JPS60162703A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS60162703A
JPS60162703A JP1766784A JP1766784A JPS60162703A JP S60162703 A JPS60162703 A JP S60162703A JP 1766784 A JP1766784 A JP 1766784A JP 1766784 A JP1766784 A JP 1766784A JP S60162703 A JPS60162703 A JP S60162703A
Authority
JP
Japan
Prior art keywords
metal
molten metal
powder
metallic powder
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1766784A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sumida
隅田 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1766784A priority Critical patent/JPS60162703A/en
Publication of JPS60162703A publication Critical patent/JPS60162703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To eliminate thoroughly intrusion of a ceramic component into a molten metal and to obtain metallic powder having high quality with a process for producing the metallic powder by dropping the metallic powder onto a rotating body by melting the bottom end of a metallic bar material to form the molten metal. CONSTITUTION:A metallic bar material 2 is liftably held vertically long in a vessel 1. A preheater 4 provided with a heating element 5, a heater 6 and a discoid rotating body 7 are disposed as shown in the figure. After the inside of the vessel 1 is substd. with a non-oxidative atmosphere, for example, gaseous He, the material 2 is preheated by the heater 4 up to the temp. approximate to the melting temp. and heat energy is concentrically applied to the bottom end part of the material 2. The body 7 is rotated at high speed during this time and the molten metal 7 melting and dropping successively from the bottom end of the material 2 is received by the body 7 and is scattered horizontally by the centrifugal force thereof, by which the molten metal is solidified to metallic powder 10. The intrusion of a ceramic component from a crucible for melting, tundish, nozzle, etc. into the molten metal is thoroughly eliminated and the metallic powder having high quality is obtd. according to the above-mentioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は1例えば焼結部品を製造する粉末冶金の原料
粉末として利用される金属粉末を製造するのに適した金
属粉末の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing metal powder suitable for producing metal powder used as a raw material powder in powder metallurgy for producing sintered parts, for example. It is.

((・を末技術) 近年、金属粉末を原料としてこの金属粉末を所定形状に
成形し、その後成形体を焼成して所望形状の焼結部品を
得る粉末冶金の適用が広まってきている。
(End of technology) In recent years, the application of powder metallurgy has become widespread, in which metal powder is used as a raw material and the metal powder is molded into a predetermined shape, and then the molded body is fired to obtain a sintered part with a desired shape.

このような粉末冶金において使用される金属粉末を得る
方法としては、例えばディスク回転型遠心噴霧法がある
。このディスク回転型遠心噴霧法は、垂直軸を中心とし
て回転する円形平板状のディスクの上に溶解金属を落下
させ、このディスクから受ける遠心力によって前記溶解
金属を粉末化するものであり、金属粉末を製造する有力
な方法の一つである。そして、このディスク回転型遠心
噴霧法は、一般に、金属粉末を大量生産するのに採用さ
れている水噴霧法とは異なり、非酸化性雰囲気中での粉
末製造が可能であると共に、ガス噴霧性以上に急速凝固
が可能であるため、粉末の高品質化および微細化が実現
できるという利点を有している。それゆえ、このディス
ク回転型遠心噴霧法は高価でかつ品質要求の厳しい活性
金属あるいは活性金属を含む合金の粉末製造に適してい
る0例えば、Ni基耐熱超合金の粉末冶金法において、
焼結晶の耐熱サイクル疲労特性を向上させるためには、
粉末中の不純物成分、たとえばセラミック成分を極力な
くすことが要求される。
As a method for obtaining metal powder used in such powder metallurgy, there is, for example, a disk rotating centrifugal atomization method. In this disk-rotating centrifugal atomization method, molten metal is dropped onto a circular flat disk that rotates around a vertical axis, and the molten metal is pulverized by the centrifugal force received from this disk, producing metal powder. It is one of the most effective methods of manufacturing. Unlike the water atomization method, which is generally used for mass production of metal powders, this disk-rotating centrifugal atomization method is capable of producing powder in a non-oxidizing atmosphere, and also has gas atomization properties. Since rapid solidification is possible, it has the advantage that high quality and fine powder can be achieved. Therefore, this disk rotating centrifugal atomization method is suitable for the production of powder of active metals or alloys containing active metals, which are expensive and have strict quality requirements.For example, in the powder metallurgy of Ni-based heat-resistant superalloys,
In order to improve the heat cycle fatigue properties of sintered crystals,
It is required to eliminate impurity components such as ceramic components in the powder as much as possible.

