JPS6349351A - Continuous casting installation - Google Patents

Continuous casting installation

Info

Publication number
JPS6349351A
JPS6349351A JP19012586A JP19012586A JPS6349351A JP S6349351 A JPS6349351 A JP S6349351A JP 19012586 A JP19012586 A JP 19012586A JP 19012586 A JP19012586 A JP 19012586A JP S6349351 A JPS6349351 A JP S6349351A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
mold
slab
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19012586A
Other languages
Japanese (ja)
Inventor
Hideaki Mizukami
秀昭 水上
Kentaro Mori
健太郎 森
Kenji Takahashi
謙治 高橋
Takao Kawakazu
高穂 川和
Akiya Ozeki
尾関 昭矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19012586A priority Critical patent/JPS6349351A/en
Publication of JPS6349351A publication Critical patent/JPS6349351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cast slab having fine solidified structure by holding under reducing pressure mixing flow of molten metal with cooling medium at the time of drawing the cast slab by pouring the molten metal into a mold from a nozzle in a molten metal vessel to make the molten metal into fine droplet and producing the cast slab by cooling. CONSTITUTION:A reducing pressure chamber 21 is arranged at the space between the nozzle 14 of a tundish 11 and the mold 16 and at the time of ascending a stopper 22 while supplying the cooling medium 25 from a pipe 26, the cooling medium 25 is injected into the molten metal 12 passing through a discharging hole 13 from the lower end of passing hole 24. The cooling medium 25 mixed in the molted metal 12 is sharply vaporized and expanded in the reducing pressure chamber 21, caused to make the molten metal 12 into the fine droplet 27 and also cool it rapidly. On this result, the molten metal 12 is poured into the mold 16 while becoming to the metallic grain 28 under semi- solidified condition and is become to the cast slab 17 and drawn. In this way, the continuous casting slab having fine solidified structure is obtd. by the simple construction.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、微細な組織を有する鋳片を製造することが
できる連続鋳造6[に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to continuous casting 6 [that can produce slabs having a fine structure].

[従来の技術] 通常、金属製品の中間素材である鋳片又は鋳塊は、溶融
金属を連F!c鋳造鋳型又は造塊用鋳型に注入して凝固
させることにより、製造されている。
[Prior Art] Usually, slabs or ingots, which are intermediate materials for metal products, contain molten metal. c It is manufactured by pouring into a casting mold or an ingot mold and solidifying it.

しかしながら、これらの技術においては、完全に溶けた
金属を鋳込むので、製造される鋳片又は鋳塊はその凝固
組織の結晶粒径が比較的大きい。
However, in these techniques, completely molten metal is cast, so the produced slab or ingot has a relatively large crystal grain size in its solidified structure.

このため、機械的特性を確保するために鋳片等に圧下を
加える場合に、大圧下を加えると鋳片等に割れが発生し
てしまう。従って、多数回に分けて圧下刃を印加する必
要があるが、これは長時間の処理を必要とし、また必要
な熱エネルギも多くなり、処理コストが高い。このよう
に凝固組織の結晶粒径が粗大化することによる割れ敏感
性は、特に、高合金鋼等の難加工性材料において著しく
、この種の合金を製造する場合に、その製造工程が極め
て複雑になる。また、上述のような茂術により鋳片又は
鋳塊を製造する場合には、それらの軸芯部に気孔及び偏
析(中央偏析、v偏析等)が発生することが避けられず
、特に高級鋼を製造する場合に困難性を伴う。特に、連
続鋳造においては、これらの不都合に伴い極めて歩留が
低下し、ひいては連続鋳造を適用することができる鋼種
が著しく限定される。
For this reason, when applying a reduction to a slab or the like to ensure mechanical properties, if a large reduction is applied, cracks will occur in the slab or the like. Therefore, it is necessary to apply the reduction blade in multiple steps, but this requires a long processing time and also requires a large amount of thermal energy, resulting in high processing costs. The sensitivity to cracking caused by coarsening of the crystal grain size of the solidified structure is particularly noticeable in difficult-to-work materials such as high-alloy steel, and when manufacturing this type of alloy, the manufacturing process is extremely complicated. become. In addition, when producing slabs or ingots using the above-mentioned method, it is inevitable that pores and segregation (center segregation, v-segregation, etc.) will occur in the axial center of the slabs or ingots, especially for high-grade steel. It is difficult to manufacture. In particular, in continuous casting, the yield is extremely reduced due to these disadvantages, and the types of steel to which continuous casting can be applied are significantly limited.

