JP2938215B2 - Continuous dissolution and outflow of materials - Google Patents

Continuous dissolution and outflow of materials

Info

Publication number
JP2938215B2
JP2938215B2 JP10116891A JP10116891A JP2938215B2 JP 2938215 B2 JP2938215 B2 JP 2938215B2 JP 10116891 A JP10116891 A JP 10116891A JP 10116891 A JP10116891 A JP 10116891A JP 2938215 B2 JP2938215 B2 JP 2938215B2
Authority
JP
Japan
Prior art keywords
crucible
molten material
molten
temperature
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10116891A
Other languages
Japanese (ja)
Other versions
JPH0515950A (en
Inventor
淳 鈴木
淳一 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10116891A priority Critical patent/JP2938215B2/en
Publication of JPH0515950A publication Critical patent/JPH0515950A/en
Application granted granted Critical
Publication of JP2938215B2 publication Critical patent/JP2938215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、るつぼを用いた金属・
半導体・セラミック等の材料の連続溶解および溶融材料
の流出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method of continuously dissolving materials such as semiconductors and ceramics and a method of flowing out molten materials.

【0002】[0002]

【従来の技術】通常、金属などの溶解は、例えば誘導加
熱装置を備えた耐火物性のるつぼなどの容器を用いて行
われているが、耐火物などの介在物による汚染を避ける
ことができず、高純度な材料を製造することは難しかっ
た。
2. Description of the Related Art Usually, melting of metals and the like is performed using a container such as a refractory crucible provided with an induction heating device, but contamination by inclusions such as refractories cannot be avoided. It was difficult to produce high-purity materials.

【0003】近年、高純度を要求される溶融材料を得る
ための溶解方法として低温るつぼ(コールドクルーシブ
ル)を用いた誘導溶解によって、材料をるつぼ壁と非接
触で溶解させる技術が広く報告されている。この低温る
つぼ技術は、特に金属等の材料を高周波および中間周波
数領域の誘導溶解の場合に最適とされている。
[0003] In recent years, as a melting method for obtaining a molten material requiring high purity, a technique of dissolving a material in a non-contact manner with a crucible wall by induction melting using a low-temperature crucible (cold crucible) has been widely reported. . This low temperature crucible technique is particularly suited for induction melting of materials such as metals in the high frequency and intermediate frequency range.

【0004】この低温るつぼにおいては、るつぼ壁が複
数のセグメントが環状に連結されて構成されており、各
セグメントは内部に冷却水を通す中空部を有する銅製の
ものである。このるつぼ内に溶解する材料を入れ、るつ
ぼの外周に配設した誘導コイルに高周波ないし中間周波
数の電流を流すことによって、るつぼ内の材料に渦電流
も発生させ、その渦電流損によって、この材料も溶解す
ることができる。また、同時にるつぼ表面に発生する渦
電流と溶解材料表面に発生する渦電流とによる電磁気力
によって、るつぼ内の溶解物とるつぼ壁との非接触化を
図ると共に、るつぼ下方の壁を絞ることによって内部の
介在物を浮上させることによって、高純度の素材を得る
ことができる。
[0004] In this low-temperature crucible, the crucible wall is formed by connecting a plurality of segments in a ring shape, and each segment is made of copper having a hollow portion through which cooling water passes. A material that dissolves is put in this crucible, and an eddy current is also generated in the material in the crucible by flowing a high-frequency or intermediate-frequency current through an induction coil disposed on the outer periphery of the crucible. Can also be dissolved. The eddy current generated on the surface of the crucible and the eddy current generated on the surface of the melting material at the same time make the molten material in the crucible non-contact with the crucible wall by squeezing the wall below the crucible. By floating the inclusions inside, a high-purity material can be obtained.

【0005】この低温るつぼ技術を用いた溶融・晶出方
法が、特開昭60−2876号公報において開示されて
おり、この低温るつぼ技術を用いたシリコンの連続鋳造
方法が特開昭64−53732号公報に開示されてい
る。
A method of melting and crystallizing using the low-temperature crucible technique is disclosed in Japanese Patent Application Laid-Open No. Sho 60-2876, and a continuous casting method of silicon using the low-temperature crucible technique is disclosed in Japanese Patent Application Laid-Open No. 64-53732. No. 6,086,045.