ところが、従来の金属粉末の製造方法では、高周波誘導
炉内で母材金属を溶解し、次いでタンディツシュ内に移
し、タンディツシュ底部に設けたノズルを通して溶融金
属を回転ディスク上に落下させるようにしていたため、
高周波誘導炉の溶解るつぼ、タンディツシュ、およびノ
ズル等を構成する耐火物が溶損して溶融金属中に混入し
、得られた金属粉末中にセラミック粒子が混在すること
があった。したがって、その後金属粉末中のセラミック
粒子を除去し、かつセラミック粒子が許容限以下である
金属粉末を選び出す検査が必要であり、かかる工程にお
いて費やされる時間とコストは極めて大きいという問題
点があった。
However, in the conventional method for producing metal powder, the base metal is melted in a high-frequency induction furnace, then transferred into a tundish, and the molten metal is dropped onto a rotating disk through a nozzle provided at the bottom of the tundish.
Refractories constituting the melting crucible, tundish, nozzle, etc. of a high-frequency induction furnace were eroded and mixed into the molten metal, and ceramic particles were sometimes mixed in the resulting metal powder. Therefore, it is then necessary to perform an inspection to remove the ceramic particles in the metal powder and select metal powders whose ceramic particles are below the allowable limit, and this process requires an extremely large amount of time and cost.

(発明の目的) この発明は、上述した従来の問題点を解消するためにな
されたもので、従来のように溶解るつぼ、タンディツシ
ュ、およびノズル等からのセラミック成分の混入が全く
なく、高品質の金属粉末を得ることができる金属粉末の
製造方法を提供することを目的としている。
(Objective of the Invention) This invention was made to solve the above-mentioned problems of the conventional art. It is an object of the present invention to provide a method for producing metal powder, which allows obtaining metal powder.

(発明の構成) この発明による金属粉末の製造方法は、縦長に保持した
金属棒材を溶融点近くまで予熱し、さらに金属棒材の下
端部分に集中的に熱エネルギを与えて前記金属棒材をそ
の下端部分より順次溶解して液滴あるいは液流として落
下させ、前記落下した溶融金属を回転体上で受けて冷却
して凝固させることにより金属粉末を製造するようにし
たことを特徴としている。
(Structure of the Invention) A method for producing metal powder according to the present invention involves preheating a vertically held metal bar to near its melting point, and further applying thermal energy intensively to the lower end portion of the metal bar. The metal powder is manufactured by sequentially melting the molten metal starting from its lower end and letting it fall as droplets or liquid streams, and then receiving the fallen molten metal on a rotating body and cooling and solidifying it to produce metal powder. .

第1図はこの発明を説明する原理的説明図であって、1
は容器、2は昇降可能にした保持具3によって縦長に保
持された金属棒材、4は発熱体5を備えた予熱装置、6
は金属棒材2の下端部分に集中的に熱エネルギを与える
加熱装置、7はディスク状回転体、8はディスク状回転
体7の回転軸である。
FIG. 1 is a principle explanatory diagram for explaining this invention, and 1
2 is a container, 2 is a metal rod held vertically by a holder 3 that can be raised and lowered, 4 is a preheating device equipped with a heating element 5, 6
7 is a heating device that intensively applies thermal energy to the lower end portion of the metal bar 2; 7 is a disk-shaped rotating body; and 8 is a rotating shaft of the disk-shaped rotating body 7.

