the metal layer or the low temperature solidified shell and the outlet mold part. and,
In order to perform such temperature control more accurately, graphite, ceramics, superalloys, etc., which have heat resistance and heat insulation properties, are preferably used as the material for forming the exit mold part.

〔実 施 例〕〔Example〕

以下、本発明に係わる実施例を図面に基づいて説明する
Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明に係わる高融点且つ活性な金属の連続
鋳造用鋳型を組み入れた連続鋳造装置であって、鋳型1
は、水冷銅鋳型部2と、この水冷銅鋳型部2の底部に設
けられた出口鋳型部3と、この出口鋳型部3を囲繞し2
で設けられた誘導加熱コイル4とを鋳型容器5に収納し
て構成され、この鋳型1を鋳型容器5の上端のフランジ
部6を介して作業架台7に取りつけられている。そして
、本実施例では、鋳型1のフランジ部6の上面に気密に
上チヤンバ−8が固定され、この上チヤンバ−8には、
従来技術に示した連続鋳造装置と同様に、上チヤンバ−
8を貫通して、その先端が鋳型1内に指向するように設
けられた熔解および保熱用のプラズマトーチ9と、上チ
ヤンバ−8の開口部10に気密的に接続された溶解原料
供給装置11と、開口部10から供給されてくる溶解原
料を鋳型1内に案内するシュータ12とが設けられてい
る。
FIG. 1 shows a continuous casting apparatus incorporating a mold for continuous casting of a high melting point and active metal according to the present invention.
includes a water-cooled copper mold part 2, an outlet mold part 3 provided at the bottom of the water-cooled copper mold part 2, and a mold part 2 surrounding this outlet mold part 3.
The mold 1 is mounted on a work stand 7 via a flange 6 at the upper end of the mold container 5. In this embodiment, an upper chamber 8 is airtightly fixed to the upper surface of the flange portion 6 of the mold 1, and the upper chamber 8 has the following features:
Similar to the continuous casting apparatus shown in the prior art, the upper chamber
A plasma torch 9 for melting and heat retention is provided to penetrate through the chamber 8 so that its tip is directed into the mold 1, and a molten raw material supply device is airtightly connected to the opening 10 of the upper chamber 8. 11, and a chute 12 for guiding the melted raw material supplied from the opening 10 into the mold 1.

方、鋳型1の下方の床面には、先端に底金13を其備す
る伸縮アーム14を有する鋳塊引抜き装置15が設番ノ
られている。
On the other hand, on the floor below the mold 1, there is installed an ingot pulling device 15 having a telescoping arm 14 having a bottom metal 13 at its tip.

このように構成された連続鋳造装置による鋳造は、先ず
、鋳塊引抜き装置15を作動させて伸縮アーム14の先
端に設けた底金13を、鋳型1の出口鋳型部3内の上方
部にセントした後、上チヤンバ−8内を真空雰囲気また
は不活性ガス雰囲気にする。次いで、溶解原料供給装置
11を作動させて、水冷銅鋳型部2の内底にセットされ
た底金13上に熔解原料を供給しながら、プラズマ加熱
装置を作動させてプラズマトーチ9により熔解する。こ
の後、底金13の上表面と水冷銅鋳型部2の内壁面から
の冷却により、底金13および出口鋳型部3の上表面に
初期凝固殻が形成されると共に、その後の溶解で水冷銅
鋳型部2の内壁面に沿って低温凝固殻16が形成され、
と同時にその低温凝固殻16の内周に溶湯プール17が
形成される。そして、所定厚さの低温凝固殻16と所定
量の溶湯プール17が形成され、且つ誘導加熱コイル4
による温度制御により水冷銅鋳型部2の下方に塑性変形
能の高い高温凝固殻が形成されたら、低温凝固殻16を
水冷銅鋳型部2内にとどめて、底金13J:に擬固した
高温凝固殻を含む凝固殻を鋳塊18として鋳塊引抜き装
置15により下方へ引抜いて連続鋳造される。
In casting using the continuous casting device configured as described above, first, the ingot drawing device 15 is operated to insert the bottom metal 13 provided at the tip of the telescopic arm 14 into the upper part of the outlet mold part 3 of the mold 1. After that, the inside of the upper chamber 8 is made into a vacuum atmosphere or an inert gas atmosphere. Next, the melting raw material supply device 11 is operated to supply the melting raw material onto the bottom metal 13 set in the inner bottom of the water-cooled copper mold section 2, while the plasma heating device is operated and the plasma torch 9 melts the raw material. After that, by cooling the upper surface of the bottom metal 13 and the inner wall surface of the water-cooled copper mold part 2, an initial solidified shell is formed on the upper surface of the bottom metal 13 and the outlet mold part 3, and in the subsequent melting, the water-cooled copper mold part 2 is cooled. A cold solidified shell 16 is formed along the inner wall surface of the mold part 2,
At the same time, a molten metal pool 17 is formed on the inner periphery of the low-temperature solidified shell 16. Then, a low-temperature solidified shell 16 with a predetermined thickness and a molten metal pool 17 with a predetermined amount are formed, and the induction heating coil 4
When a high-temperature solidified shell with high plastic deformability is formed below the water-cooled copper mold part 2 by temperature control, the low-temperature solidified shell 16 is kept in the water-cooled copper mold part 2 and the high-temperature solidified shell 16 is pseudo-solidified into the bottom metal 13J. The solidified shell containing the shell is drawn downward as an ingot 18 by an ingot drawing device 15, and is continuously cast.

