JPH0736942B2 - Highly tough and highly flexible metal fibers with unidirectional dendritic structure - Google Patents

Highly tough and highly flexible metal fibers with unidirectional dendritic structure

Info

Publication number
JPH0736942B2
JPH0736942B2 JP62310259A JP31025987A JPH0736942B2 JP H0736942 B2 JPH0736942 B2 JP H0736942B2 JP 62310259 A JP62310259 A JP 62310259A JP 31025987 A JP31025987 A JP 31025987A JP H0736942 B2 JPH0736942 B2 JP H0736942B2
Authority
JP
Japan
Prior art keywords
metal
fiber
diameter
highly
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62310259A
Other languages
Japanese (ja)
Other versions
JPH01150444A (en
Inventor
隆治 一柳
芳樹 小野
英昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP62310259A priority Critical patent/JPH0736942B2/en
Priority to US07/280,320 priority patent/US4946746A/en
Priority to DE3841241A priority patent/DE3841241C2/en
Publication of JPH01150444A publication Critical patent/JPH01150444A/en
Publication of JPH0736942B2 publication Critical patent/JPH0736942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な金属組織を有する高靭性及び高柔軟性の
金属繊維に関し、詳細には樹枝状組織の一次アームが繊
維軸方向に沿って成長した特殊な金属組織を有し、靭性
が極めて良好であって複合材料等の構造材料として有用
であり、更には構造異方性を生かして磁性材料として活
用することのできる金属繊維に関するものである。
TECHNICAL FIELD The present invention relates to a high toughness and high flexibility metal fiber having a novel metallographic structure, and more specifically, a primary arm of a dendritic structure along a fiber axis direction. It relates to a metal fiber that has a grown special metal structure, has extremely good toughness, is useful as a structural material such as a composite material, and can be utilized as a magnetic material by taking advantage of structural anisotropy. is there.

[従来の技術] 金属繊維については新素材の研究あるいは用途開発を含
めて多くの研究、提案がなされており、応用分野はます
ます拡大していく傾向が見られる。
[Prior Art] Regarding metal fibers, many researches and proposals have been made, including research on new materials and application development, and the application fields tend to expand more and more.

金属繊維を製造する方法としては、次に示す様な色々の
方法が知られている。
Various methods as described below are known as methods for producing metal fibers.

棒状の金属材料を、超硬合金やダイヤモンド製のダイ
スによって線引きする方法。
A method of drawing a rod-shaped metal material with a die made of cemented carbide or diamond.

この方法では、細径繊維を得るのに多段の伸処理を行な
わなければならず、また伸線工程で生じる内部歪を除去
するのに焼なまし工程を要する等、工程数が多くて煩落
であり生産性にも問題がある。
In this method, a multi-stage drawing process must be performed to obtain a thin fiber, and an annealing process is required to remove internal strain generated in the wire drawing process. There is also a problem with productivity.

固形の金属材料を切削して細線状物を切り出す方法。A method of cutting a solid metal material to cut out fine linear objects.

この方法は、上記の方法に比べると簡便で工程数も少
なくて済む。しかしながら繊維の断面形状が不均一であ
るばかりでなく表面に切欠き欠陥等ができ易く、繊維の
均質性などに問題がある。
This method is simpler and requires fewer steps than the above method. However, not only the cross-sectional shape of the fiber is not uniform, but notches and defects are likely to occur on the surface, and there is a problem in the homogeneity of the fiber.

溶融金属を細径のノズルから押出して冷却凝固させる
溶融紡糸法。
A melt-spinning method in which molten metal is extruded from a small-diameter nozzle and cooled and solidified.

この方法にはガラス被覆紡糸法、水流中紡糸法、回転液
中紡糸法等が含まれ、これらの方法によって様々の金属
あるいは合金よりなる結晶質繊維や非晶質(アモルファ
ス)繊維が製造されており、現在のところ金属繊維の性
能、生産性の何れからしても前記、の方法よりも有
な方法とされている。
This method includes a glass coating spinning method, a water stream spinning method, a rotating liquid spinning method and the like, and by these methods, crystalline fibers or amorphous fibers made of various metals or alloys are produced. However, at present, it is considered to be a more effective method than the above method in terms of both performance and productivity of metal fibers.