このような一般的な鋳造技術における欠点を解消すべく
、近時、VADER(VacuuglArcD oub
le  E Iectrode  Remelting
  真空アーク2電極溶解)法と称される鋳造技術が提
案されている(特開昭55−165271号)。このV
ADER法を連続鋳造に適用する場合について第4図を
参照しながら説明する。製造せんとする鋳片と同一組成
の金属からなる1対の電極1間に適宜の手段によりアー
ク2を形成し、電極1の対向端部を溶融させる。この溶
融金属の液滴3は鋳型4により冷却されて凝固する。溶
融金属が一部凝固して得られた鋳片6は鋳型4から連続
的に下方へ引抜かれる。この場合に、溶融金属の液滴3
は電極1から鋳型4に落下する過程で若干冷却され、半
溶融状態になる。このため、鋳型4内の半溶融金属5は
固液共存相が均一に存在する状態で凝固するので、鋳片
6の凝固組織の結晶粒径は小さい。従って、大圧下を加
えても鋳片ににjれが発生することはない。また、結晶
組織が微細化するので鋳片の軸芯部における気孔及び偏
析が実質的に発生しない。このため、高級鋼の連続鋳造
等が容易になり、鋳片切断時に気孔部が酸化することに
起因する歩留低下、及び、鋳片加工時に気孔を起源とす
る割れが発生することに起因する歩留低下等が極めて少
ない。
In order to eliminate these shortcomings in general casting technology, VADER (VacuuglArcD or
le E Ielectrode Remelting
A casting technique called the vacuum arc two-electrode melting method has been proposed (Japanese Patent Application Laid-Open No. 165271/1983). This V
The application of the ADER method to continuous casting will be explained with reference to FIG. 4. An arc 2 is formed by appropriate means between a pair of electrodes 1 made of a metal having the same composition as the slab to be manufactured, and the opposing ends of the electrodes 1 are melted. This molten metal droplet 3 is cooled by a mold 4 and solidified. A slab 6 obtained by partially solidifying the molten metal is continuously drawn downward from the mold 4. In this case, droplet 3 of molten metal
In the process of falling from the electrode 1 to the mold 4, it is slightly cooled and becomes a semi-molten state. Therefore, the semi-molten metal 5 in the mold 4 solidifies in a state where the solid-liquid coexistence phase exists uniformly, so that the crystal grain size of the solidified structure of the slab 6 is small. Therefore, even if a large reduction is applied, the slab will not sag. In addition, since the crystal structure is refined, pores and segregation in the axial center of the slab are substantially not generated. For this reason, continuous casting of high-grade steel becomes easier, and yield decreases due to oxidation of pores during slab cutting, and cracks originating from pores during slab processing. There is very little yield loss.

[発明が解決しようとする問題点] しかしながら、このような従来の装置においては、鋳片
と同一組成の金属からなる電極を予め製造しなければな
らず、また、アーク放電にて電極を溶解させる際にN極
を均一に溶解させるように電極に回転Hidを設ける必
要がある。このため、工程上及び装置の構成上極めて複
雑になるという問題点がある。
[Problems to be Solved by the Invention] However, in such a conventional device, an electrode made of a metal having the same composition as the slab must be manufactured in advance, and the electrode must be melted by arc discharge. At this time, it is necessary to provide the electrode with a rotating Hid so as to uniformly dissolve the N pole. Therefore, there is a problem in that the process and the configuration of the device are extremely complicated.