【0006】[0006]

【発明が解決しようとする課題】前述の特開昭60−2
876号公報に開示のものは、低温るつぼ内で溶解させ
た材料をるつぼから凝固させながら連続的に取り出す方
法であり、また特開昭60−2876号公報に開示され
たものは、るつぼの下方で凝固させる連続鋳造方法であ
るが、これらの方法では、連続的に溶解しこれを溶融状
態で連続的に適量流出させることは困難であるため、バ
ッジ式の操業にせざるを得ず、連続操業ができず生産性
が低いという問題がある。
The above-mentioned Japanese Patent Application Laid-Open No. Sho 60-2
Japanese Unexamined Patent Publication No. 876-876 discloses a method in which a material dissolved in a low-temperature crucible is continuously taken out while solidifying from the crucible. In these methods, it is difficult to continuously melt and discharge the appropriate amount in the molten state continuously. And the productivity is low.

【0007】本発明では、材料を連続的に溶解し、溶融
状態で連続的または間欠的に流出し成型などの次の工程
に供給できる生産性の高い材料の連続溶解、連続流出方
法を提供するものである。
According to the present invention, there is provided a method for continuously dissolving and continuously discharging a material having high productivity which can continuously melt a material and continuously or intermittently flow in a molten state and supply it to the next step such as molding. Things.

【0008】[0008]

【課題を解決するための手段】本発明の第1の発明は、
誘導加熱炉を備え、下部に流出口を有するるつぼにより
材料を誘導溶解する場合において、誘導加熱装置に一種
または二種以上の材料を溶解できる温度を確保し、所定
量の溶融材料をるつぼ内に保持(流出抑止)するための
電磁力を確保する、ほぼ一定の電流を供給して、該るつ
ぼ内で該材料を溶解すると共に、この溶融材料を保持し
つつ、該るつぼ内に一種または二種以上の固体材料を連
続または間欠供給して溶解し、この固体材料の供給量に
相当する量の溶融材料を連続的または間欠的に、流出口
から次工程に流出させることを特徴とする、るつぼにお
ける材料の連続溶解・流出方法である。
Means for Solving the Problems A first invention of the present invention is:
Equipped with an induction heating furnace, when the material is induction-melted by a crucible having an outlet at the bottom, ensure a temperature that can melt one or more materials in the induction heating device, and a predetermined amount of the molten material is placed in the crucible. An approximately constant current is supplied to secure an electromagnetic force for holding (preventing outflow), dissolve the material in the crucible, and, while holding the molten material, one or two kinds in the crucible. A crucible characterized by continuously or intermittently supplying and dissolving the solid material described above and discharging a molten material in an amount corresponding to the supply amount of the solid material continuously or intermittently from an outlet to a next step. It is a method of continuous dissolution and outflow of the material in.

【0009】第2の発明は、誘導加熱炉を備え下部に流
出口を有するるつぼを上下二段に配設し、上部るつぼに
おいては、誘導加熱装置に、一種または二種以上の材料
を溶解できる温度を確保し、所定量の溶融材料をるつぼ
内に保持(流出抑止)するための電磁力を確保する、ほ
ぼ一定の電流を供給して、該るつぼ内で該材料を溶解す
ると共に、この溶融材料を保持しつつ、該るつぼ内に一
種または二種以上の材料を、連続または間欠供給し、溶
解、成分調整を行って、該材料供給量に相当する溶融材
料を、流出口から下部るつぼに供給し、この下部るつぼ
において、上部るつぼからの溶融材料の温度に応じて、
該下部るつぼの誘導加熱装置に、溶融材料を一定の温度
に保持すると共に、所定量の溶融材料を保持するための
電磁力を確保する電流を供給し、該るつぼ内で溶融材料
の温度調整を行い、所定量の溶融材料を流出口から次工
程に連続供給することを特徴とする、るつぼにおける材
料の連続溶解・流出方法である。
According to a second aspect of the present invention, a crucible having an induction heating furnace and having an outlet at a lower portion is arranged in two stages, and in the upper crucible, one or more materials can be melted in the induction heating device. An almost constant current is supplied to secure the temperature and to secure an electromagnetic force for holding (preventing outflow) a predetermined amount of the molten material in the crucible. While holding the material, one or two or more kinds of materials are continuously or intermittently supplied into the crucible, and the melting and the component adjustment are performed.The molten material corresponding to the supplied amount of the material is supplied from the outlet to the lower crucible. Feeding and in this lower crucible, depending on the temperature of the molten material from the upper crucible,
To the induction heating device of the lower crucible, while maintaining the molten material at a constant temperature, a current for securing an electromagnetic force for maintaining a predetermined amount of the molten material is supplied, and the temperature of the molten material is adjusted in the crucible. A method for continuously dissolving and discharging a material in a crucible, wherein a predetermined amount of a molten material is continuously supplied from an outlet to a next step.