こうした状況の下で本発明者らもかねてより溶融紡糸
法、殊に回転液中紡糸法を利用した金属繊維の製法につ
いて研究を行なっており、かかる研究の一環として先に
特開昭62−56393号公報に記載の発明を開発した。この
発明は、溶融紡糸における凝固条件等を制御することに
よって、色々な長さからなる単結晶が粒界を境にして竹
状に連続的に連なった構造を有する特殊な組織の金属繊
維を得るものであり、様々の分野への用途開発が進めら
れている。
Under such circumstances, the inventors of the present invention have been researching a method for producing a metal fiber using a melt spinning method, particularly, a spinning submerged spinning method, and as a part of such research, JP-A-62-56393 has been previously mentioned. The invention described in Japanese Patent Publication was developed. This invention obtains a metal fiber having a special structure having a structure in which single crystals having various lengths are continuously connected in a bamboo shape with a grain boundary as a boundary by controlling coagulation conditions and the like in melt spinning. The development of applications in various fields is underway.

[発明が解決しようとする問題点] 本発明者らはその後も回転液中紡糸法を主体とする金属
繊維の製法及び物性改善について研究を進めているが、
前述の様な状況の下で本発明は、溶融紡糸条件等を色々
工夫することによって、従来の金属繊維とは異質の結晶
組織を有し、その利用分野を更に拡大していくことので
きる様な金属繊維を提供しようとするものである。
[Problems to be Solved by the Invention] Although the inventors of the present invention have since continued research on a method for producing a metal fiber mainly composed of a rotating submerged spinning method and an improvement in physical properties,
Under the circumstances as described above, the present invention has a crystal structure that is different from conventional metal fibers by devising various conditions such as melt spinning conditions, so that the field of application thereof can be further expanded. It is intended to provide a stable metal fiber.

[問題点を解決するための手段] 本発明に係る金属繊維の構成は、一次アームが金属繊維
軸に対して20度以内の角度で成長した樹枝状晶群の集合
組織を呈するものであるところに要旨を有するものであ
る。
[Means for Solving the Problems] The constitution of the metal fiber according to the present invention is such that the primary arm exhibits a dendrite group texture grown at an angle within 20 degrees with respect to the metal fiber axis. It has the gist.

[作用] 周知の通り回転液中紡糸法とは、回転する円筒状中空ド
ラムの内周面側に遠心力によって冷却液体層を形成して
おき、該冷却液体層内へ細径のノズルから溶融金属を細
線状に噴出させて急冷凝固させ、そのまま中空ドラムの
内周面側へ又は他の適当な装置に巻取っていく方法であ
り、種々の金属材料を細い繊維状とすることができる。
[Operation] As is well known, the rotating submerged spinning method is that a cooling liquid layer is formed on the inner peripheral surface side of a rotating cylindrical hollow drum by centrifugal force, and melted from a thin nozzle into the cooling liquid layer. This is a method in which the metal is ejected in the form of a fine wire, rapidly solidified, and then wound as it is to the inner peripheral surface side of the hollow drum or another appropriate device, and various metal materials can be made into fine fibrous shapes.