この発明は斯かる事情に鑑みてなされたものであって、
凝固組織の結晶粒径が微細であり、軸芯部の欠陥が実質
的に存在しない鋳片を、予め電極を用意する必要がなく
直接溶融金属から得ることができ、a翫構成が比較的簡
単な3I vt&IF造装置を提供することを目的とす
る。
This invention was made in view of such circumstances, and
A slab with a fine crystal grain size in the solidified structure and virtually no defects in the core can be obtained directly from molten metal without the need to prepare an electrode in advance, and the a-pole configuration is relatively simple. The purpose of this invention is to provide a 3I VT&IF manufacturing device.

[問題点を解決するための手段] この発明に係る連続鋳造装置は、溶湯を収容する容器と
、前記容器の底型に設けられ容器内の溶湯が通流可能の
ノズルと、ノズルを通流する溶湯に冷媒体を吹込んでこ
れらの混合流を形成する混合手段と、上下面が解放され
た筒状をなし前記ノズルから流出する混合流が鋳込まれ
る鋳型と、ノズルと鋳型の間を減圧下に保持する減圧手
段と、鋳型内で溶融が凝固して得られる鋳片を連続的に
下方に引抜く引抜手段とを有し、溶湯と冷媒体との混合
流を前記減圧手段により減圧して溶湯を微細粒滴化する
と共に冷却して鋳片を生成することをことを特徴とする
。この場合に、前記ノズルは溶湯を加熱する加熱手段を
有することが好ましい。
[Means for Solving the Problems] A continuous casting apparatus according to the present invention includes a container for storing molten metal, a nozzle provided in the bottom mold of the container through which the molten metal in the container can flow, and a mixing means for blowing a coolant into the molten metal to form a mixed flow thereof; a mold having a cylindrical shape with open upper and lower surfaces into which the mixed flow flowing out from the nozzle is cast; and reducing pressure between the nozzle and the mold. It has a pressure reducing means for holding the molten metal at the bottom and a drawing means for continuously pulling downward the slab obtained by solidifying the molten metal in the mold, and the mixed flow of the molten metal and the cooling medium is reduced in pressure by the pressure reducing means. The method is characterized in that the molten metal is turned into fine droplets and cooled to produce slabs. In this case, it is preferable that the nozzle has a heating means for heating the molten metal.

[作用] この発明においては、溶湯を収容する容器からノズルを
介して鋳型に溶湯を注入し、鋳型内で凝固した鋳片を引
抜き手段により下方に引抜く。この場合に、ノズルを通
流する澄楊に冷媒体を吹込んでこれらの混合流を形成し
、また、ノズルと鋳型の間を減圧下に保持する。このた
め、混合流が鋳型に達する過程でその中の冷媒体が急激
に蒸発。
[Operation] In this invention, the molten metal is injected into the mold from a container containing the molten metal through a nozzle, and the slab solidified in the mold is pulled out downward by the pulling means. In this case, a cooling medium is blown into the clearing medium flowing through the nozzle to form a mixed flow thereof, and the space between the nozzle and the mold is maintained under reduced pressure. As a result, the coolant in the mixed flow rapidly evaporates when it reaches the mold.

膨張し、溶解を液滴にすると共に冷却して半溶融状態に
し、鋳型内では半溶融金属が固液共存相が均一に存在す
る状態で凝固するので、;疑固tIi織の結晶粒径を小
さくすることができる。このように、予めN極を用意す
ることなく、比較的vli造が簡単な菰直により直接溶
融金属から微細組織の鋳片を得ることができる。
The metal expands, turns the melt into droplets, and is cooled to a semi-molten state. In the mold, the semi-molten metal solidifies in a state where a solid-liquid coexistence phase is uniformly present; Can be made smaller. In this way, a cast slab with a fine structure can be obtained directly from molten metal by straight casting, which is relatively easy to produce, without preparing an N pole in advance.