【0010】また第3の発明は、上記第1の発明におい
て、るつぼに供給される材料が溶融材料であり、この場
合、該るつぼ内で該溶融材料の温度調整を行うことを特
徴とするるつぼによる材料の連続溶解・流出方法であ
る。
According to a third aspect of the present invention, in the first aspect, the material supplied to the crucible is a molten material, and in this case, the temperature of the molten material is adjusted in the crucible. Is a method of continuous dissolution and outflow of materials by

【0011】第4の発明は、上記第1、第2または第3
の発明において、誘導加熱装置を備え、下部に流出口を
有するるつぼ内面に、石英層を形成したるつぼを用いる
ことを特徴とするるつぼによる材料の連続の溶解・流出
方法である。
A fourth aspect of the present invention is the above-mentioned first, second or third aspect.
In the method of the present invention, a crucible provided with an induction heating device and having a quartz layer formed on an inner surface of a crucible having an outlet at a lower portion is a method for continuously melting and flowing materials using a crucible.

【0012】[0012]

【作用】本発明の方法を用いた溶解法では、るつぼ中の
溶融状態の材料は、誘導コイルによって誘起される電磁
力と表面張力とによって保持される。このるつぼ中の溶
融材料にるつぼ上部の開口部より供給された固体材料は
溶融材料によって加熱され誘導コイルから誘起される誘
導電流作用とあいまって速やかに溶解される。さらに固
体材料を加えると、溶融材料を支える電磁力と表面張力
とに対し重力が打ち勝って、るつぼ下部に設けた流出口
から、上部から供給した固体材料に見合った分だけ、ま
たは供給電流を制御して所定量乃至全量の溶融材料を取
り出すことができる。
In the melting method using the method of the present invention, the molten material in the crucible is held by the electromagnetic force and the surface tension induced by the induction coil. The solid material supplied to the molten material in the crucible from the opening at the top of the crucible is quickly melted in combination with the induction current action induced by the induction coil heated by the molten material. When more solid material is added, gravity overcomes the electromagnetic force and surface tension that support the molten material, and the amount of solid material supplied from the top is controlled from the outlet provided at the bottom of the crucible, or the supply current is controlled. As a result, a predetermined or entire amount of the molten material can be taken out.

【0013】初期の材料の溶融状態の生成については、
誘導溶解可能な大きさの材料を用意し誘導電流によって
溶解してもよいし、発熱体を材料中に挿入して誘導電流
によって発熱させて溶解してもよいし、別途溶解させた
材料をるつぼ中に流し込んでもよい。
Regarding the formation of the molten state of the initial material,
A material having a size that can be induced and melted may be prepared and melted by an induced current, a heating element may be inserted into the material to be heated and melted by the induced current, or a separately melted material may be crucible. You may pour it inside.

【0014】連続して供給する材料については、粉末状
でもよいし、塊状であってもよく、また、予め溶解した
材料を供給してもよく材料の性状・形状を問わない。
The material to be continuously supplied may be in the form of a powder or a lump, or may be supplied in advance as a material which has been dissolved, regardless of the properties and shape of the material.

【0015】通常この溶解に使用するるつぼは低温るつ
ぼであるが、この低温るつぼとしては熱伝導性と電気伝
導性の観点から銅製のものが用いられる。この低温るつ
ぼにおいては、溶融状態の材料とるつぼ壁とは非接触化
できるために、溶融状態の材料の温度が銅の融点以上に
なっても、るつぼ壁は低温に保たれるため、溶損して介
在物化して溶融材料の純度を低下することはほとんどな
い。しかしながら、銅などの金属元素を微量であっても
介在物化して製品の品質に影響を与えるような材料の溶
解においては、石英ガラス等でるつぼ壁をコーティング
したり、石英のるつぼを内装してもよい。
Usually, the crucible used for the melting is a low-temperature crucible, and a copper crucible is used as the low-temperature crucible from the viewpoint of heat conductivity and electric conductivity. In this low-temperature crucible, since the material in the molten state and the crucible wall can be brought into non-contact, even if the temperature of the material in the molten state becomes higher than the melting point of copper, the crucible wall is kept at a low temperature, so that the crucible is damaged. It hardly turns into inclusions and lowers the purity of the molten material. However, when dissolving a material that may affect the quality of the product by converting metal elements such as copper into inclusions even in trace amounts, coating the crucible wall with quartz glass, etc., or installing a quartz crucible inside Is also good.