このようにして鋳造された鋳塊18の鋳肌は、二重肌等
の無い、平滑な表面鋳肌であった。また鋳造中、溶湯が
水冷銅鋳型部2の内壁面と接触することが無いので、溶
湯が水冷銅鋳型部2の内壁面により汚染されたり、水冷
銅鋳型部2の内壁面を溶損することが無くなった。さら
に鋳型1の内部はト下間が気密に維持されるので、鋳型
1の下部は大気に開放してもよく、鋳型1の下方のシー
ル設備は必ずしも必要としなくなった。
The ingot 18 cast in this manner had a smooth surface without double skin or the like. Furthermore, during casting, the molten metal does not come into contact with the inner wall surface of the water-cooled copper mold section 2, so the molten metal does not become contaminated by the inner wall surface of the water-cooled copper mold section 2, or the inner wall surface of the water-cooled copper mold section 2 is prevented from being eroded. Lost. Furthermore, since the inside of the mold 1 is kept airtight between the bottoms, the lower part of the mold 1 can be opened to the atmosphere, and sealing equipment below the mold 1 is not necessarily required.

(発明の効果〕 上述したように、本発明に係わる高融点且つ活性な金属
の連続鋳造用鋳型によれば、溶湯が鋳型に汚染されたり
、鋳型が溶損したりすることなく高融点且つ活性な金属
の連続鋳造ができ、また鋳造された鋳塊の鋳肌は平滑で
、そのまま圧延が可能であり、歩留が向上する。また鋳
型の内部は上下間が気密に維持されるので、鋳型の下部
は大気に開放してもよく、鋳型下方のシール設備が不要
になる。
(Effects of the Invention) As described above, according to the mold for continuous casting of a high melting point and active metal according to the present invention, a high melting point and active metal can be cast without contaminating the mold or melting the molten metal. Continuous casting of metal is possible, and the surface of the cast ingot is smooth and can be rolled as is, improving yield.In addition, the inside of the mold is kept airtight between the top and bottom, so the mold The lower part may be open to the atmosphere, eliminating the need for sealing equipment below the mold.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる高融点且つ活性な金属の連続
鋳造用鋳型を組み入れた連続鋳造用装置の概要図、第2
図は、従来技術の説明図である。 1 鋳型       2 水冷銅鋳型部3 出口鋳型
部    4 誘導加熱コイル5 鋳型容器     
6 フランジ部作業架台 プラズマト−チ 溶解原料供給装置 底金 鋳塊引抜き装置 溶湯プール 上チャンバー 開口部 シュータ 伸縮アーム 低温擬固殻 鋳塊
FIG. 1 is a schematic diagram of a continuous casting apparatus incorporating a mold for continuous casting of high melting point and active metals according to the present invention;
The figure is an explanatory diagram of the prior art. 1 Mold 2 Water-cooled copper mold part 3 Outlet mold part 4 Induction heating coil 5 Mold container
6 Flange work platform Plasma torch Melting raw material supply device Bottom metal ingot drawing device Above molten metal pool Chamber opening Shooter Telescopic arm Low-temperature pseudo-solid shell ingot