[実流例] 以下、添付図面を参照して、この発明の実施例について
具体的に説明する。
[Actual Flow Example] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図は、この発明の第1の実施例に係る連続鋳造装置
を示すf%面図である。タンディッシュ11は、その中
に図示しない取鍋から溶湯12が供給されるようになっ
ており、このタンディツシュ11の底壁には溶湯流出孔
13が形成されている。また、タンディツシュ11の底
壁には、孔13に連続して注湯用ノズル14が取付けら
れている。このノズル14には加熱装置15が埋設され
ており、ノズル14を通流する溶湯12を加熱すること
により、溶湯12が凝固してノズル14を閉塞すること
を防止するようになっている。ノズル14の下方には、
鋳型16が設置されている。
FIG. 1 is an f% sectional view showing a continuous casting apparatus according to a first embodiment of the present invention. A molten metal 12 is supplied into the tundish 11 from a ladle (not shown), and a molten metal outlet hole 13 is formed in the bottom wall of the tundish 11. Further, a pouring nozzle 14 is attached to the bottom wall of the tundish 11 so as to be continuous with the hole 13. A heating device 15 is embedded in this nozzle 14, and by heating the molten metal 12 flowing through the nozzle 14, the molten metal 12 is prevented from solidifying and clogging the nozzle 14. Below the nozzle 14,
A mold 16 is installed.

この鋳型16は上下が解放された筒状をなし、この中に
溶湯12が注入されてη込まれるようになっている。鋳
型16によって溶湯12が冷却されることにより凝固し
て生成された鋳片17は、図示しないピンチロールの回
転駆動により下方に引抜かれる。また、この鋳型16は
駆動装置18により上下駆動されるようになでおり、鋳
型16の内壁と鋳片17との摩擦を軽減している。
This mold 16 has a cylindrical shape with an open top and bottom, into which the molten metal 12 is poured. A slab 17, which is produced by solidifying the molten metal 12 by cooling it in the mold 16, is pulled downward by rotation of pinch rolls (not shown). Moreover, this mold 16 is stroked so as to be driven up and down by a drive device 18, thereby reducing the friction between the inner wall of the mold 16 and the slab 17.

前記ノズル14は、その下端が支持板19に嵌め込まれ
、この支持板19と鋳型16とがジャバラ20によりシ
ールされている。鋳型16、支持板19及びジャバラ2
0で囲まれた#4域は、図示しない排気手段により排気
されて減圧下に保持されるようになっており、減圧室2
1を構成している。また、この減圧室21にはy/le
のアルゴンガスが供給されるようになっており、これに
より減圧下21内を不活性雰囲気に保持するようになっ
ている。この場合に、減圧室21内は0.1乃至300
t−ル(Torr)に保持される。
The lower end of the nozzle 14 is fitted into a support plate 19, and the support plate 19 and mold 16 are sealed by bellows 20. Mold 16, support plate 19 and bellows 2
#4 area surrounded by 0 is evacuated by an exhaust means (not shown) and maintained under reduced pressure, and the area #4 is kept under reduced pressure.
1. Moreover, in this decompression chamber 21, y/le
Argon gas is supplied to maintain the interior of the vacuum 21 in an inert atmosphere. In this case, the pressure inside the decompression chamber 21 is 0.1 to 300
It is held at Torr.

タンディツシュ711内には、耐火物でつくられた円筒
状のストッパ22が、RR可能に設置されており、この
ストッパ22は昇降¥*1t23により昇降駆動される
。ストッパ22は、不時することにより?17潟流出孔
13を閉塞して溶湯12の流出を阻止し、上昇すること
により、溶湯流出孔13を開き、溶湯12をノズル14
を介して減圧室21に注入するようになっている。そし
て、ストッパ22の位置を調rすることにより溶112
の注入量が調節される。ストッパ22には、その横断面
のほぼ中央に長手方向に延びる冷媒体通流孔24が形成
されている。この冷媒体通流孔24には、バイア26を
介して冷媒体の供給源(図示せず)が連結されている。
A cylindrical stopper 22 made of a refractory material is installed in the tundish 711 so as to be RRable, and this stopper 22 is driven up and down by a lift ¥*1t23. Is the stopper 22 caused by an emergency? 17 Block the lagoon outflow hole 13 to prevent the molten metal 12 from flowing out, and then rise to open the molten metal outflow hole 13 and direct the molten metal 12 to the nozzle 14.
It is designed to be injected into the decompression chamber 21 via. By adjusting the position of the stopper 22, the melt 112 is
The injection amount is adjusted. The stopper 22 has a coolant passage hole 24 extending in the longitudinal direction approximately at the center of its cross section. A refrigerant supply source (not shown) is connected to the refrigerant flow hole 24 via a via 26 .