【0016】従来、低温るつぼの底部に設けられる流出
口の口径dは、通常の低温るつぼの場合、電磁力がない
状態でも底部に設けた流出口から、溶融した材料が流出
しないように、表面張力によって材料の静圧を支えなけ
ればならない。したがって、(1)式の条件を満たす流
出口の口径dに設計されている。 2σ/d>ρgh+ρgd/2 (1) (材料の表面張力) (材料の静圧) 但し、σ;材料の表面張力 [dyn /cm] ρ;材料の密度 [g /cm3 ] h;るつぼの中の材料のヘッド高さ [cm] g;重力加速度 g=980cm/ s2 しかし、本発明で用いる低温るつぼの場合、溶融状態の
材料を流出させることを目的とするため、(2)式の条
件を満たす口径dに設計する。すなわち、流出口径dは
従来の場合に比し、大きい口径に設計する。 2σ/d<ρgh+ρgd/2 (2) 低温るつぼにおいては溶融状態の材料を支える力とし
て、表面張力とコイルから発生する電磁力があるが、本
発明では、所定量の材料を溶融し保持できるコイル構造
にし、供給電流を設定することにより、るつぼ内の溶融
状態の材料を保持しながら、材料を供給し、供給材料に
相当する溶解材料を溶解し流出する。
Conventionally, the diameter d of the outlet provided at the bottom of the low-temperature crucible is set such that, in the case of a normal low-temperature crucible, the molten material does not flow out of the outlet provided at the bottom even without electromagnetic force. The tension must support the static pressure of the material. Therefore, the outlet diameter d is designed to satisfy the condition of the expression (1). 2σ / d> ρgh + ρgd / 2 (1) (Surface tension of material) (Static pressure of material) where σ: Surface tension of material [dyn / cm] ρ; Density of material [g / cm 3 ] h; Head height [cm] g of material inside; gravitational acceleration g = 980 cm / s 2 However, in the case of the low-temperature crucible used in the present invention, since the purpose is to discharge the material in a molten state, the expression (2) The diameter is designed to satisfy the conditions. That is, the outlet diameter d is designed to be larger than the conventional case. 2σ / d <ρgh + ρgd / 2 (2) In a low-temperature crucible, there are a surface tension and an electromagnetic force generated from a coil as a force for supporting a material in a molten state, but in the present invention, a coil capable of melting and holding a predetermined amount of material. By having a structure and setting a supply current, the material is supplied while the material in the molten state in the crucible is held, and the dissolved material corresponding to the supplied material is dissolved and discharged.

【0017】[0017]

【実施例】以下に本発明を、本発明を実施するるつぼ装
置例と共に説明する。図1において銅製の6つのセグメ
ントからなる直径25mmのるつぼ1の底には直径3mmの
流出口3が設けられている。各セグメントには冷却水が
流れる流路4が設けられ、るつぼ1を冷却するようにな
っている。この低温るつぼ1の外周にはコイル2が設置
され、給電線5が接続され、高周波発振器(図示しな
い)と接続されている。るつぼ1の中に所定量の溶融材
料6がコイル2によって発生する誘導電流によって溶融
状態に維持され、同時に発生する電磁力によって保持さ
れている。るつぼ1の開口部上部から固形材料7を供給
するとこのるつぼ1内の溶融材料中から、この供給され
た固体材料相当量が、前記電磁力による保持力にかっ
て、るつぼ1の底部に設けられた流出口3から流出する
ようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below together with an example of a crucible device embodying the present invention. In FIG. 1, an outlet 3 having a diameter of 3 mm is provided at the bottom of a crucible 1 having a diameter of 25 mm comprising six segments made of copper. Each segment is provided with a flow path 4 through which cooling water flows, so as to cool the crucible 1. A coil 2 is provided on the outer periphery of the low-temperature crucible 1, a power supply line 5 is connected thereto, and connected to a high-frequency oscillator (not shown). In the crucible 1, a predetermined amount of the molten material 6 is maintained in a molten state by an induced current generated by the coil 2, and is held by an electromagnetic force generated at the same time. When the solid material 7 is supplied from the upper portion of the opening of the crucible 1, the supplied solid material equivalent amount is provided at the bottom of the crucible 1 by the holding force by the electromagnetic force from the molten material in the crucible 1. It flows out from the outlet 3.