ところで、合金の種類によっては上記回転液中紡糸法に
よって得られる金属繊維の靭性が繊維径によってばらつ
き、特に太径のものは非常に脆く、約90度以上に曲げる
と簡単に折れてしまうため取扱いが困難であり汎用性に
欠ける場合もある。そしてこの様な靭性の乏しい従来の
金属繊維の内部構造を見ると、繊維軸に対して直交する
横断面内には常に(どの断面を見ても)2個以上の結晶
粒が存在しており、いわゆる多結晶質構造を有するもの
であることが確認されている。これに対したとえば直径
130μm程度の細径金属繊維では、特開昭62−56393号公
報に記載した様に「竹の節の間」状の単結晶質部分が繊
維軸方向に0.1〜5mm程度の不規則な間隔で継がった構造
となり、該単結晶構造を有する部分の靭性は非常に良好
で、180度に密着曲げした場合でも折断することのない
柔軟なものとなる。
By the way, depending on the type of alloy, the toughness of the metal fibers obtained by the above spinning liquid spinning method varies depending on the fiber diameter, and particularly those with a large diameter are very brittle, and easily bent when bent over 90 degrees or more. May be difficult and lack versatility. Looking at the internal structure of such a conventional metal fiber having poor toughness, two or more crystal grains are always present (in any cross section) in the cross section orthogonal to the fiber axis. It has been confirmed that it has a so-called polycrystalline structure. On the other hand, for example, the diameter
In the case of a thin metal fiber having a diameter of about 130 μm, as described in JP-A-62-56393, the “bamboo knot” -shaped single crystalline portions are arranged at irregular intervals of about 0.1 to 5 mm in the fiber axis direction. The structure has a continuous structure, and the toughness of the portion having the single crystal structure is very good, and it becomes flexible without breaking even when it is closely bent to 180 degrees.

ところがこの金属繊維でも、結晶粒界に相当する「竹の
節」の部分の靭性は悪く、該「竹の節」の部分で180度
曲げを行なった場合は折断する恐れがある。
However, even with this metal fiber, the toughness of the "bamboo knot" portion corresponding to the grain boundary is poor, and there is a risk of breaking when the "bamboo knot" portion is bent 180 degrees.

しかしながらその後更に研究を行なった結果、回転液中
紡糸用紡出ノズルの直径を100μm以下に設定し、溶融
金属が凝固するときの冷却速度を更に大きくすると、繊
維軸方向に樹枝状晶(基本単位模式図を第3図(a)に
示す)群が並んだ集合組織のものとなり、該紡出ノズル
径を小さくして繊維径を小さくするほど、当該樹枝状晶
の一次アームと繊維軸とのなす角度は小さくなる。そし
てこの角度が小さくなればなるほど、即ち一次アームが
繊維軸と平行に近いものほど金属繊維の柔軟性は優れた
ものとなること、が明らかとなった。そして該樹枝状晶
の一次アームと繊維軸とのなす角度が20度以下である金
属繊維(第3図(b),(c)は、前記公開公報に記載
された「竹の節」状の金属繊維に比べても更に優れた靭
性を示すものとなることが確認された。
However, as a result of further research after that, when the diameter of the spinning nozzle for spinning in liquid was set to 100 μm or less and the cooling rate when the molten metal solidified was further increased, the dendrites (basic unit A schematic diagram is shown in FIG. 3 (a)), and the texture is such that the groups are arranged side by side. The smaller the spinning nozzle diameter and the smaller the fiber diameter, the more the primary arm of the dendrite and the fiber axis are separated. The angle formed becomes smaller. It was revealed that the smaller the angle, that is, the closer the primary arm is to the fiber axis, the better the flexibility of the metal fiber. The metal fibers having an angle of 20 degrees or less between the primary arm of the dendrite and the fiber axis (see FIGS. 3 (b) and 3 (c)) have the “bamboo knot” shape described in the above publication. It was confirmed that the toughness was even better than that of metal fibers.