この冷媒体の供給原からノズル14を通流する溶湯12
に冷媒体25を吹込み、溶湯12の注入流に冷媒体25
を混合するようになっている。この冷媒体25が混合さ
れた溶湯12は減圧室21に供給され、冷媒体25の蒸
発熱又は顕熱によって冷却されてr!1IIIlな液滴
27となり、鋳型16に供給される。冷媒体25として
は、アルゴンガス、ヘリウムガス等の不活性ガス、又は
、液化したアルゴン、ヘリウム等を使用することができ
る。このように冷媒体としては、その蒸発熱又は顕熱に
より液W427を冷却することができるものであればよ
く、液化炭化水素(トルエン、プロパン又はメタン等)
、アルコール等を使用することもできるが、これらが分
解して溶湯に吸収されることによって鋳片に悪影響を及
ぼす材質の場合には好ましくない。
The molten metal 12 flows through the nozzle 14 from this refrigerant supply source.
The cooling medium 25 is blown into the injection flow of the molten metal 12.
It is supposed to be mixed. The molten metal 12 mixed with the refrigerant 25 is supplied to the decompression chamber 21, and is cooled by the heat of evaporation or sensible heat of the refrigerant 25 to r! The resulting droplets 27 are supplied to the mold 16. As the cooling medium 25, an inert gas such as argon gas or helium gas, or liquefied argon, helium, or the like can be used. In this way, the refrigerant may be anything that can cool down the liquid W427 with its heat of vaporization or sensible heat, such as liquefied hydrocarbons (toluene, propane, methane, etc.).
, alcohol, etc. can also be used, but these are not preferred in the case of materials that will adversely affect the slab by being decomposed and absorbed into the molten metal.

このように構成された連続鋳造装置においては、先ず、
冷媒体の供給源からパイプ26を介して冷媒体25を供
給しつつストッパ22を上昇させると、タンディツシュ
11内の溶湯12はノズル14を介して減圧室21内に
注入される。この場合に、冷媒体25は、冷媒体通流孔
24の下端からノズル14を通流する溶湯12中に吹込
まれ、溶湯12に混合される。そして、この冷媒体25
は溶湯12と共に減圧室21に供給され、減圧室21内
で急速に膨張(液体の場合は蒸発及び膨張)することに
より、溶湯12を微細な液滴27にする。この微細液滴
27は、冷媒体24の蒸発潜熱及び顕熱により急速に冷
却され、過熱度が零に近い状態、又は、半凝固状態の金
属粒28となって鋳型16に鋳込まれる。このため、こ
の金属粒28は鋳型16内で固液共存相が均一に存在す
る状態で鋳型16により冷却されて凝固する。従って、
得られる鋳片17の凝固組織の結晶粒径は小さく、軸芯
部の気孔及び偏析が実質的に発生しない。
In the continuous casting apparatus configured in this way, first,
When the stopper 22 is raised while the refrigerant 25 is supplied from the refrigerant supply source through the pipe 26, the molten metal 12 in the tundish 11 is injected into the decompression chamber 21 through the nozzle 14. In this case, the coolant 25 is blown into the molten metal 12 flowing through the nozzle 14 from the lower end of the coolant passage hole 24 and mixed with the molten metal 12 . And this cooling medium 25
The molten metal 12 is supplied to the vacuum chamber 21 together with the molten metal 12, and rapidly expands (evaporates and expands in the case of liquid) in the vacuum chamber 21, thereby turning the molten metal 12 into fine droplets 27. The fine droplets 27 are rapidly cooled by the latent heat of vaporization and sensible heat of the cooling medium 24, and are cast into the mold 16 as metal grains 28 in a state where the degree of superheat is close to zero or in a semi-solid state. Therefore, the metal particles 28 are cooled and solidified by the mold 16 in a state where the solid-liquid coexisting phase exists uniformly within the mold 16. Therefore,
The crystal grain size of the solidified structure of the obtained slab 17 is small, and pores and segregation in the axial core portion are substantially free.