【0018】上記装置を用いてシリコンの連続溶解・連
続流出を行った。高周波発振器からコイル2に200kH
z の電流を流し、50g の溶融シリコンをるつぼ1内に
保持し、この状態で平均粒径1mmの原料シリコンを毎分
100g で供給したところ、供給速度と同じ速度でるつ
ぼ1の底の流出口3から溶融シリコンを安定的に流出さ
せることができた。このときの溶融シリコンの温度は1
500℃であった。この装置においてコイル2に加えた
電力は20kWであった。なお、流出の終期にはコイル2
への供給電流を降下させて、るつぼ1内の溶融シリコン
を全量流出させ、次工程への供給を終了することができ
た。
Continuous dissolution and continuous outflow of silicon were performed using the above apparatus. 200kH from coil to RF coil 2
When a current of z was passed, 50 g of molten silicon was held in the crucible 1 and raw silicon having an average particle diameter of 1 mm was supplied at a rate of 100 g / min. In this state, the outlet at the bottom of the crucible 1 was supplied at the same speed as the supply speed. 3, the molten silicon was able to flow out stably. At this time, the temperature of the molten silicon is 1
500 ° C. In this device, the electric power applied to the coil 2 was 20 kW. At the end of the outflow, coil 2
The supply current to the crucible 1 was lowered to discharge the entire amount of the molten silicon in the crucible 1, and the supply to the next step could be completed.

【0019】図2は本発明をステンレスの急冷薄膜製造
プロセスに適用した場合の実施例を示す。このプロセス
では、図1に示すような低温るつぼが上下二段に配設さ
れており、上部のるつぼ8では、固体原料7の一種また
は二種以上を連続供給して、成分調整しながら溶解し、
固体材料供給量に相当する量の溶融材料6を流出口から
下部るつぼ9に供給して、この下部のるつぼ9におい
て、温度を所定温度に調整し、かつ流出量を微調整し
て、高速回転する冷却ロール10に供給し、ステンレス
急冷薄膜11を製造するようにしたものである。この実
施例では特に、均一でかつ高品質が要求される薄膜製品
を製造するために、特に温度、供給量の安定が不可欠で
あるため、冷却ロール10に溶融金属を供給する場合、
温度調整、流量調整は極めて重要である。上部るつぼ8
のみでは、この要請に応えるのは極めて困難であるの
で、上部るつぼ8と下部るつぼ9により段階的に調整す
ることによって、その調整精度を上げるようにしてい
る。
FIG. 2 shows an embodiment in which the present invention is applied to a process for manufacturing a quenched thin film of stainless steel. In this process, a low-temperature crucible as shown in FIG. 1 is disposed in two stages, and one or more solid raw materials 7 are continuously supplied to an upper crucible 8 and melted while adjusting the components. ,
An amount of the molten material 6 corresponding to the supply amount of the solid material is supplied to the lower crucible 9 from the outlet, and the temperature in the lower crucible 9 is adjusted to a predetermined temperature and the amount of the outflow is finely adjusted. This is supplied to a cooling roll 10 to produce a stainless quenched thin film 11. In this embodiment, particularly, in order to manufacture a thin film product in which uniform and high quality is required, particularly when the temperature and the supply amount are indispensable, when supplying the molten metal to the cooling roll 10,
Temperature control and flow control are extremely important. Upper crucible 8
It is extremely difficult to meet this requirement only by using the crucible alone. Therefore, the adjustment accuracy is increased by adjusting the upper crucible 8 and the lower crucible 9 in a stepwise manner.