金属粉末の製造にあたっては、容器1内を例えば非酸化
性雰囲気とし、具体的には例えばヘリウムガスにより容
器1内を置換したのち、金属棒材2を予熱装置4によっ
て溶解温度近傍まで予熱するとともに、加熱装置6によ
って加熱し、この加熱によって金属棒材2の下端部分に
集中的に熱エネルギを与える。この間、回転軸8を介し
てディスク状回転体7を高速回転させておき、前記熱エ
ネルギによって金属棒材2がその下端部分より溶解され
て落下する溶融金属2を回転体Z上で受けるようにする
。この同転体Z上に落下した溶融金属2は遠心力を受け
て水平方向に飛ばされる。このとき、回転体7の回転中
心と金属棒材2の軸心とがほぼ一致している場合には前
記溶融金属2が回転体7上に落下して急冷が開始された
後には微細な粉粒状となって遠心方向に飛nkシ、前記
急冷の開始後飛散の間に凝固する。ここで、溶融金属2
の液滴が大きく、この大きな液滴が間欠的に回転体Z上
に落下すると、遠心噴霧が安定してなされないおそれが
あるため比較的小滴の溶融金属2を連続的に回転体7上
に落下させるようにすることがより望ましい。
In producing the metal powder, the inside of the container 1 is made into, for example, a non-oxidizing atmosphere, and specifically, after the inside of the container 1 is replaced with, for example, helium gas, the metal bar 2 is preheated to near the melting temperature by the preheating device 4. , the metal bar 2 is heated by a heating device 6, and thermal energy is intensively applied to the lower end portion of the metal bar 2 by this heating. During this time, the disk-shaped rotating body 7 is rotated at high speed via the rotating shaft 8, and the metal bar 2 is melted from its lower end by the heat energy, and the molten metal 2 falling is received on the rotating body Z. do. The molten metal 2 that has fallen onto the corotating body Z is blown away in the horizontal direction by the centrifugal force. At this time, if the rotation center of the rotating body 7 and the axis of the metal bar 2 almost coincide, the molten metal 2 falls onto the rotating body 7 and after the rapid cooling starts, fine powder is formed. The particles become granular and fly in the centrifugal direction, and solidify during the scattering after the start of the rapid cooling. Here, molten metal 2
If the droplets are large and these large droplets fall intermittently onto the rotating body Z, there is a risk that centrifugal spraying will not be stable. It is more preferable to allow it to fall.

このような金属粉末の製造方法において、雰囲気が真空
である場合には所望の冷却速度が得がたいので、非酸化
性雰囲気1例えば、不活性なガス雰囲気とすることがよ
り望ましい。
In such a method for producing metal powder, it is difficult to obtain a desired cooling rate when the atmosphere is vacuum, so it is more desirable to use a non-oxidizing atmosphere 1, for example, an inert gas atmosphere.

また、金属棒材2を連続的に溶解して回転体7Lに落下
させるためには、金属棒材2の溶解落下量に合わせて金
属棒材2を順次降下させる手段や、予熱装置4および加
熱装置6を前記金属棒材2の溶解落下量に合わせて上昇
させる手段などが占えられるが、金属棒材2が溶解して
落下する溶融金属2の落差が常にほぼ一定となるように
、金属棒材2を順次降下させるようにすることがより望
ましく、また構成も簡単になる。
In addition, in order to continuously melt the metal bar 2 and drop it onto the rotating body 7L, a means for lowering the metal bar 2 sequentially according to the amount of melted and fallen metal bar 2, a preheating device 4 and a heating device are required. A means for raising the device 6 according to the melting and falling amount of the metal bar 2 may be used, but the metal bar should be adjusted so that the drop of the molten metal 2 that melts and falls is always approximately constant. It is more desirable to lower the material 2 one after another, and the structure is also simpler.

前述したように、遠心噴霧を安定して行うためには小滴
の溶融金属2を連続的に落下させるようにすることがよ
り望ましいが、このためには金属棒材2に対して振動を
加え、金属棒材2の下端表面で溶融した金属がその表面
張力に抗して落下しやすくするようになすことも望まし
い。
As mentioned above, in order to stably perform centrifugal spraying, it is more desirable to cause small droplets of molten metal 2 to fall continuously. It is also desirable that the molten metal on the lower end surface of the metal bar 2 resists the surface tension and easily falls.

また、落下しやすくする別の手段としては、金属棒材2
の下端を先細にすることも考えられる。
In addition, as another means to make it easier to fall, there is a metal bar 2
It is also conceivable to taper the lower end of the .