回転液中紡糸法によって金属繊維を製造する場合、繊維
径(紡出ノズル径にほぼ対応する)を100μm以下とす
ることによって何故「竹の節」状の結晶粒界が無くな
り、上記の様な結晶組織が生成するのか、その理論的解
明はなされておらないが、紡糸時における金属溶湯流の
太さの違いによって冷却液体層中での冷却速度が変わ
り、結晶の生成及び成長状況に変化が生じたためと考え
られる。何れにしてもこの様な一方向樹枝状組織を有す
る金属フィラメントは非常に柔軟性の富んだものとな
り、密着曲げが可能であるほか引張試験においても伸び
が著しく大きくなり、工業的に見て非常に取扱い易い材
料である。しかもこの金属繊維は、応力集中部位となる
「竹の節」部分を有していないので、更に高次の加工
(伸線加工や圧延等)を行なうこともできる。
When producing metal fibers by the spinning liquid spinning method, by setting the fiber diameter (corresponding to the diameter of the spinning nozzle) to 100 μm or less, the “bamboo knot” -shaped crystal grain boundaries disappear, and It has not been theoretically clarified whether a crystal structure is generated, but the cooling rate in the cooling liquid layer changes due to the difference in the thickness of the molten metal flow during spinning, and the formation and growth of crystals change. Probably because it happened. In any case, the metal filament having such a unidirectional dendritic structure becomes very flexible, and it is possible to perform tight bending, and also the elongation is significantly increased in the tensile test. It is a material that is easy to handle. Moreover, since this metal fiber does not have a "bamboo knot" portion that is a stress concentration portion, it is possible to perform higher-order processing (drawing, rolling, etc.).

本発明で使用される金属としては種々のものが考えられ
るが、中でも本発明の特徴を最も有効に発揮するのはFe
−Si系合金、Fe−Al系合金、Fe−Si−Al系合金であり、
これら鉄合金中に適量の希土類金属を1種又は2種以上
含有せしめたものも好ましいものとして挙げられる。尚
希土類金属として特に好ましいのは原子番号が57〜71の
ランタン系列から選択されるものであって、具体的には
La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luであ
り、これらは単独で含有させてもあるいは2種以上を複
合して含有させることもできる。上記希土類金属の中で
も特に好ましいのはCeである。更に本発明を実施するに
当たっては、金属繊維の用途や要求特性に応じて更に他
の合金成分を配合することも可能である。
Although various kinds of metals can be considered as the metals used in the present invention, Fe is most effective in exhibiting the features of the present invention.
-Si-based alloy, Fe-Al-based alloy, Fe-Si-Al-based alloy,
The iron alloys containing a proper amount of one or more rare earth metals are also preferable. The rare earth metal is particularly preferably selected from the lanthanum series having atomic numbers of 57 to 71, and specifically,
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, which may be contained alone or in combination of two or more You can also Among the above rare earth metals, Ce is particularly preferable. Further, in practicing the present invention, it is possible to further mix other alloy components depending on the use and required characteristics of the metal fiber.

次に本発明に係る金属繊維の製法について説明する。こ
の方法の基本的構成は特開昭55−64948号や前記特開昭6
2−56393号として開示した回転液中紡糸法に従う。たと
えば第1、2図はその方法を例示する概略正面図及び一
部波断側面図であり、回転ドラム6を高速回転させるこ
とによってその内周面側に冷却液体層8を形成する。そ
して該冷却液体層8の液面9又は液中に向けてるつぼ1
下面の噴出ノズル2から金属溶湯を噴出させ、金属を繊
維4状にして急冷凝固させながら回転ドラム6の内周壁
に巻回していく。図中3は金属を溶融させるためのヒー
ター、5は溶融金属噴出用の不活性ガス、7はモータ、
10はベルトを夫々示す。そして冷却液体層の周速度を、
噴出ノズル2からの溶融金属噴出速度と実質的に同一か
またはそれよりやや早くしておけば、断面の寸法及び形
状が均一な金属繊維が得られ易い。またここで使用され
る冷却液体は純粋な液体、溶液、エマルジョン等いずれ
であってもよいが、コスト及び冷却効率を総合すると最
も好ましいは水である。回転ドラムは横向きでも縦向き
でもよいが、該ドラム内における冷却液体層の表面速度
は300〜800m/min程度、金属溶湯の冷却液体層への進入
角度は40〜80゜、噴出ノズル2と液面9との距離は0.5
〜4mm程度が夫々好適である。
Next, a method for producing the metal fiber according to the present invention will be described. The basic structure of this method is disclosed in JP-A-55-64948 and JP-A-6-64948.
The spinning submerged spinning method disclosed as 2-56393 is followed. For example, FIGS. 1 and 2 are a schematic front view and a partially cutaway side view illustrating the method, in which the cooling liquid layer 8 is formed on the inner peripheral surface side by rotating the rotating drum 6 at a high speed. And the crucible 1 which is directed toward the liquid surface 9 of the cooling liquid layer 8 or the liquid
The molten metal is jetted from the jet nozzle 2 on the lower surface, and the metal is formed into fibers 4 and rapidly cooled and solidified, and is wound around the inner peripheral wall of the rotary drum 6. In the figure, 3 is a heater for melting metal, 5 is an inert gas for ejecting molten metal, 7 is a motor,
10 indicates belts respectively. And the peripheral velocity of the cooling liquid layer,
If the molten metal jet speed from the jet nozzle 2 is set to be substantially the same as or slightly faster than the jet speed of the molten metal, it is easy to obtain a metal fiber having a uniform cross-sectional size and shape. The cooling liquid used here may be a pure liquid, a solution, an emulsion or the like, but water is most preferable in terms of cost and cooling efficiency. Although the rotating drum may be horizontal or vertical, the surface velocity of the cooling liquid layer in the drum is about 300 to 800 m / min, the angle of penetration of the molten metal into the cooling liquid layer is 40 to 80 °, the jet nozzle 2 and the liquid Distance to surface 9 is 0.5
About 4 mm is suitable for each.