【0020】図3は、本発明をチタンの精密鋳造に適用
した場合の実施例を示したものである。この実施例で
は、図1に示したような低温るつぼ1の下方に鋳型12
を設けている。低温るつぼ1内にチタン材を供給し、溶
融チタン材を流出口から鋳型12内に供給して、チタン
の鋳造品を製造した。この実施例では、るつぼ1内にま
ず所定量の固体のチタン材料を供給し、誘導加熱装置に
電流を供給して、この固体チタン材料を溶解すると共に
発生する電磁力により、この溶融チタン材料の所定量を
るつぼ1内に保持した状態で、さらに固体チタン材を供
給して溶解すると共に、この固体チタン材の量に相当す
る量の溶融チタンを流出口から、複数の鋳型12内に順
次注入して所定の形状、大きさの複数のチタン鋳造品を
鋳造した。ここでは、溶融チタンが鋳型12外にこぼれ
ないように、注入が鋳型12から次の鋳型に移る場合、
るつぼ1への固体チタン材料の供給を中断するようにし
た。また最後の鋳造品は、誘導加熱装置における溶融チ
タン保持電磁力を切って(電流供給停止)、るつぼ1内
の溶融チタンを全量流出させて、最後の鋳型に注入する
ことによって鋳造した。
FIG. 3 shows an embodiment in which the present invention is applied to precision casting of titanium. In this embodiment, a mold 12 is placed below a low-temperature crucible 1 as shown in FIG.
Is provided. A titanium material was supplied into the low-temperature crucible 1, and a molten titanium material was supplied into the mold 12 from the outflow port, thereby producing a cast titanium product. In this embodiment, first, a predetermined amount of solid titanium material is supplied into the crucible 1, an electric current is supplied to the induction heating device, and the solid titanium material is melted and generated by the electromagnetic force. While maintaining a predetermined amount in the crucible 1, the solid titanium material is further supplied and melted, and molten titanium in an amount corresponding to the amount of the solid titanium material is sequentially injected into the plurality of molds 12 from the outlet. Then, a plurality of titanium castings having a predetermined shape and size were cast. Here, when the injection moves from the mold 12 to the next mold so that the molten titanium does not spill out of the mold 12,
The supply of the solid titanium material to the crucible 1 was interrupted. The last casting was cast by turning off the electromagnetic force for holding the molten titanium in the induction heating device (stopping the current supply), allowing the entire amount of the molten titanium in the crucible 1 to flow out, and pouring the molten titanium into the last mold.

【0021】図4は、本発明をチタン合金の微粒化に適
用した場合の実施例を示したものである。この実施例で
は、図1に示したようなるつぼ1を用い、このるつぼ1
下方に不活性ガス吹付ノズル13を設け、流出口からの
溶融チタン合金流に不活性ガスを吹き付けて微粒化、冷
却してチタン合金の微細粒14を製造した。この実施例
では、るつぼ1内にまず所定量の固体のチタン材料を供
給し、誘導加熱装置に電流を供給して溶解すると共に発
生する電磁力により、溶融チタン合金をるつぼ1内に保
持した状態で、さらに固体チタン合金材を連続的に供給
して溶解すると共に、固体チタン合金材の供給量に相当
する量の溶融チタン合金を流出口から連続的に流出さ
せ、この溶融チタン合金流に、不活性ガスを吹き付けて
微粒化、冷却してチタン合金の微細粒14を製造した。
この製造の終期には誘導加熱装置に対する電流の供給量
を制御して(電流を降下)して、るつぼ1内の溶融チタ
ン合金を全て流出させて微細化した。
FIG. 4 shows an embodiment in which the present invention is applied to the atomization of a titanium alloy. In this embodiment, a crucible 1 as shown in FIG.
An inert gas spray nozzle 13 was provided below, and an inert gas was sprayed on the molten titanium alloy flow from the outlet to atomize and cool the titanium alloy flow to produce fine particles 14 of titanium alloy. In this embodiment, a predetermined amount of a solid titanium material is first supplied into the crucible 1, a current is supplied to the induction heating device to melt it, and the molten titanium alloy is held in the crucible 1 by the generated electromagnetic force. In addition, while continuously supplying and melting the solid titanium alloy material, the molten titanium alloy in an amount corresponding to the supply amount of the solid titanium alloy material is continuously discharged from the outlet, and into the molten titanium alloy flow, Fine particles 14 of titanium alloy were produced by spraying an inert gas and atomizing and cooling.
At the end of this production, the amount of current supplied to the induction heating device was controlled (current was decreased), and the molten titanium alloy in the crucible 1 was entirely discharged to be miniaturized.