この場合、溶解の間に先細形状を維持させるようにする
ためには、例えば加熱装置がプラズマアーク加熱による
場合には複数のプラズマアークの方向を特定の一点に向
けて傾斜状にする手法や、誘導加熱による場合には下方
のコイル径をより小さくする手法などをとることが可能
であり、金属棒材2の先細形状と共に振動を付加するこ
とによって小滴の溶融金属2を連続的に落下させること
ができる。
In this case, in order to maintain the tapered shape during melting, for example, if the heating device uses plasma arc heating, there is a method of tilting the direction of a plurality of plasma arcs toward one specific point, In the case of induction heating, it is possible to take a method such as making the diameter of the lower coil smaller, and by adding vibration to the tapered shape of the metal bar 2, small droplets of molten metal 2 are caused to fall continuously. be able to.

また、金属棒材2の断面形状は、第2図に例示するよう
に、十字状、変形十字状、こめ甲状、星印状等々の適宜
の形状にすることができる。このようにすれば、溶融金
属2の保持面積が小さくなるので、小滴の溶融金属2を
連続的に落下させることがより容易になる。そして、例
えば、第2図(d)に示す星印形状の場合には、外側部
程度先に溶解されやすいので金属棒材2の下端部分は先
細状となり、連続した小滴の落下が得られやすい。
Further, the cross-sectional shape of the metal bar 2 can be any suitable shape, such as a cross, a modified cross, a temple, a star, etc., as illustrated in FIG. In this way, the holding area of the molten metal 2 becomes smaller, so that it becomes easier to continuously drop the molten metal 2 in small droplets. For example, in the case of the star shape shown in FIG. 2(d), the outer part tends to melt first, so the lower end part of the metal bar 2 becomes tapered, so that a continuous droplet can be obtained. Cheap.

さらにまた、金属棒材2の下端部分に集中的に熱エネル
ギを与える加熱装置6としては、プラズマアーク加熱、
高周波誘導加熱、レーザ加熱、熱光線加熱、輻射加熱等
を採用することができる。
Furthermore, the heating device 6 that intensively applies thermal energy to the lower end portion of the metal bar 2 may include plasma arc heating,
High frequency induction heating, laser heating, thermal beam heating, radiation heating, etc. can be employed.

なお、電子ビーム加熱は真空雰囲気となるので溶融金属
2に対する十分な冷却速度を与えがたい。
Note that since electron beam heating results in a vacuum atmosphere, it is difficult to provide a sufficient cooling rate to the molten metal 2.

さらに、金属棒材2の下端部分に集中的に熱エネルギを
与えるのに先立って、金属棒材2を予熱装置4によって
予熱しておくことも場合によっては望ましい。
Further, in some cases, it may be desirable to preheat the metal bar 2 using the preheating device 4 before intensively applying thermal energy to the lower end portion of the metal bar 2.

(実施例1) 第1図に示したものと同じ原理構成をもつ装置を使用し
、金属棒材2として、直径50m層、長さ500mmの
ニッケル基耐熱合金(INloo (商品名))からな
り、最下端を先細形状にしないものを用いて保持具3に
より吊り下げた。
(Example 1) A device having the same principle and configuration as shown in Fig. 1 was used, and the metal bar 2 was made of a nickel-based heat-resistant alloy (INloo (product name)) with a layer diameter of 50 m and a length of 500 mm. , the lowermost end was not tapered and was hung by a holder 3.

一方、加熱装置6として高周波誘導加熱を使用し、20
kwの入力で金属棒材2の下端部分を集中的に加熱した
。そして、この加熱により形成された液滴状の溶融金属
りを15000 Ppmで高速回転する直径90mmの
ディスク状回転体7の回転中心上に連続的に滴下させた
。このとき、溶融金属2は連続的な液滴状としての落下
であったが、遠心噴霧は良好になされ、回転体7の遠心
力により飛散して形成された金属粉末10を得た。
On the other hand, high frequency induction heating is used as the heating device 6,
The lower end portion of the metal bar 2 was heated intensively by inputting kW. Then, the droplet-shaped molten metal formed by this heating was continuously dropped onto the rotation center of a disk-shaped rotating body 7 having a diameter of 90 mm and rotating at a high speed of 15,000 Ppm. At this time, the molten metal 2 fell in the form of continuous droplets, but centrifugal spraying was performed well, and the metal powder 10 was obtained by being scattered by the centrifugal force of the rotating body 7.