この回転液中紡糸法を採用する場合特に注意しなければ
ならないのは、噴出ノズル2の口径を100μm以下と
し、紡糸される金属繊維の直径が100μm以下となる様
にしなければならない点である。即ち噴出ノズル2の口
径が100μmを超える大径のもであると、紡糸される金
属繊維の直径が100μmを超えるもとなって、冷却速度
を十分に高めることができなくなり、樹枝状組織の一次
アームと繊維軸とのなす角度が20度を超え、満足のいく
靭性及び柔軟性のものが得られない。これに対し100μ
m以下の小径の噴出ノズルを使用すれば、直径が100μ
m以下で樹枝状組織の一次アームが繊維軸方向に対して
20度以下の角度を有する組織となり、靭性及び柔軟性の
優れた金属繊維が得られる。
When adopting this rotating submerged spinning method, it should be noted that the diameter of the jet nozzle 2 should be 100 μm or less and the diameter of the spun metal fiber should be 100 μm or less. That is, when the diameter of the jet nozzle 2 is larger than 100 μm, the diameter of the spun metal fiber exceeds 100 μm, and the cooling rate cannot be sufficiently increased, and the primary dendritic structure is not formed. The angle between the arm and the fiber axis exceeds 20 degrees, and satisfactory toughness and flexibility cannot be obtained. On the other hand, 100μ
If a jet nozzle with a small diameter of m or less is used, the diameter will be 100μ.
m or less, the primary arm of the dendritic tissue is in the fiber axis direction
The structure has an angle of 20 degrees or less, and metal fibers having excellent toughness and flexibility can be obtained.

[実施例] 実施例1 第1、2図に示した様な回転液中紡糸法を採用し、Fe−
6.5wt%Siを原料とし、直径の異なる種々の紡出ノズル
を用いて色々な直径の鉄系金属繊維を作製した。冷却液
体としては水(15℃)を使用した。尚紡出ノズルの直径
が変わると紡糸条件も変化するが、基本的には回転ドラ
ム中の水層の表面速度が溶融金属のジェット流速と同等
もしくは若干速くなる様に、ドラムの回転速度と金属溶
湯の噴出速度をコントロールすることにより、直径200
μm,160μm,70μmの3種の金属繊維を得た。
[Example] Example 1 A spin-in-liquid spinning method as shown in Figs.
Iron-based metal fibers with various diameters were produced using 6.5 wt% Si as raw material and various spinning nozzles with different diameters. Water (15 ° C) was used as the cooling liquid. The spinning conditions also change when the diameter of the spinning nozzle changes, but basically, the rotation speed of the drum and the metal are adjusted so that the surface velocity of the water layer in the rotating drum becomes equal to or slightly faster than the jet velocity of the molten metal. By controlling the spouting speed of the molten metal, a diameter of 200
Three kinds of metal fibers of μm, 160 μm and 70 μm were obtained.