次に、この発明の第2の実施例について、第2図を参照
して説明する。第2図において、第1図と同一物には同
一符号を付して説明を省略する。
Next, a second embodiment of the invention will be described with reference to FIG. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, and their explanations will be omitted.

タンディツシュ11と減圧室21とを連結するノズル2
9には、加熱装置30が埋設されており、更に、その外
周から内周へ貫通する複数の冷媒体通流孔31が設けら
れている。ノズル29の周囲はハウジング32で取囲ま
れており、冷媒体供給8(図示せず)に連結されたバイ
ブ33がハウジング32内に連通している。従って、ノ
ズル29を通流する溶湯12に、冷媒体通流孔31から
冷媒体25を吹込み、溶製12に冷媒体25を混合する
ことができる。この実施例においても、第1の実施例と
同様に、溶湯12が微細液滴27となり、過熱度が零に
近い状態、又は、半凝固状態の金属粒28となって鋳型
16に鋳込まれる。
Nozzle 2 that connects the tandish 11 and the decompression chamber 21
9 has a heating device 30 embedded therein, and is further provided with a plurality of coolant flow holes 31 penetrating from the outer periphery to the inner periphery. The nozzle 29 is surrounded by a housing 32 , and a vibrator 33 connected to a coolant supply 8 (not shown) communicates within the housing 32 . Therefore, the coolant 25 can be blown into the molten metal 12 flowing through the nozzle 29 through the coolant passage hole 31, and the coolant 25 can be mixed with the molten metal 12. In this embodiment as well, similarly to the first embodiment, the molten metal 12 becomes fine droplets 27 and is cast into the mold 16 as metal grains 28 in a state where the degree of superheat is close to zero or in a semi-solid state. .

以上のように、予め電極を用意することなく、比較的構
成が簡単な装置により直接溶融金屑から微細組織の鋳片
を得ることができる。
As described above, a slab with a fine structure can be obtained directly from molten metal scraps using an apparatus with a relatively simple configuration without preparing electrodes in advance.

次に、この発明の装置により連続鋳造して鋳片を製造し
た際の製造試験結果の一例について説明する。電気炉で
溶製されたステンレスtN(SUS316)を、前述の
第1の実施例の装置を使用して、直径が370II1m
のビレットを′!!A続的に製造した。製造条件は、溶
湯量を20トン、溶I注入ノズルの径を15mmとし、
冷媒体としてはアルゴンガスを用いた。ガスの流量を4
0ONg/分、減圧至のガス圧を200トルとし、引抜
き速度を約0.2m/分として約2時間で連続鋳造した
。生成された鋳片の全長は約25mであった。
Next, an example of a manufacturing test result when a slab was manufactured by continuous casting using the apparatus of the present invention will be explained. Stainless steel tN (SUS316) melted in an electric furnace was heated to a diameter of 370 II 1 m using the apparatus of the first embodiment described above.
' billet! ! Continuously manufactured. The manufacturing conditions were as follows: the amount of molten metal was 20 tons, the diameter of the molten I injection nozzle was 15 mm,
Argon gas was used as the cooling medium. Gas flow rate 4
Continuous casting was carried out for about 2 hours with a gas pressure of 200 torr before depressurization and a drawing speed of about 0.2 m/min. The total length of the produced slab was about 25 m.

このような条件でFIJ造した鋳片は凝固組織の結晶粒
径が微細であることが確認され、軸芯部の気孔率及び偏
析度を調査したところ、第3図に示すように従来の連続
鋳造装置に比較してこれらの欠陥が約115に減少して
いた。
It was confirmed that the crystal grain size of the solidified structure of the slab manufactured by FIJ under these conditions was fine, and when the porosity and segregation degree of the axial core were investigated, it was found that it was different from that of the conventional continuous slab as shown in Figure 3. These defects were reduced to about 115 compared to the casting equipment.