tll・られた金属粉末10は、粗大粉末の混入はあっ
たものの、セラミック粒子の混入は全く認められなかっ
た。そして、粗大粉末は適宜粉砕して分級することによ
り、粉末冶金川原#1粉末として著しく優れた特性の金
属粉末を得ることができた。
In the metal powder 10 subjected to the tll treatment, although there was some coarse powder mixed in, no ceramic particles were found to be mixed in at all. By appropriately pulverizing and classifying the coarse powder, it was possible to obtain a metal powder with extremely excellent properties as powder metallurgy Kawahara #1 powder.

なお、この実施例において、1回に落下する液適状溶融
金属2の重量は200〜500gであり、金属棒材2の
溶解速度は約300g/分であった。
In this example, the weight of the liquid molten metal 2 falling at one time was 200 to 500 g, and the dissolution rate of the metal rod 2 was about 300 g/min.

(実施例2) 第1図に示したものと同じ原理構成をもつ装置を使用し
、金属棒材2として、直径50mm、長さ500mmの
=−/ケル基耐熱合金(INloo (商品名))から
なり、最下端を先細形状にしたものを用いて保持具3に
より吊り下げた。
(Example 2) Using an apparatus having the same principle and configuration as shown in FIG. 1, a metal bar 2 of =-/Kel-based heat-resistant alloy (INloo (product name)) with a diameter of 50 mm and a length of 500 mm was used. It was suspended from a holder 3 using a tapered bottom end.

一方、加熱装置6として高周波誘導加熱を使用し、20
kwの入力で金属棒材2の下端先細部分を集中的に加熱
すると同時に金属棒材2に対して約毎秒1回の頻度で衝
撃的な振動を加えた。この振動によって約5秒に1回の
割合で約20〜30gの液滴状の溶融金属りが落下した
。そして、この溶融金属2を1500 Orpmで高速
回転する直径90+s+sのディスク状回転体7の回転
中心部分上に連続的に滴下させた。この回転体7による
遠心力によって遠心噴霧は良好になされ、回転体7の遠
心力により飛散して形成された金属粉末10を得た。
On the other hand, high frequency induction heating is used as the heating device 6,
The lower end tapered portion of the metal bar 2 was intensively heated with an input of kW, and at the same time, impactful vibrations were applied to the metal bar 2 at a frequency of approximately once per second. Due to this vibration, about 20 to 30 g of molten metal droplets fell down at a rate of about once every 5 seconds. Then, this molten metal 2 was continuously dropped onto the center of rotation of a disk-shaped rotating body 7 having a diameter of 90+s+s and rotating at a high speed of 1500 Orpm. The centrifugal force of the rotating body 7 caused good centrifugal spraying, and the centrifugal force of the rotating body 7 caused the metal powder 10 to be scattered and formed.

得られた金属粉末10は、粗大粉末の混入は若干あった
ものの、セラミック粒子の混入は全く認められなかった
。そして、粗大粉末は適宜粉砕して分級することにより
、粉末冶金用原料粉末として著しく優れた特性の金属粉
末を得ることができた。
The obtained metal powder 10 had some coarse powder mixed in, but no ceramic particles were found mixed in at all. By appropriately pulverizing and classifying the coarse powder, it was possible to obtain a metal powder with extremely excellent properties as a raw material powder for powder metallurgy.