このうち、直径200μmの繊維は、樹枝状組織が観察さ
れたものの、その一次アームと繊維軸とのなす角度が一
様でなく、その結果多結晶構造を示し、全長に亘って柔
軟性の乏しいものであった。これに対し直径160μmの
金属繊維では、部分的に樹枝状組織の一次アームが繊維
軸に対して約20度の角度で成長している部分が見られ、
この部分は柔軟で密着曲げが可能であったが、それ以外
の部分の柔軟性は不十分であり、また直径70μmの繊維
は樹枝状組織の一次アームと繊維軸とのなす角度が5度
以下の一様に揃った組織を有しており、繊維の全長に亘
って密着曲げが可能であった。
Among them, in the fiber having a diameter of 200 μm, a dendritic tissue was observed, but the angle formed by the primary arm and the fiber axis was not uniform, and as a result, it showed a polycrystalline structure and lacked flexibility over the entire length. It was a thing. On the other hand, in the metal fiber with a diameter of 160 μm, there is a part where the primary arm of the dendritic tissue grows at an angle of about 20 degrees with respect to the fiber axis,
This part was flexible and capable of close contact bending, but the flexibility of other parts was insufficient, and for fibers with a diameter of 70 μm, the angle between the primary arm of the dendritic tissue and the fiber axis was 5 degrees or less. It had a uniformly arranged structure, and was capable of closely bending over the entire length of the fiber.

また、直径70μmの金属繊維は、直流磁化測定において
飽和磁束密度は2.0ステラ、保磁力は0.4エルテッド、比
透磁率は31,000、角形比は0.8と、優れた軟磁気特性を
有するものであった。
Further, the metal fiber having a diameter of 70 μm had excellent soft magnetic properties, such as a saturation magnetic flux density of 2.0 stella, a coercive force of 0.4 eerted, a relative magnetic permeability of 31,000 and a squareness ratio of 0.8 in a DC magnetization measurement.

実施例2 実施例1と同様にして溶融Fe−25wt%Alから直径の異な
る2種の鉄系金属繊維(直径210μm及び70μm)を紡
糸した。直径210μmの金属繊維はすべてが多結晶構造
であって全長に亘り非常に脆弱であるのに対し、直径70
μmの金属繊維は全長に亘り、一方向樹枝状晶の集合組
織を有しており、その一次アームと繊維軸となす角度は
約4度で、どの位置でも密着曲げが可能であった。
Example 2 In the same manner as in Example 1, two kinds of iron-based metal fibers having different diameters (diameter 210 μm and 70 μm) were spun from molten Fe-25 wt% Al. All 210 μm diameter metal fibers are polycrystalline and very brittle over their entire length.
The metal fibers of μm had a texture of unidirectional dendrites over the entire length, and the angle formed between the primary arm and the fiber axis was about 4 °, and close bending was possible at any position.

実施例3 Fe−5.2wt%Al−2.7wt%Siの鉄系金属を使用し、実施例
1と同様にして直径220μmび65μmの鉄系金属繊維を
作製した。
Example 3 An iron-based metal fiber having a diameter of 220 μm and a diameter of 65 μm was produced in the same manner as in Example 1 using an iron-based metal of Fe-5.2 wt% Al-2.7 wt% Si.

直径220μmの金属繊維はすべてが多結晶構造であって
全長に亘り非常に脆弱であるのに対し、直径65μmの金
属繊維は全長に亘り一方向樹枝状組織を有しており、そ
の一次アームと繊維軸とのなす角度は約3度で、密着曲
げ可能な極めて柔軟性のすぐれたものであった。
Metal fibers with a diameter of 220 μm are all polycrystalline and very fragile over their entire length, whereas metal fibers with a diameter of 65 μm have a unidirectional dendritic structure over their entire length and their primary arms are The angle formed with the fiber axis was about 3 degrees, and it was extremely flexible and could be bent in close contact.