なお、この実施例では溶湯容器としてタンディツシュを
使用したが、取囲等から直接鋳型に溶湯を注入すること
もできる。
Although a tundish was used as the molten metal container in this embodiment, the molten metal can also be poured directly into the mold from the surroundings or the like.

また、注入流に冷媒体を吹込む方法としては、耐火物製
のランスを容器内の溶湯中に浸漬し、このランスを介し
て吹込む方法を用いることもできる。
Further, as a method for blowing the coolant into the injection stream, a method may be used in which a refractory lance is immersed in the molten metal in the container and the coolant is blown through the lance.

なお、この発明の装置においては、従来の連続鋳造装置
に比較してノズル径が小さく(従来のノズルの直径が7
QImであるのに対し、この発明に係る装置のノズルの
直径は20乃至3Qimである。)!I造待時間長い。
In addition, in the apparatus of this invention, the nozzle diameter is smaller than that of the conventional continuous casting apparatus (the diameter of the conventional nozzle is 7 mm).
QIm, whereas the diameter of the nozzle of the device according to the invention is between 20 and 3 Qim. )! The waiting time for construction is long.

このため、溶浦容器内の溶製の温度降下等に起因するノ
ズル詰まりが発生しやすい。従って、この発明の装置の
場合には、従来の装置よりも、溶湯注入ノズルを加熱す
る加熱手段の必要性が高い。
For this reason, nozzle clogging is likely to occur due to a drop in the temperature of the melt in the melt container. Therefore, in the case of the apparatus of the present invention, a heating means for heating the molten metal injection nozzle is more necessary than in the conventional apparatus.

[発明の効果コ この発明によれば、製造せんとする鋳片と同一組成の電
極を予め製造する必要がなく、また電極間にアークを発
生させることなく、簡素な構造を有する装置を使用して
簡単な操作で微細、組織を有し軸芯部の気孔及び偏析が
極めて少ない連続vI造鋳片を製造することができる。
[Effects of the invention] According to this invention, it is not necessary to manufacture electrodes having the same composition as the slab to be manufactured in advance, and an apparatus having a simple structure can be used without generating an arc between the electrodes. It is possible to produce a continuous cast slab with a fine texture and extremely few pores and segregation in the shaft core with a simple operation.