(実施例3) 実施例2において、金属棒材2を予熱装置4によって約
1200°Cに予熱しつつ最下端を加熱装置6によって
高周波誘導加熱し、約毎秒1回の頻1mで衝撃的な振動
を与えた。これにより毎秒1回あたり約20〜30gの
液滴状溶融金属2を約1500 Orpmで高速回転す
る回転体7上に滴下させることができ、遠心I!+1霧
による金属粉末10の形成を良好に行うことが可能であ
って短時間のうちに遠心噴霧を完了させることができた
(Example 3) In Example 2, the metal bar 2 is preheated to about 1200°C by the preheating device 4, and the lowest end is heated by high frequency induction by the heating device 6, and the metal bar 2 is subjected to impact heating at a frequency of about 1 meter per second. gave a vibration. As a result, about 20 to 30 g of droplet-shaped molten metal 2 can be dropped onto the rotating body 7 that rotates at a high speed of about 1500 Orpm per second, and the centrifugal I! It was possible to form the metal powder 10 by +1 mist well, and the centrifugal spraying could be completed in a short time.

(実施例4) 実施例2において、金属棒材2の水平断面形状を第4図
(b)に示す変形十字形状とし、この他は同じにして実
施した。その結果、液滴の落下1711隔は2〜3秒と
短くなり、より微細でかつ均一な金属粉末10を得るこ
とができた。これは、金属棒材2の下端部分において金
属液滴の保持面積が小さくなったため、金属液滴が落下
しやすくなったことによるものであると考えられた。
(Example 4) In Example 2, the horizontal cross-sectional shape of the metal bar 2 was changed to the modified cross shape shown in FIG. 4(b), and other aspects were the same. As a result, the droplet falling interval 1711 was shortened to 2 to 3 seconds, making it possible to obtain finer and more uniform metal powder 10. This was thought to be due to the fact that the holding area of the metal droplets became smaller at the lower end portion of the metal bar 2, making it easier for the metal droplets to fall.

(発明の効果) 以上説明してきたように、この発明による金属粉末の製
造方法は、縦長に保持した金属棒材の下端部分に集中的
に熱エネルギを与えて前記金属棒材をその下端部分より
順次溶解して落下させ、前記落下した溶融金属を回転体
上で受けて冷却して凝固させることにより、金属粉末を
製造するようにしたものであるから、汚染の著しく少な
い高品質の金属粉末を得ることが可能であり、この金属
粉末を用いて粉末冶金を行うことにより、機械的特性、
熱的特性、化学的特性等に著しく優れた焼結晶を得るこ
とが可能であるという著大なる効果をもたらしうる。
(Effects of the Invention) As explained above, the method for producing metal powder according to the present invention concentrates thermal energy on the lower end portion of a metal rod held vertically, and moves the metal rod from the lower end portion. Metal powder is manufactured by sequentially melting and dropping the metal, and the fallen molten metal is received on a rotating body and cooled and solidified, so it is possible to produce high-quality metal powder with significantly less contamination. By performing powder metallurgy using this metal powder, mechanical properties,
This can bring about a significant effect in that it is possible to obtain sintered crystals with extremely excellent thermal properties, chemical properties, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の基本構成を示す金属粉末製造装置の
説明図、第2図(a)〜(d)は金属棒材の形状例を示
す説明図である。 2・・・金属棒材、 6・・・加熱装置、 7・・・回転体、 2・・・溶融金属、 10・・・金属粉末。 第1図 第2図 (a) (C)
FIG. 1 is an explanatory view of a metal powder manufacturing apparatus showing the basic configuration of the present invention, and FIGS. 2(a) to 2(d) are explanatory views showing examples of shapes of metal bars. 2... Metal bar material, 6... Heating device, 7... Rotating body, 2... Molten metal, 10... Metal powder. Figure 1 Figure 2 (a) (C)

Claims (1)

【特許請求の範囲】[Claims] (1)縦長に保持した金属棒材の下端部分に集中的に熱
エネルギを与えて前記金属棒材をその下端部分より順次
溶解して落下させ、前記落下した溶融金属を回転体上で
受けて冷却して凝固させることにより、金属粉末を製造
することを特徴とする金属粉末の製造方法。
(1) Heat energy is intensively applied to the lower end of a metal bar held vertically, the metal bar is sequentially melted and dropped from the lower end, and the fallen molten metal is received on a rotating body. A method for producing metal powder, which comprises producing metal powder by cooling and solidifying it.
JP1766784A 1984-02-04 1984-02-04 Production of metallic powder Pending JPS60162703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1766784A JPS60162703A (en) 1984-02-04 1984-02-04 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1766784A JPS60162703A (en) 1984-02-04 1984-02-04 Production of metallic powder