[発明の効果] 本発明は以上の様に構成されており、金属繊維本来の優
れた特性を保持しつつ、脆弱さを改質して極めて柔軟で
曲げ易い特性を与えることができ、その取扱い性を著し
く改善することができた。しかも樹枝状晶の成長方向が
一方向に指向しており磁気特性にも優れたものであるの
で、たとえば磁気センサーや磁心などへの適用も容易と
なり、応用分野の大幅な拡大が期待される。
[Advantages of the Invention] The present invention is configured as described above, and while maintaining the original excellent properties of the metal fiber, it is possible to modify the fragility to give the property of being extremely flexible and easy to bend. It was possible to significantly improve the sex. Moreover, since the growth direction of dendrites is oriented in one direction and has excellent magnetic properties, it can be easily applied to, for example, magnetic sensors and magnetic cores, and it is expected that the field of application will be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

第1、2図は回転液中紡糸法を説明するための図であ
り、第1図は概略正面図、第2図は一部断面側面図であ
る。また第3図(a)は樹枝状晶の基本単位の模式図
を、(b)および(c)は、一次アームと繊維軸とのな
す角度が20度以下である一方向樹枝状組織を示す模式図
である。 1:るつぼ、2:噴出ノズル 3:ヒータ、4:繊維 5:不活性ガス、6:回転ドラム 7:モータ、8:冷却液体層 9:冷却液面、10:ベルト
FIGS. 1 and 2 are views for explaining the spinning method in a rotating liquid, FIG. 1 is a schematic front view, and FIG. 2 is a partial cross-sectional side view. Further, FIG. 3 (a) is a schematic diagram of the basic unit of dendrites, and (b) and (c) show a unidirectional dendritic structure in which the angle between the primary arm and the fiber axis is 20 degrees or less. It is a schematic diagram. 1: crucible 2: ejection nozzle 3: heater, 4: fiber 5: inert gas, 6: rotating drum 7: motor, 8: cooling liquid layer 9: cooling liquid level, 10: belt

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一次アームが金属繊維軸に対して20度以内
の角度で成長した樹枝状晶群の集合組織を呈し、直径が
100μm以下のものであることを特徴とする一方向樹枝
状組織を有する高靭性及び高柔軟性の金属繊維。
1. The primary arm exhibits a dendrite group texture grown at an angle within 20 degrees with respect to the metal fiber axis and has a diameter of
Highly tough and highly flexible metal fibers having a unidirectional dendritic structure characterized by having a size of 100 μm or less.
【請求項2】円形断面を有するものである特許請求の範
囲第1項に記載の金属繊維。
2. The metal fiber according to claim 1, which has a circular cross section.
【請求項3】金属が、Fe−Si系合金、Fe−Al系合金、Fe
−Si−Al系合金よりなる群から選択されたものである特
許請求の範囲第1項又は第2項に記載の金属繊維。
3. The metal is Fe-Si alloy, Fe-Al alloy, Fe.
The metal fiber according to claim 1 or 2, which is selected from the group consisting of -Si-Al alloys.
【請求項4】金属がFe−Si−希土類金属系合金、Fe−Al
−希土類金属系合金、Fe−Si−Al−希土類金属系合金よ
りなる群から選択されるものである特許請求の範囲第1
項又は第2項に記載の金属繊維。
4. The metal is Fe-Si-rare earth metal alloy, Fe-Al.
Claim 1 which is selected from the group consisting of -rare earth metal alloys and Fe-Si-Al-rare earth metal alloys.
Item or the metal fiber according to item 2.
【請求項5】希土類金属が原子番号57〜71のランタン系
列から選択される1種又は2種以上の金属である特許請
求の範囲第4項に記載の金属繊維。
5. The metal fiber according to claim 4, wherein the rare earth metal is one or more metals selected from the lanthanum series having atomic numbers 57 to 71.
【請求項6】希土類金属がCeである特許請求の範囲第5
項に記載の金属繊維。
6. A method according to claim 5, wherein the rare earth metal is Ce.
The metal fiber according to item.
JP62310259A 1987-12-08 1987-12-08 Highly tough and highly flexible metal fibers with unidirectional dendritic structure Expired - Lifetime JPH0736942B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62310259A JPH0736942B2 (en) 1987-12-08 1987-12-08 Highly tough and highly flexible metal fibers with unidirectional dendritic structure
US07/280,320 US4946746A (en) 1987-12-08 1988-12-06 Novel metal fiber and process for producing the same
DE3841241A DE3841241C2 (en) 1987-12-08 1988-12-07 Metal fiber and method of manufacturing a metal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310259A JPH0736942B2 (en) 1987-12-08 1987-12-08 Highly tough and highly flexible metal fibers with unidirectional dendritic structure