【0022】なお、本発明は図1〜図4に示す実施例に
限られるものではなく、その他の金属あるいは合金の溶
解、流出にも適用するものである。
The present invention is not limited to the embodiment shown in FIGS. 1 to 4, but is applicable to the dissolution and outflow of other metals or alloys.

【0023】[0023]

【発明の効果】本発明においては、るつぼ内において、
材料を連続的にかつ高純度で溶解し、溶融状態で連続的
にまたは間欠的に流出することができ、様々な工程と組
み合わせることが可能となり、生産性も高くその工業的
価値は極めて大である。
According to the present invention, in a crucible,
The material can be melted continuously and with high purity, and can be discharged continuously or intermittently in the molten state, and can be combined with various processes.The productivity is high and its industrial value is extremely large. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する連続溶解・連続流出装置例を
示す縦断面説明図である。
FIG. 1 is an explanatory longitudinal sectional view showing an example of a continuous dissolution / continuous outflow apparatus for carrying out the present invention.

【図2】本発明を適用したステンレスの急冷薄膜製造プ
ロセスにおける装置例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of an apparatus in a process for manufacturing a rapidly cooled thin film of stainless steel to which the present invention is applied.

【図3】本発明を適用したチタンの精密鋳造プロセスに
おける装置例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an example of an apparatus in a titanium precision casting process to which the present invention is applied.

【図4】本発明を適用したチタン合金の微粒化プロセス
における装置例を示す縦断面説明図である。
FIG. 4 is an explanatory longitudinal sectional view showing an example of an apparatus in an atomizing process of a titanium alloy to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 コイル 3 流出口 4 冷却水流路 5 給電線 6 溶融状態の材料 7 固体原料 8 上部のるつぼ 9 下部のるつぼ 10 水冷ロール 11 急冷凝固薄膜 12 鋳型 13 ノズル 14 微粒子 DESCRIPTION OF SYMBOLS 1 Crucible 2 Coil 3 Outlet 4 Cooling water channel 5 Feeding line 6 Material in a molten state 7 Solid raw material 8 Upper crucible 9 Lower crucible 10 Water-cooled roll 11 Rapidly solidified thin film 12 Mold 13 Nozzle 14 Fine particles