このため、この発明は極めて実用性が高い。Therefore, this invention has extremely high practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例に係る連続鋳造装置を
示す断面図、第2図は第2の実施例に係る連続鋳造装置
を示す断面図、第3図はこの発明の実茄例に係る装置に
より製造した鋳片の内部欠陥を従来の鋳片と対比して示
すグラフ図、第4図は従来の装置を示す断面図である。 11;タンディツシュ、12;溶湯、13:溶湯流出孔
、14,29:ノズル、15,30;加熱装置、16;
鋳型、17;鋳片、21;減圧至、22;ストッパ、2
4.31 :冷媒体通流孔、25;冷媒体、26.33
:バイブ、27;液滴、28;金属粒 出願人代理人 弁理士 鈴江武彦 第1図 fs 2 図
1 is a sectional view showing a continuous casting apparatus according to a first embodiment of the present invention, FIG. 2 is a sectional view showing a continuous casting apparatus according to a second embodiment, and FIG. 3 is a sectional view showing a continuous casting apparatus according to a second embodiment of the present invention. FIG. 4 is a graph showing the internal defects of the slab manufactured by the apparatus according to the example in comparison with a conventional slab, and FIG. 4 is a sectional view showing the conventional apparatus. 11; tundish, 12; molten metal, 13: molten metal outflow hole, 14, 29: nozzle, 15, 30; heating device, 16;
Mold, 17; slab, 21; pressure reduction, 22; stopper, 2
4.31: Refrigerant passage hole, 25; Refrigerant, 26.33
: Vibrator, 27; Droplet, 28; Metal particle Applicant's representative Patent attorney Takehiko Suzue Figure 1 fs 2 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)溶湯を収容する容器と、前記容器の底壁に設けら
れ容器内の溶湯が通流可能のノズルと、ノズルを通流す
る溶湯に冷媒体を吹込んでこれらの混合流を形成する混
合手段と、上下面が解放された筒状をなし前記ノズルか
ら流出する混合流が鋳込まれる鋳型と、ノズルと鋳型の
間を減圧下に保持する減圧手段と、鋳型内で溶湯が凝固
して得られる鋳片を連続的に下方に引抜く引抜手段とを
有し、溶湯と冷媒体との混合流を前記減圧手段により減
圧して溶湯を微細粒滴化すると共に冷却して鋳片を生成
することを特徴とする連続鋳造装置。
(1) A container containing molten metal, a nozzle provided on the bottom wall of the container through which the molten metal in the container can flow, and a mixing method in which a cooling medium is blown into the molten metal flowing through the nozzle to form a mixed flow of these. means, a mold having a cylindrical shape with open upper and lower surfaces and into which the mixed flow flowing out from the nozzle is cast; a depressurizing means for maintaining a space between the nozzle and the mold under reduced pressure; and a drawing means for continuously pulling the obtained slab downward, and the mixed flow of the molten metal and the cooling medium is reduced in pressure by the pressure reducing means to reduce the pressure of the molten metal into fine droplets and cool it to produce a slab. A continuous casting device characterized by:
(2)前記ノズルは、溶湯を加熱する加熱手段を有する
ことを特徴とする特許請求の範囲第1項に記載の連続鋳
造装置。
(2) The continuous casting apparatus according to claim 1, wherein the nozzle has a heating means for heating the molten metal.
JP19012586A 1986-08-13 1986-08-13 Continuous casting installation Pending JPS6349351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19012586A JPS6349351A (en) 1986-08-13 1986-08-13 Continuous casting installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19012586A JPS6349351A (en) 1986-08-13 1986-08-13 Continuous casting installation

Publications (1)

Publication Number Publication Date
JPS6349351A true JPS6349351A (en) 1988-03-02

Family

ID=16252809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19012586A Pending JPS6349351A (en) 1986-08-13 1986-08-13 Continuous casting installation

Country Status (1)

Country Link
JP (1) JPS6349351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018855A (en) * 2012-07-24 2014-02-03 Jfe Steel Corp Steel continuous casting method and facility for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018855A (en) * 2012-07-24 2014-02-03 Jfe Steel Corp Steel continuous casting method and facility for the same

Similar Documents

Publication Publication Date Title
US5346184A (en) Method and apparatus for rapidly solidified ingot production
JP3919256B2 (en) Method for producing directionally solidified castings and apparatus for carrying out this method
US4515204A (en) Continuous metal casting
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
EP1259348B1 (en) Casting system and method for forming highly pure and fine grain metal castings
US5427173A (en) Induction skull melt spinning of reactive metal alloys
US5052469A (en) Method for continuous casting of a hollow metallic ingot and apparatus therefor
JPH059482B2 (en)
EP1263997B1 (en) Casting systems and methods with auxiliary cooling onto a liquidus portion of a casting
JPS6349351A (en) Continuous casting installation
AU619759B2 (en) Method for continuous casting a hollow metallic ingot and apparatus therefor
US2257713A (en) Metal treating
JPH06246425A (en) Method for casting large sealed steel ingot
JPS6213253A (en) Dropping type casting device
JPS6096738A (en) Method and apparatus for manufacturing high purity alloy
JPH0531568A (en) Plasma melting/casting method
JPH0824996A (en) Vertical type continuous casting method for metal billet and apparatus thereof
JPS6244508A (en) Apparatus for producing powder
JPH11267793A (en) Casting apparatus
JPH01313164A (en) Casting method for semimolten metal
JPS63268553A (en) Apparatus for casting metal or alloy having fine crystalline grain
KR200197013Y1 (en) Vertical continuous casting apparratus for the billet of reactor using the electromagnetic stirrer
JPS6234650A (en) Apparatus for casting ingot having fine structure
KR100718407B1 (en) Hollows casting systems and methods
JP3348838B2 (en) Continuous casting equipment for semi-solid metal