Publications (2)

Publication Number Publication Date
JPH01150444A JPH01150444A (en) 1989-06-13
JPH0736942B2 true JPH0736942B2 (en) 1995-04-26

Family

ID=18003094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310259A Expired - Lifetime JPH0736942B2 (en) 1987-12-08 1987-12-08 Highly tough and highly flexible metal fibers with unidirectional dendritic structure

Country Status (1)

Country Link
JP (1) JPH0736942B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857916B2 (en) 2003-04-11 2010-12-28 Nhk Spring Co., Ltd Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire
JP6480138B2 (en) * 2013-09-30 2019-03-06 大同特殊鋼株式会社 Soft magnetic fine wire, mesh sheet for alternating current, sintered sheet for alternating current, rubber sheet for alternating current, laminated sheet for alternating current
CN109396416A (en) * 2018-11-12 2019-03-01 江苏裕虎新材料科技发展有限公司 A kind of preparation method of new iron-based amorphous powdered alloy and the composite magnetic powder core based on it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038228B2 (en) * 1978-11-10 1985-08-30 逸雄 大中 Manufacturing method of thin metal wire
DK444985A (en) * 1984-10-08 1986-04-09 Johnson Matthey Plc METHOD OF MANUFACTURING METAL MATERIALS

Also Published As

Publication number Publication date
JPH01150444A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
US4495691A (en) Process for the production of fine amorphous metallic wires
US6749700B2 (en) Method for producing amorphous alloy ribbon, and method for producing nano-crystalline alloy ribbon with same
US4265682A (en) High silicon steel thin strips and a method for producing the same
JPH0113944B2 (en)
US20090107590A1 (en) Soft magnetic alloy for microwire casting
JP3494371B2 (en) Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
JPH08269647A (en) Ni-based amorphous metallic filament
JP3364299B2 (en) Amorphous metal wire
JPH0736942B2 (en) Highly tough and highly flexible metal fibers with unidirectional dendritic structure
JPS58173059A (en) Production of fine metallic wire
US4946746A (en) Novel metal fiber and process for producing the same
JPH07316755A (en) Al-base amorphous metallic filament
JPH0688110B2 (en) Single crystalline metal fiber and method for producing the same
JPS5964740A (en) Amorphous metal filament and manufacture thereof
JPH06104597B2 (en) Metal filament having a bamboo structure and method for producing the same
JPS594948A (en) Production of ni-ti alloy wire
JPH09143642A (en) Nickel base amorphous metal filament
JPS6375118A (en) Iron type metallic filament and production thereof
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
JPH0260752B2 (en)
JPH0667533B2 (en) Copper alloy filament and manufacturing method thereof
JP3247240B2 (en) Manufacturing method of fine metal wire
JPH0679413A (en) Manufacture of metal fine wire
JPH0688111B2 (en) High angle hysteresis soft magnetic fiber and method for producing the same
JPS6366323A (en) Copper alloy filament and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 13