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 - 11/22 F27B 14/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B22D 11/00-11/22 F27B 14/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘導加熱装置を備え、下部に流出口を有
するるつぼにより材料を誘導溶解する場合において、誘
導加熱装置に材料を溶解できる温度を確保し、所定量の
溶融材料をるつぼ内に保持するための電磁力を確保する
ほぼ一定の電流を供給して、該るつぼ内で該材料を溶解
すると共に、この溶融材料を保持しつつ、該るつぼ内に
一種または二種以上の固体材料を連続または間欠供給
し、これを溶解すると共に、該固体材料の供給量に相当
する量の溶融材料を、流出口から連続的または間欠的に
次工程に流出させることを特徴とするるつぼにおける材
料の連続溶解・流出方法。
When a material is induction-melted by a crucible having an induction heating device and having an outlet at a lower portion, a temperature at which the material can be melted in the induction heating device is secured, and a predetermined amount of the molten material is held in the crucible. Supplying a substantially constant electric current to secure the electromagnetic force for melting the material in the crucible and holding one or more solid materials in the crucible continuously while holding the molten material. Or intermittently supplying and dissolving the same, and discharging the molten material in an amount corresponding to the supply amount of the solid material continuously or intermittently from the outlet to the next step in the crucible. Dissolution and outflow method.
【請求項2】 誘導加熱装置を備え、下部に流出口を有
するるつぼを上下二段に配設し、上部るつぼにおいて
は、誘導加熱装置に一種または二種以上の材料を溶解で
きる温度を確保し、所定量の溶融材料をるつぼ内に保持
するための電磁力を確保するほぼ一定の電流を供給し
て、該るつぼ内で該材料を溶解すると共に、この溶融材
料を保持しつつ、該るつぼ内に一種または二種以上の材
料を、連続または間欠供給し、溶解、成分調整を行っ
て、該材料供給量に相当する量の溶融材料を、流出口か
ら下部るつぼに供給し、この下部るつぼにおいて、上部
るつぼからの溶融材料の温度に応じて、該下部るつぼの
誘導加熱装置に、溶融材料を所定の温度に保持すると共
に所定量の溶融材料を保持するための電磁力を確保する
電流を供給して、該るつぼ内で溶融材料の温度調整と流
出量の微調整を行い、所定量の溶融材料を流出口から次
工程に連続供給することを特徴とするるつぼにおける材
料の連続溶解・流出方法。
2. A crucible having an induction heating device and having an outlet at a lower portion is disposed in two stages, and a temperature at which one or more materials can be dissolved in the induction heating device is secured in the upper crucible. Supplying a substantially constant current for securing an electromagnetic force for holding a predetermined amount of molten material in the crucible, melting the material in the crucible, and holding the molten material in the crucible; One or two or more materials are continuously or intermittently supplied, dissolved and adjusted for components, and a molten material in an amount corresponding to the material supply amount is supplied from an outlet to a lower crucible. According to the temperature of the molten material from the upper crucible, a current is supplied to the induction heating device of the lower crucible to secure the electromagnetic force for maintaining the molten material at a predetermined temperature and a predetermined amount of the molten material. And the crucible A method for continuously dissolving and discharging a material in a crucible, wherein a temperature of the molten material and a fine adjustment of an amount of the molten material are adjusted in the inside, and a predetermined amount of the molten material is continuously supplied from an outlet to a next step.
【請求項3】 請求項1において、るつぼに供給される
材料が溶融材料であり、この場合、該るつぼ内で該溶融
材料の温度調整を行なうことを特徴とするるつぼにおけ
る材料の連続溶解・流出方法。
3. The continuous melting and outflow of a material in a crucible according to claim 1, wherein the material supplied to the crucible is a molten material, and in this case, the temperature of the molten material is adjusted in the crucible. Method.
【請求項4】 誘導加熱装置を備え、下部に流出口を有
するるつぼ内面に、石英層を形成したるつぼを用いるこ
とを特徴とする請求項1、2または3のるつぼにおける
材料の連続溶解・流出方法。
4. A crucible provided with an induction heating device and having a quartz layer formed on an inner surface of a crucible having an outlet at a lower part thereof, wherein the material is continuously melted and discharged in the crucible according to claim 1, 2 or 3. Method.
JP10116891A 1991-05-07 1991-05-07 Continuous dissolution and outflow of materials Expired - Lifetime JP2938215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10116891A JP2938215B2 (en) 1991-05-07 1991-05-07 Continuous dissolution and outflow of materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10116891A JP2938215B2 (en) 1991-05-07 1991-05-07 Continuous dissolution and outflow of materials

Publications (2)

Publication Number Publication Date
JPH0515950A JPH0515950A (en) 1993-01-26
JP2938215B2 true JP2938215B2 (en) 1999-08-23

Family

ID=14293496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10116891A Expired - Lifetime JP2938215B2 (en) 1991-05-07 1991-05-07 Continuous dissolution and outflow of materials

Country Status (1)

Country Link
JP (1) JP2938215B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916453B1 (en) * 2007-05-22 2009-09-04 Snecma Sa METHOD AND DEVICE FOR METALLIC FIBER COATING BY LIQUID WAY

Also Published As

Publication number Publication date
JPH0515950A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
WO1998023403A1 (en) Apparatus for producing metal to be semimolten-molded
JPH03183706A (en) Manufacture of titanium particles
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
TW461834B (en) Clean metal nucleated cast article
US5427173A (en) Induction skull melt spinning of reactive metal alloys
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
EP3556487B1 (en) Casting method for active metal
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JP2938215B2 (en) Continuous dissolution and outflow of materials
JP2001108376A (en) Bottom casting type float melting apparatus
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
CN109047685A (en) A method of preparing steel ingot
KR19980020203A (en) Method for producing Bi2Te3-Sb2Te3 thermoelectric conversion material powder by rapid solidification
JP2942644B2 (en) Control method for continuous outflow of molten material
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
CA2868147C (en) Continuous casting process of metal
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same
JPS60162703A (en) Production of metallic powder
JPS63199809A (en) Apparatus for producing powder
JPS62137147A (en) Apparatus for producing bar-shaped ingot
KR100576239B1 (en) Horizontal continuous casting apparatus
JPH04311508A (en) Method and apparatus for producing metal powder
JPS61262450A (en) Continuous casting method for molten metal
JPS6234650A (en) Apparatus for casting ingot having fine structure
JPH05280873A (en) Low temperature crucible capable of discharging molten material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511