Publications (1)

Publication Number Publication Date
JPS60162703A true JPS60162703A (en) 1985-08-24

Family

ID=11950203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1766784A Pending JPS60162703A (en) 1984-02-04 1984-02-04 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS60162703A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153865A1 (en) * 2008-06-18 2009-12-23 産機電業株式会社 Micropowder producing apparatus and process
JP2010111938A (en) * 2008-11-10 2010-05-20 Japan Atomic Energy Agency Metal particle production device, method for producing metal particle and metal particle produced by the method
CN103386491A (en) * 2013-04-23 2013-11-13 长沙唯特冶金工程技术有限公司 Process and equipment used for preparing high-purity spherical titanium and titanium alloy powder material
CN107020383A (en) * 2017-05-16 2017-08-08 深圳微纳增材技术有限公司 Tundish and its jetting method, vacuum melting furnace for preparing metal dust

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525659A (en) * 1975-06-28 1977-01-17 Leybold Heraeus Verwaltung Method and device for manufacturing high purity metal powder using electronic beam
JPS5439357A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Continuous production method of steel pellet
JPS5529121A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Manufacture of semiconductor device
JPS5834525A (en) * 1981-08-21 1983-03-01 株式会社東芝 Dc switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525659A (en) * 1975-06-28 1977-01-17 Leybold Heraeus Verwaltung Method and device for manufacturing high purity metal powder using electronic beam
JPS5439357A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Continuous production method of steel pellet
JPS5529121A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Manufacture of semiconductor device
JPS5834525A (en) * 1981-08-21 1983-03-01 株式会社東芝 Dc switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153865A1 (en) * 2008-06-18 2009-12-23 産機電業株式会社 Micropowder producing apparatus and process
JP2010111938A (en) * 2008-11-10 2010-05-20 Japan Atomic Energy Agency Metal particle production device, method for producing metal particle and metal particle produced by the method
CN103386491A (en) * 2013-04-23 2013-11-13 长沙唯特冶金工程技术有限公司 Process and equipment used for preparing high-purity spherical titanium and titanium alloy powder material
CN107020383A (en) * 2017-05-16 2017-08-08 深圳微纳增材技术有限公司 Tundish and its jetting method, vacuum melting furnace for preparing metal dust
CN107020383B (en) * 2017-05-16 2018-05-15 深圳微纳增材技术有限公司 It is used to prepare the tundish and its jetting method, vacuum melting furnace of metal dust

Similar Documents

Publication Publication Date Title
EP0194847B1 (en) Method for producing titanium particles
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
US4261412A (en) Fine grain casting method
US3829538A (en) Control method and apparatus for the production of powder metal
JP3054193B2 (en) Induction skull spinning of reactive alloys
US4966737A (en) Method and a device for manufacturing a powder of amorphous ceramic or metallic particles
US5427173A (en) Induction skull melt spinning of reactive metal alloys
JPH0149769B2 (en)
JPS60162703A (en) Production of metallic powder
US4394332A (en) Crucibleless preparation of rapidly solidified fine particulates
GB2196956A (en) Process and apparatus for the production of rapidly solidified powders of high melting point ceramics
US4014964A (en) Process for making metal powder using a laser
CA1163763A (en) Crucibleless preparation of rapidly solidified fine particulates
JP3087964B1 (en) Method for producing high quality crystalline material by impact solidification of free-falling droplets
JPS63210206A (en) Apparatus for producing metal powder
JPS63111101A (en) Spheroidizing method for metal or alloy powder
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
JPS6333508A (en) Production of metallic powder of alloy powder
JPH06116609A (en) Production of metal powder
JP7256385B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
Aller et al. Rotating atomization processes of reactive and refractory alloys
JPS6092432A (en) Method and device for plasma arc melting
JP2938215B2 (en) Continuous dissolution and outflow of materials
JP2942644B2 (en) Control method for continuous outflow of molten material
JP3931223B2 (en) Method for producing homogeneous composition structure material by impact solidification of free-falling droplets