Claims (1)

【特許請求の範囲】[Claims] (1)筒状の水冷銅鋳型部と、この水冷銅鋳型部の下に
設けられ、且つ上面が逆錐状に形成されると共に、その
内径が水冷銅鋳型部の内径より小さく形成された出口鋳
型部と、この出口鋳型部を囲繞して設けられた加熱装置
とを具備してなることを特徴とする高融点且つ活性な金
属の連続鋳造用鋳型。
(1) A cylindrical water-cooled copper mold part, and an outlet provided under this water-cooled copper mold part, whose upper surface is formed into an inverted conical shape, and whose inner diameter is smaller than the inner diameter of the water-cooled copper mold part. A mold for continuous casting of a high melting point and active metal, comprising a mold part and a heating device surrounding the outlet mold part.
JP23669389A 1989-09-11 1989-09-11 Mold for continuous casting high melting point and active metal Pending JPH0399752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23669389A JPH0399752A (en) 1989-09-11 1989-09-11 Mold for continuous casting high melting point and active metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23669389A JPH0399752A (en) 1989-09-11 1989-09-11 Mold for continuous casting high melting point and active metal

Publications (1)

Publication Number Publication Date
JPH0399752A true JPH0399752A (en) 1991-04-24

Family

ID=17004373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23669389A Pending JPH0399752A (en) 1989-09-11 1989-09-11 Mold for continuous casting high melting point and active metal

Country Status (1)

Country Link
JP (1) JPH0399752A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034163A (en) * 2005-07-29 2007-02-08 Shin Meiwa Ind Co Ltd Simulator
WO2012115272A1 (en) * 2011-02-25 2012-08-30 東邦チタニウム株式会社 Melting furnace for smelting metal
JP2012177522A (en) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd Melting furnace for manufacturing metal
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
JP2013212518A (en) * 2012-04-02 2013-10-17 Kobe Steel Ltd Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034163A (en) * 2005-07-29 2007-02-08 Shin Meiwa Ind Co Ltd Simulator
WO2012115272A1 (en) * 2011-02-25 2012-08-30 東邦チタニウム株式会社 Melting furnace for smelting metal
JP2012177522A (en) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd Melting furnace for manufacturing metal
US9744588B2 (en) 2011-02-25 2017-08-29 Toho Titanium Co., Ltd. Melting furnace for producing metal
EA029080B1 (en) * 2011-02-25 2018-02-28 Тохо Титаниум Ко., Лтд. Melting furnace for producing metal
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
JP2013212518A (en) * 2012-04-02 2013-10-17 Kobe Steel Ltd Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with the same

Similar Documents

Publication Publication Date Title
US2709842A (en) Apparatus for continuous casting of high-melting-point metals
RU2420368C2 (en) Continuous casting of reactive metals in using glass coat
JPS62104652A (en) Continuous casting method and device for composite ingot
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
US3735010A (en) Skull-melting crucible
JP3247265B2 (en) Metal casting method and apparatus
US5427173A (en) Induction skull melt spinning of reactive metal alloys
US7484548B2 (en) Continuous casting of reactionary metals using a glass covering
JPH03216264A (en) Prevention of metal from contamination
JPH0399752A (en) Mold for continuous casting high melting point and active metal
US3610320A (en) Unit for manufacturing hollow metal ingots
US3344840A (en) Methods and apparatus for producing metal ingots
US4641704A (en) Continuous casting method and ingot produced thereby
JPH0339425A (en) Method and device for reducing oxidation of reactive element in electroslag remelting operation
US3353585A (en) Method for controlling the cooling of cast metal
JPH04123844A (en) Method and apparatus for continuously melting and casting metal
JPS6352983B2 (en)
EP1166923B1 (en) Injector particularly for vacuum die-casting apparatus
US5139236A (en) Melt facility for continuous upcaster
JPH0531568A (en) Plasma melting/casting method
JPS6011573B2 (en) Apparatus and method for casting metal filament
JPH0352747A (en) Method for continuously casting high melting point and active metal
US20220250141A1 (en) METHOD FOR CASTING Ti-Al BASED ALLOY
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
RU2319752C2 (en) Method for induction melting of metal and apparatus for performing the same